WALLABY/DINGO kinematic pipeline : A new Bayesian MCMC tilted-ring fitter

Se-Heon Oh (ICRAR/UWA)

with
L. Staveley-Smith (ICRAR), P. Kamphuis (CSIRO), B. Koribalski (CSIRO), E. de Blok (ASTRON)
E. Elson (UCT), G. Józsa (ASTRON), K. Spekkens (RMC; leader),
T. Westmeier (ICRAR), P. Serra(CSIRO) + WALLABY kinematics working group

- An overview of WALLABY kinematic pipeline
- A new Bayesian MCMC 2D tilted-ring fitter
- Performance test using sample galaxies from LVHIS
- Summary \& future works

Kinematic parameter extraction for WALLABY/DINGO: ASKAP WALLABY/DINGO $(\sim 5 ; 000)+$ WSRT WNSHS $(\sim 7,000)$

See posters + talks (Thursday) by Peter, Ed and Kristine for more details

NGC 5055 (Battaglia et al. 2005)

Galaxy Radius

Free: XPOS, YPOS, VSYS, PA, INCL, VROT Fixed: VEXP

Free: PA, INCL, VROT Fixed: XPOS, YPOS, VSYS, VEXP

Free: XPOS, YPOS, VROT
Fixed: VSYS, VEXP, PA, INCL
\downarrow

Free: VROT

Fixed: XPOS, YPOS, VSYS, VEXP, PA, INCL
I

Derive final rotation curve

$$
\begin{aligned}
& V_{\mathrm{obs}}(x, y)=V_{\mathrm{sys}}(x, y)+\sin \left(i\left\{V_{t}(x, y) \cos \theta+V_{r}(x, y) \sin \theta\right\}\right. \\
& \cos \theta=\frac{-(x-\mathrm{XPOS}) \sin (\mathrm{PA})+(y-\mathrm{YPOS}) \cos (\mathrm{PA})}{r} \\
& \sin \theta=\frac{-(x-\mathrm{XPOS}) \cos (\mathrm{PA})-(y-\mathrm{YPOS}) \sin (\mathrm{PA})}{r \cos (\mathrm{INCL})}
\end{aligned}
$$

- 6 free parameters
- VROT/INCL degenerated
- sensitive to initial estimates
- non-parametric models for PA/INCL
- affected by non-circular motions
$V_{\text {MODEL }}(x, y)=V_{\text {SYS }}(x, y)+V_{\text {ROT }}(r) \times \cos \theta \sin \mathrm{I}+V \exp (r) \times \sin \theta \sin \mathrm{I}$
$\left(\cos \theta=\frac{-(x-X P O S) \times \sin P A+(y-Y P O S) \times \cos P A}{r}\right.$
$\sin \theta=\frac{-(x-X P O S) \times \cos P A-(y-Y P O S) \times \sin P A}{r \cos \mathrm{I}}$

$r=\sqrt{[-(x-X P O S) \times \sin \theta+(y-Y P O S) \times \cos P A]^{2}+\left[\frac{(x-X P O S) \times \cos P A+(y-Y P O S) \times \sin P A}{\cos I}\right]^{2}}$

1. Kinematic position angle

- Several dynamical structures in galaxies (e.g., lopsideness, bar-like potential, sprial arms, non-circular motions etc.) change kinematic PA in radial.
- Usually, well modeled by a polynomial function with a moderate order (e.g., $\mathrm{m}=5$)

$$
P A=\sum_{i=0}^{m} p_{i} r^{i}
$$

de Blok et al. (2008)

Radius

- Kinematic INCL change is often seen in galaxies but its sudden change in the inner region (probably due to non-circulr motions or low filling factor) is unphysical except for outer regions where warps may exist.
- A modified Sersic profile is used for INCL
- Constant or linear variation of INCL in the inner region (e.g., $n=0$ or 1)

$$
\mathrm{I}=\sum_{i=0}^{n} i_{i} r^{i}+\kappa \exp \left(\left[\frac{r}{\alpha}\right]^{\beta}\right)
$$

Radius
$V_{\text {MODEL }}(x, y)=V_{S Y S}(x, y)+V_{\text {ROT }}(r) \times \cos \theta \sin \mathrm{I}+V \exp (r) \times \sin \theta \sin \mathrm{I}$ $\cos \theta=\frac{-(x-X P O S) \times \sin P A+(y-Y P O S) \times \cos P A}{r}$

