

An update on ASKAP and WALLABY

Bärbel Koribalski

CSIRO Astronomy and Space Science www.csiro.au

The Australian SKA Pathfinder

- ASKAP: 36 × 12-m dishes (freq. 0.7 1.8 GHz, baselines up to 6 km; eg., mapping the 21-cm line of neutral atomic hydrogen gas)
- 2014: started commissioning work with 6 PAF-equipped antennas
- ASKAP's data rate is expected to be 72 Tbit/s (once fully operational), data output ~500 PB /yr; raw data will be stored only temporarily; archive data outputs (images/cubes) long term
- ASKAP correlator (delivering 340 Tflop/s)

ASKAP Commissioning

BETA = Boolardy Engineering Test Array

CSIRO Astronomy and Space Science www.csiro.au

BETA Mk1 PAFs – an engineering testbed

Baerbel Koribalski * PHISCC 2014

0.755

0.756

134

0.752

0.753

Frequency (GHz)

0.754

Now 6 PAFs on ASKAP

until Feb 2014: testing two groups of 3 PAFs

Phased Array Feed Mk I

Baerbel Koribalski * PHISCC 2014

First 9-beam image with six PAFs on ASKAP antennas

- 6 antennas (36)
- 2 x 3 baselines (630)
- 9 beams (36)
- 304 MHz bandwidth ✓

BETA = 6 Mk1 PAFs working together

producing 9-beam continuum maps + HI images/spectra for science verification

The starburst galaxy **NGC 253** is a member of the Sculptor Group. It has **~6 Jy** radio continuum flux at 20-cm; very **bright HI emission** (and absorption) over 400 km/s, approx. from 1418 - 1420 MHz.

↑ A new detection of HI 21 absorption, at z = 2.192 towards TXS 2039+187 (high-redshift analogue of gas-rich galaxy in the Local Universe)

← HIPASS hints at wide HI absorption towards NGC 5793 (tbc).

csiro

ASKAP Commissioning – Part 2

with Mk II PAFs or ADE PAFs

CSIRO Astronomy and Space Science www.csiro.au

HI Early Science with ASKAP-12

Bärbel Koribalski

CSIRO Astronomy and Space Science www.csiro.au

Six ADE PAFs working together could produce this:

Atomic Hydrogen in the LMC (Kim et al. 1998)

Infrared Portrait of the LMC (Spitzer + Herschel)

Our science goal for ASKAP-ADE12

Study the evolution of galaxies, their transformation and star formation as a function of environment.

HI in the NGC 3263 galaxy group – English, BK et al. (2010

Our science goal for ASKAP-ADE12

Study the HI morphology, kinematics and star formation of galaxies in:

- voids
- loose groups
- compact groups
- and clusters

Discover HI clouds / filaments between galaxies, tracing their interaction history.

HI in the NGC 3263 galaxy group – English, BK et al. (2010

Our science goal for ASKAP-ADE12

Our strategy:

- in-depth study of **10 fields** (z = 0 0.2)
- targeting galaxies in different environments
- approx. 60 hours (6 10 nights) per field
- need to resolve galaxies and detect faint gas
 in and outside galaxy disks
- focus on **nearby** groups and clusters

HI in the NGC 3263 galaxy group – English, BK et al. (2010

VLA HI Study of the Virgo Cluster.

About **400h** to obtain single pointings of 53 late-type Virgo cluster galaxies.

SDSS + HI contours (Chung et al. 2009).

CSIRC

The 21-cm spectral line allows us to study

- the physical processes affecting galaxy disks
- star-formation locations in the outer disk
- gaseous filaments/bridges between galaxies

CSIRC

• intra-group/cluster gas

The 21-cm spectral line allows us to study

- the physical processes affecting galaxy disks
- star-formation locations in the outer disk
- gaseous filaments/bridges between galaxies

CSIRC

• intra-group/cluster gas

Using HI maps to determine the morphology of HI deficient and HI excess galaxies:

HI stripping and HI accretion methods in spiral galaxies

slide by Virginia Kilborn

Baerbel Koribalski * PHISCC 2014

CSIRO

BETA / ASKAP Early Science Fields

Circinus field: isolated nearby galaxy

BETA / ASKAP Early Science Fields

ASKAP-ADE 6 – 12+ dishes

Fornax field: a nearby galaxy cluster

ASKAP-12 HI Early Science

- ASKAP-ADE12 HI line sensitivity and configuration studies (WALLABY Memos 13 & 14; Tobias Westmeier et al.)
- HI Early Science our *"umbrella theme"*:

Study the evolution of galaxies, their transformation and star formation as a function of environment.

