The HI -- Stellar Mass Relation

Natasha Maddox SKA Postdoctoral Fellow, UCT

- For a galaxy of a given stellar mass, a wide range of HI masses are possible, from nearly zero, to >10M*
- Even among gas-rich galaxies, there is a lot of variety

- Restrict to HI-rich galaxies. Is there a relation? Should there be?
- Complicated by gas inflows, outflows, star formation, feedback, mergers, environment, ...

- There is a relation at the high mass end for HI-selected galaxies
- Pretty much all galaxies here have 10⁸<M_{HI}<10¹⁰ M_☉
- What about at lower HI and stellar masses?

- ALFALFA is a large area, blind HI survey with Arecibo
- Detects galaxies at 0<z<0.06 with 10⁶<M_{HI}<10¹¹ M_☉
 - Provides information on gas component of galaxies

- ALFALFA is a large area, blind HI survey with Arecibo
- Detects galaxies at 0<z<0.06 with 10⁶<M_{HI}<10¹¹ M_☉
 - Provides information on gas component of galaxies
- SDSS optical imaging and spectroscopic survey in the same area
 - Provides information on stellar component of galaxies
- Catalogue of >12000 galaxies with HI and optical information

Which galaxies are HI-rich?

Optically selected SDSS galaxies: Schawinski et al. 2014, arXiv 1402.4814

Which galaxies are HI-rich?

Optically selected SDSS galaxies: Schawinski et al. 2014, arXiv 1402.4814

- Dwarf galaxies have more mass in HI than in stars
- The relation seems to extend to very low masses

What drives this relation?

• (I don't know the answer, so suggestions are welcome)

Metallicity

- Metallicity affects star formation efficiency
- Lower M_{Stellar} galaxies have lower metallicity
- Galaxies of nearly all M_{HI} can have the same metallicity

Density

- SDSS provides a measure of the size of the stellar disks for each galaxy
- Can compute a measure of the area of the stellar disk

Surface brightness at r/average surface brightness within r = 0.2 → Petrosian radius for SDSS

Stellar density

- M_{Stellar}/area of disk
- Larger galaxies tend to be more dense
- Do the same thing for M_{HI}/area of disk...

"Density"

- For some galaxies, the size of the stellar disk is a good proxy for the size of the HI disk
- For some galaxies, this
 is not a good proxy for
 the size of the HI disk

"Density"

- For some galaxies, the size of the stellar disk is a good proxy for the size of the HI disk
- For some galaxies, this
 is not a good proxy for
 the size of the HI disk

HI "density"

- M_{HI}/area of stellar disk
- There is an upper envelope of dense HI

HI "density"

- M_{HI}/area of stellar disk
- There is an upper envelope of dense HI

Stellar density

HI "density"

ALFALFA vs HIPASS

Thanks for the data, Danail!

How do simulations compare with the data?

- SKA Simulated Skies (S³) → Talk to Danail for details
- Millenium simulation + semi-analytic galaxy formalism + HI and H₂

- Extract a volume from the simulations approximating ALFALFA
- Overall normalization is correct, but the slope is wrong and the break is missing
- H₂ is also available, so should look at that as well

Thanks for the simulations, Danail!

What will the SKA and precursors contribute?

- Large area surveys to cosmological redshifts
- With new telescopes M_{HI} (y-axis) is easy, M_{Stellar} (x-axis) more difficult

- Optical spectroscopy from GAMA to r<19.8
- Optical imaging from KiDS to r<25.2
- Imaging magnitude limit well matched to HI sensitivity of DINGO

Summary and work to do

- Current large surveys are exposing previously unseen trends in galaxy populations
- The underlying cause of the M_{HI}--M_{Stellar} relation remains uncertain, but HI density is a possible candidate
 - Compare data with available simulations
 - Investigate movement of galaxies within the M_{HI}--M_{Stellar} plot
 - Investigate the galaxies at the break (M_{Stellar} ~ 10⁹ M_☉)

Summary and work to do

- Current large surveys are exposing previously unseen trends in galaxy populations
- The underlying cause of the M_{HI}--M_{Stellar} relation remains uncertain, but HI density is a possible candidate
 - Compare data with available simulations
 - Investigate movement of galaxies within the M_{HI}--M_{Stellar} plot
 - Investigate the galaxies at the break (M_{Stellar} ~ 10⁹ M_☉)

GASS galaxies

Stellar mass-selected galaxies

Bluedisk galaxies

Stellar mass-selected galaxies

HI mass fraction

Specific Star Formation Rate

Optical g-r colour