$$
P A=\sum_{i=0}^{m} p_{i} r
$$

$\sin \theta=\frac{-(x-X P O S) \times \cos P A-(y-Y P O S) \times \sin P A}{r \cos \mathrm{I}}$ $\mathrm{I}=\sum_{i=0}^{n} i_{i} r^{i}+\kappa \exp \left(\left[\frac{r}{\alpha}\right]^{\beta}\right)$
$r=\sqrt{[-(x-X P O S) \times \sin \underline{P A}+(y-Y P O S) \times \cos \underline{P A}]^{2}+\left[\frac{(x-X P O S) \times \cos \underline{P A}+(y-Y P O S) \times \sin \underline{P A}}{\cos L}\right]^{2}}$
$\rightarrow r=f\left(x, y, X P O S, Y P O S, p_{0}, p_{1}, \ldots, i_{0}, i_{1,}, \ldots, \kappa, \alpha, \beta\right)$
\rightarrow Solve this non-linear equation and derive the radius, r in the galaxy plane for given (x, y), XPOS, YPOS, p0, p1, $\cdots, i 0, i 1, \ldots$, к, α, β (e.g., Newton-Rapson method etc.)
$V_{\text {MODEL }}(x, y)=V_{S Y S}(x, y)+V_{\text {ROT }}(r) \times \cos \theta \sin \mathrm{I}+V \exp (r) \times \sin \theta \sin \mathrm{I}$
$r)=f\left(x, y, X P O S, Y P O S, p_{0}, p_{1}, \ldots, i_{0}, i_{1}, \cdots, \kappa, \alpha, \beta\right)$
()$_{s o}(r)=\sqrt{4 \pi G \rho_{0} r_{c}^{2}\left[1-\frac{r_{r}}{r} \arctan \left(\frac{r}{r_{r}}\right)\right]}$
$\rightarrow V_{\text {MODEL }}=F($ XPOS , YPOS , VSYS , VEXP $, \overbrace{r_{c}, \rho_{0,},}^{\text {VROT }} \overbrace{p_{0, p} p_{1, \cdots}, \ldots}^{P A}, \overbrace{i_{0}, i_{1}, \ldots, \kappa, \alpha, \beta}^{I N C L})$

$$
\log \mathscr{L}=-\frac{N}{2} \log 2 \pi-\sum_{i=0}^{N A X I} \sum_{j}^{N A X 2} \log \sigma_{i j}-\frac{1}{2} \sum_{i=0}^{N A X I} \sum_{j=0}^{N A X 2}\left[\frac{V_{\text {ose }}(i, j)-V_{\text {noon }}(i, j)}{\sigma_{i}}\right]^{2}
$$

Log likelihood

- Bayesian parameter estimation
- Markov Chain Monte Carlo (MCMC) sampling (see Mackay 2003 and refs therein)
- less sensitive to initial values and gives good error estimation
- MCMC sampling (e.g., Metropolis-Hastings algorithm and its variants, Gibbs or Hamiltonian samplings)
- CPU intensive and sampling problems in multimodal posteriors
- Bayesian model selection
- CPU expensive for the calculation of the Bayesian evidence which is used to assign relative probabilities to different models
- thermodynamic integration method (e.g., O Ruanaidh \& Fitzgerald 1996)
- inefficient sampling in multimodal posteriors
- Improves the sampling efficiency and robustness based on the clustered nested sampling in Shaw et al. (2007)
- Calculates the evidence and explores parameter space even with multimodals and curving degeneracies in high dimensions
- Refer to Feroz \& Bridges (2008) for a complete discussion on the new sampling scheme, "the improved simultaneous ellipsoidal nested sampling method"
\rightarrow a fully parallelized algorithm using MPI
- Successfuly implemented in astrophysics and cosmology (e.g., CosmoMC, SuperBayeS, SUSY, gravitational lensing, exo-planet detection, ASKAP FLASH absorption line finder (Allison et al. 2012))
- Standalone C program for 2D tilted-ring fits based on Bayesian MCMC - MultiNest v2.18, CFITSIO, standard ANSI C libraries
- fully automatic: estimation for initial values, convergence check and derivation of the final rotation curve for a given 2D velocity field
- several builtin rotation curve shape functions are provided (e.g., pseudo-isothermal, Burkert, polynomial rotation curves etc.)
- the larger number of sampling, the higher quality of fits but the more cpu time
\rightarrow supports MPI which enables us to do parallel computing
seheon@darkmatter rotcur. develop.mpi]\$

Program run.

```
+ WALLABY 2D TILTED-RING FITTER
WALLABY 2D TILTED-RING FITTER
+ by SE-HEON OH (ICRAR/UWA) + WALLABY KINEMATICS WORKING GROUP
Development history
    V.1.0 14/Sept/2013
+ Usage
    mpirun -loadbalance -np [0. N-cpus= 8] ./wallaby_2D_TRfitter
```

+ A. Input 2D velocity field to fit
[1. 2D VELOCITY FIELD= vf.fits)]
[2. NAX1 $=1024$] [3. NAX2 $=1024$]
+ [4. XLOWER= 200] [5. YLOWER= 200] [6. XUPPER= 800] [7. YUPPER= 800]
+ B. Binning option
[8. grid_X_ISOFIT= 5] [9. grid_Y_ISOFIT= 5] [10. BIN_X_TRFIT= 1] [11. BIN_X_TRFIT= 1]

	[12. XPOS= 512]	[13. xpos0= 500]	[14. \times pos $1=520]$
+	[15. YPOS= 512]	[16. ypos0= 500]	[17. ypos $1=520]$
	[18. VSYS $=0]$	[19. vsyso $=-10]$	[20. vsysi= 10]
	[21. $\mathrm{PA}=45$]	[22. $\mathrm{paO}=0.1]$	[23. pa1= 0.9]
	[24. $\mathrm{INCL}=45$]	[25. incl0 $=0.1$]	[26. incl1 $=0.9]$