 Approx. 10 target fields – observe for ≥60 hours each (resulting in HI line rms per 4 km/s channel of ~1.6 mJy/beam and angular resolution of ~20-30 arcsec)

HI Spectral Line Sensitivity

ASKAP-ADE12 HI survey speed ≥ VLA HI survey speed

(assuming ASKAP-ADE T_{sys} = 50 K @ 1.1 - 1.4 GHz, efficiency η = 0.8)

	Time on source to reach an rms of 4-5 mJy/beam	Mapped area for 8 hour integration reaching an rms of 4-5 mJy/beam
ATCA	50 minutes	9-point HI mosaic (pbeam ~ 34')
VLA	10 minutes	48-point HI mosaic (pbeam ~ 30')
ASKAP-ADE12	480 minutes	PAF field-of-view (≈30 sq degr) eq to 36-point HI mosaic (pbeam ~ 63')
ASKAP-ADE30	74 minutes	6.5 PAF fields

CSIRC

ASKAP-12 HI Observations

- Each field: ≈60h on-source, ie about 6-10 nights observing
 - dither or choose offset pointing position each night (Nyquist sample)
- FOV \approx 30 sq degr (approx. 5.5 degr x 5.5 degr)
- syn. beam 20"-30" (6" pixels?)
- 16384 channels, each 18.5 kHz
- keep visibilities until imaging is complete
- shared risk observing

Target ~10 fields

 \geq 60 h each

Umbrella Theme: Galaxy evolution as a function of environment.

How do physical processes affect the HI morphology and kinematics of galaxies in voids, groups & clusters.

CSIRO Astronomy and Space Science * Contact: Baerbel.Koribalski@csiro.au www.csiro.au

ASKAP HI All-Sky Survey

WALLABY PIs: Bärbel Koribalski & Lister Staveley-Smith

CSIRO Astronomy and Space Science www.csiro.au

ASKAP HI All-Sky Survey

WALLABY PIs: Bärbel Koribalski & Lister Staveley-Smith

WALLABY overview paper (Koribalski et al, 2014, in prep.) Figure by Tobias Westmeier.

~ 600 000 galaxies

WALLABY Predictions (Duffy et al. 2012)

in future: SKA Phase 1+2 HI Surveys

WALLABY – the ASKAP HI All-Sky Survey

LVHIS – the Local Volume HI Survey

HIPASS – the HI Parkes All-Sky Survey

Baerbel Koribalski * PHISCC 2014

ter py ster

ASKAP: 36 antennas assembled (Picture credit: Simon Johnston)

WALLABY parameters:

- survey time:
- ~ one year
- **sky coverage:** $-90^{\circ} < \delta < +30^{\circ} (max. +50^{\circ})$
 - FOV = 30 sq deg (i.e. 400× ATCA primary beam)
- velocity coverage: -2,000 to 77,000 km/s (z = 0.26)
 - BW = 300 MHz divided into 16,384 channels
 - resolution: 30", 4 km/s (+ 10" postage stamps)
- integration time: 8 (12) hours per pointing

~ 600 000 galaxies

- line sensitivity: ~1.5 (1.3) mJy/beam per channel
- 330 TB total storage for Stokes-I cubes

Baerbel Koribalski * PHISCC 2014

ASKAP: 36 antennas assembled (Picture credit: Simon Johnston)

WALLABY science goals:

We will examine the HI properties and large-scale distribution of ~ 600,000 galaxies out to z = 0.26 and study, for example:

~ 600 000 galaxies

- their gas content as a function of environment
- their disk kinematics and dark matter distribution
- signatures of gas accretion and ram pressure stripping
- the HI mass function and its variation with galaxy density

Baerbel Koribalski * PHISCC 2014 Scale structures of galaxies, bulk flow motions

Westerbork Northern Sky HI Survey (δ > +27)

Baerbel Koribalski * PHISCC 2014

<12,000 km/s

(Duffy et al. 2012)

