## A first taste of Bbarolo:

a 3D-fitting software to model the kinematics of disc galaxies

Enrico Di Teodoro

University of Bologna

Filippo Fraternali

## Tilted-ring model

Tilted-Ring Model (Rogstad et al. 1974):

Decomposing a disc galaxy in thin rings

## Rings at different radii described by:

$>$ Center of the ring $\left(x_{0}, y_{0}\right)$

- Two geometrical parameters:
- inclination $i$
- position angle $\varphi$
> Two kinematic parameters:
- systemic velocity $v_{s y s}$
- rotation velocity $v_{r o t}$



## Tilted-ring model: fitting strategies

$2-D$

$$
3-D
$$

- 2D velocity fields
(e.g., Begeman 1987, Spekkens 2007)
- 6 free parameters

NGC 5055 (Battagia et al. 2005)
apor

$$
\begin{aligned}
& V_{\mathrm{los}}(x, y)=V_{\mathrm{sys}}+V_{\mathrm{C}}(R) \cos \theta \sin (i) \\
& \cos \theta=\frac{\left.-\left(x-x_{0}\right) \sin \varphi\right)+\left(y-y_{0}\right) \cos \varphi}{R}
\end{aligned}
$$

- PROs: computationally fast \& good for high resolution
- CONs: beam smearing in low resolution data

- No analytical expression
- PROs: it takes into account the beam smearing
- CONs: slowness \& larger set of parameters


## A new 3D-fitting cube software

## BAROLO

Bologna Best-fit Analysis of Rotating Objects from Line Observations

- Generating 3D model through a stochastic function
- Nelder-Mead (downhill simplex) method for minimizing the model
- Built-in algorithm for source detection (from Duchamp code, [Whiting, 2012])
- Initial parameters estimate


## Fully automated execution

Ideal for large up-coming HI surveys!!
(e.g., SKA Pathfinders)

## Cube fitting flowchart



## Applications

> High resolution data \& automatic mode

- Galaxy sample at mid-low resolution
> 2 D vs 3 D in very low resolution data


## Example I: High resolution rotation curve

## \$ ./Bbarolo -f ngc3198_fullres.fits

## NGC 3198





## Example II: Mid-low resolution rotation curves

Model spiral galaxies at low resolution (WHISP sample)


Comparison with rotation curves by Swaters 2002 (2D tilted-ring + beam smearing correction)


© Beam area


## Example II: Mid-low resolution rotation curves



## Example III: 2D vs Bbarolo at very low resolution

Artificial galaxy with:
> Spatial resolution: 15" (beam = 16 pixel)
> Fixed center, i, P.A, $\mathrm{V}_{\text {sys }}, \mathrm{Z}_{0}$
> Fixed velocity dispersion: $\mathbf{1 2} \mathbf{~ k m} / \mathbf{s}$
> Quickly rising rotation curve



3D
Rotcur (GIPSY)
Free parameter: $\mathrm{v}_{\text {rot }}$
2D
Rotcur (GIPSY)
Free parameter: $\mathrm{v}_{\text {rot }}$

- Repeating the analysis on datacubes smoothed at 30", 60", 120", 240", 480'


## Example III: resolution effects



## Example III: resolution effects



Example III: Real life (NGC3198 single-dish)


## Example III: Real life (NGC5055 single dish)



## Conclusions and future prospects

- Bbarolo is a code for fitting simple tilted-ring models to data-cubes
- Applications range from high-resolution to very low resolution data


## Forthcoming steps:

> Improvements in the fitting algorithm and full code parallelization
> Running Bbarolo on emission-line data of high-redshift galaxies (e.g. ESO/VLT SINFONI \& MUSE, ALMA)
> Application on next-coming large HI surveys

## Thank you for your kind attention

## NGC 3198: Initial parameter estimate



## NGC 3198: Fitting the model

First fitting step: $\longrightarrow$ Fixing parameters:
PA \& inc as $3^{\text {rd }}$ degree polyn.
Others constant



## Errors in Bbarolo

Best model $\longrightarrow \begin{gathered}\text { Random variation } \\ \text { of parameters }\end{gathered}$


Fit with a $3^{\text {rd }}$ deg. polynomial

Errors within 5\%