[27. VROT $=10][28, \operatorname{vrot} 0=0.0][29, \operatorname{vrot} 1=200]$


```
| EXAMPLE
```

mpirun -loadbalance -np 8 ./wallaby_2D_TRfitter \}
test.VF1024.fits
10241024
2002008008001
$5 \quad 5111$
512490530
512490530
$\begin{array}{llll}0 & -20 & 20\end{array}$
$\begin{array}{llll}45 & 0.1 & 0.9\end{array}$
$60 \quad 0.10 .9$
$10 \quad 0.0 \quad 120$
310031
205 \}
$\begin{array}{llllll}5 & 1 & 1 & & & \\ 100 & 0.8 & 0.1 & 0 & 0 & 0\end{array}$

Performance test

: a model galaxy (NFW halo: c. $=8.1 . \mathrm{V} 200=140 \mathrm{~km} / \mathrm{s}+$ non-circular motions

Input velocity field
model velocity field

Performance test

: model galaxy (NFW halo: c=8.1 V200 $=140 \mathrm{~km} / \mathrm{s}+$ non-circular motions

model galaxy (NFW halo: $\mathrm{c}=8.1 \mathrm{~V} 200=140 \mathrm{~km} / \mathrm{s}$)

Performance test : IC 5152.(>5 beams)

Performance test
 IC 5152.(model velocity fields)

Input ${ }^{\text {nt TRfit }}$

IC 5152

TR fit

Input ${ }_{\text {nmin }}$ ISOfit

weight map

$0^{1.0}$	
	0.9
-0.18	
-0.7	
0.6	
-0.5 0.4	
0.3	
0.2	
	0.1
	0.0

ISO fit

TRfitmisofit

weight map

: ESO 154 g23 (model velocity fields)

HIPASS-J0256_54

Input

TR $\mathrm{R}_{\mathrm{fit}}$

ISO fit

TRfit

weight map

Performance test : HIPASS-J0731-68 (~ 4 beams)

Rotation Curves

Performance test

: HIPASS-J0731-68 (model velocity fields):

HIPASS-J0731 68

ISO fit

Input ISOfit
TRfit ISOfit

Correcting for beam smearing effect :

Swaters et al. (2009)

Distance along major axis (arcmin)

Construct a model cube using the derived ring params $(\mathrm{VROT}+\Delta \mathrm{V})$

Calculate x^{2} values of residual cubes between models and the observation

Find the optimal $\Delta V(R)$
minimising the x^{2} value

- Time consuming work

- manual adjustment of ΔV (e.g., galmod)
- regularised x^{2} minimisation (e.g., TiRiFiC)
\rightarrow Bayesian search for $\Delta \mathrm{V}$?

Log likelihood

Observed cube

Model cube

$$
\begin{array}{r}
\log \mathscr{L}=\frac{-M}{2} \log 2 \pi-\sum_{i=0}^{\text {NAXI }} \sum_{i=0}^{\text {NAX2 }} \sum_{k=0}^{\text {NAX3 }} \log \sigma_{i, j, k}-\frac{1}{2} \sum_{i=0}^{\text {NAXI }} \sum_{i=0}^{\text {NAX2 }} \sum_{k=0}^{\text {NAX3 }}\left[\frac{\left.F_{O B S}^{\downarrow}(i, j, k)-F_{\text {MODEL }}^{\downarrow}(i, j, k)^{\downarrow}\right]_{i, j, k}^{2}}{\left.F_{\text {MODEL }}=F(V R O T), X P O S, Y P O S, V S Y S, V E X P, P A, I N C L, V D I S P, D E N S, z 0\right)}\right. \\
\text { (from 2D tilted-ring model) (from mom0 \& mom2) }
\end{array}
$$

- A new 2D tilted-ring fitting program based on Bayesian MCMC developed
- Gives similar results as Se-Heon did for moderately or well resolved galaxies

- (will be) fully automatic for estimating initial priors, deriving rotaiton curves and visualising the results of > 10,000 resolved galaxies from ASKAP WALLABY/DINGO + WSRT WNSHS (+ also useful for MeerKAT MHONGOOSE)
- Under test using sample galaxies from LVHIS(26), LITTLE THINGS(27), and THINGS(25)
\rightarrow will include sub-routines for deriving mass models of baryons + DM halo
- Beam smearing correction will be added...
- Also applicable to velocity fields from IFU or CO observations (e.g., SAMI, Wifes, MANGA etc.)
- Other types of galaxy kinematic 2D or 3D models can be plugged into the platform by defining their likelihood functions (evolution to 3D tilted-ring fits?)
- Will be tuned for open MPI using a cluster machine at ICRAR, and GUI (with PyQT) will be provided
- Statistical revisit of HI rotation curves of galaxies from all available literature data (e.g., rotation curve shape, cusp/core, etc.)