EXPECTED TOTAL

S/N>5: 825k galaxies S/N>10: 249k galaxies

ASKAP HI All-Sky Survey

WALLABY Team – developing & testing new tools, commissioning

CSIRO Astronomy and Space Science www.csiro.au

WALLABY – Working Groups

Representatives on ASKAP working groups

- 1) ASKAP Simulations & Imaging: Matthew Whiting
- 2) Source Finding: Tobias Westmeier
- 3) Survey Strategy: BK & LSS
- 4) BETA & Commissioning: Ivy Wong
- 5) ASKAP Data Archive: Paolo Serra (Ian Heywood)

WALLABY – Working Groups

Science Working groups

- SWG1 Local Group: E Ryan-Weber
- SWG2 Local Universe: B Koribalski & G Meurer
- SWG3 Galaxy Environments: V Kilborn
- SWG4 Intergalactic HI: B Wakker
- SWG5 HI Mass Function: M Zwaan
- SWG6 Large-scale structure: J Mould
- SWG7 Galaxy clusters: M Verheijen & P Serra
- SWG8 Galactic Halo: J Kerp

Baerbel Koribalski * PHISCC 2014

WALLABY – Working Groups

Technical Working groups

- TWG1 Numerical Simulations & Mock Surveys: C Power (C Blake)
- TWG2 Survey Strategy & Commissioning: BK & LSS
- TWG3 Data Processing and Imaging: M Whiting
- TWG4 Source Finding and Parametrisation: T Westmeier
- TWG5 Data Format, Access & Visualisation: C Fluke (R Jurek)
- TWG6 Stacking: M Meyer
- TWG7 RFI Mitigation: L Staveley-Smith

The Busy Function:

a new analytic function for describing the integrated 21-cm spectral profile of galaxies

Westmeier, T., Jurek, R., Obreschkow, D., Koribalski, B.S., Staveley-Smith, L. 2014, MNRAS 438, 1176

http://www.atnf.csiro.au/people/Tobias.Westmeier/tools_software_busyfit.php

SoFiA - our new Source Finding Application

developed by members of the WALLABY source finding working group (TWG4)

Tobias Westmeier, Paolo Serra, Nadine Giese, Russell Jurek, Lars Flöer, Attila Popping and Benjamin Winkel

* SoFiA Handbook (on-line)

SoFiA - testing.sof			
<u>F</u> ile <u>P</u> ipeline <u>A</u> nalysis <u>S</u> ettings <u>H</u> elp			
🎴 🔒 🖌 😣 🔜			
Pipeline Messages			
The merging has completed			
SoFiA: Determining reliability The following sources are detected: [1 2 3 4 5 7 9 10 11 12]			
SoFiA: Parametrising sources			
75%			
Input Input Filter Source Finding Merging Parametrisation Output Filter	Output		
Optimise mask Fit Busy Function			
🕜 🗶 Calculate reliability			
Accepted range: 0.9 – 1.0			
Kernel: [0.15,0.05,0.1]			
	Next		
Information: Pipeline started.			

CSIRO

http://www.atnf.csiro.au/people/Tobias.Westmeier/tools_software_sofia.php

WALLABY Kinematic Working Group

(led by Kristine Spekkens)

HI Parkes All-Sky Survey (HIPASS)

Bärbel Koribalski

CSIRO Astronomy and Space Science www.csiro.au

HIPASS-1 and soon HIPASS-2

Apply new Source Finding and Parametrisation tools

Baerbel Koribalski * PHISCC 2014

3D visualisation of HIPASS galaxies

by Mark Calabretta

HIPASS references: Koribalski et al. (2004), Meyer et al. (2004), Wong et al. (2006).

The HIPASS Bright Galaxy Catalog * Koribalski et al. (2004)

The HIPASS Bright Galaxy Catalog * Koribalski et al. (2004)

galaxies (111) and HI clouds (4)

new

< 1000 1100-1600 1600-2100 2100-2900 > 2900

Tully-Fisher Relation – Bulk Flow Field

Tully-Fisher Relation without galaxy inclinations

WALLABY – the ASKAP HI / 21-cm All-Sky Survey

~1200 fields (t_{int} ~ 8h)

each 30 sq

Estimated detections per field:

- 500 HI galaxies
- 70 000 continuum sources
- 0.5 HI absorbers
- many transients

36 beams

ww.csiro.au

http://www.atnf.csiro.au/research/WALLABY

Dr. Bärbel Koribalski CSIRO Astronomy and Space Science Australia Telescope National Facility PHISCC 2014 – 18 Mar 2014

