A first taste of Bbarolo:

a 3D-fitting software to model the kinematics of disc galaxies

Enrico Di Teodoro

University of Bologna

Filippo Fraternali

Tilted-ring model

Tilted-Ring Model (Rogstad et al. 1974):

Decomposing a disc galaxy in thin rings

Rings at different radii described by:

- > Center of the ring (x_0, y_0)
- Two geometrical parameters:
 inclination *i*
 - position angle φ
- ► Two kinematic parameters:
 - systemic velocity v_{sys}
 - rotation velocity v_{rot}

Tilted-ring model: fitting strategies

2-D

- 2D velocity fields (e.g., Begeman 1987, Spekkens 2007)
- 6 free parameters

$$V_{\rm los}(x,y) = V_{\rm sys} + V_{\rm c}(R) \cos\theta \sin(i)$$
$$\cos\theta = \frac{-(x - x_0)\sin\varphi + (y - y_0)\cos\varphi}{R}$$

- *PROs*: computationally fast & good for high resolution

- *CONs*: <u>beam smearing</u> in low resolution data

3**-D**

- 3D datacubes (e.g., Corbelli & Schneider 1997, Józsa et al. 2007)
- 6 free parameters + 3 (Z₀, Σ_{gas} and σ)

Józsa+ 2007

- No analytical expression

- *PROs:* it takes into account the beam smearing

- CONs: slowness & larger set of parameters

A new 3D-fitting cube software

Bologna Best-fit Analysis of Rotating Objects from Line Observations

- Generating 3D model through a stochastic function
- Nelder–Mead (downhill simplex) method for minimizing the model
- Built-in algorithm for source detection (from *Duchamp* code, [Whiting, 2012])
- Initial parameters estimate

Fully automated execution

Ideal for large up-coming HI surveys!! (e.g., SKA Pathfinders)

Cube fitting flowchart

Applications

- High resolution data & automatic mode
- Galaxy sample at mid-low resolution
- 2D vs 3D in very low resolution data

Example I: High resolution rotation curve

Example II: Mid-low resolution rotation curves

Model spiral galaxies at low resolution (WHISP sample)

Comparison with rotation curves by Swaters 2002 (*2D tilted-ring* + *beam smearing correction*)

Example II: Mid-low resolution rotation curves

Example III: 2D vs Bbarolo at very low resolution

- Repeating the analysis on datacubes smoothed at 30", 60", 120", 240", 480"

Example III: resolution effects

Example III: resolution effects

Example III: Real life (NGC3198 single-dish)

Example III: Real life (NGC5055 single dish)

Conclusions and future prospects

- Bbarolo is a code for fitting simple tilted-ring models to data-cubes
- Applications range from high-resolution to very low resolution data

Forthcoming steps:

- Improvements in the fitting algorithm and full code parallelization
- Running Bbarolo on emission-line data of high-redshift galaxies (e.g. ESO/VLT SINFONI & MUSE, ALMA)
- Application on next-coming large HI surveys

Thank you for your kind attention

NGC 3198: Initial parameter estimate

NGC 3198: Fitting the model

Errors in Bbarolo

