International Centre for Radio Astronomy Research University of Western Australia



# Angular Momentum in the Era of the SKA

Danail Obreschkow

Dwingeloo, 17 March 2014

# Which galaxy is the biggest?









CRAF

# Sizes to scale









UGC 2259 (1.1 kpc)

NGC 753 (4.8 kpc)

# Scale-free geometry

CRAF





Figure: Koda et al, ApJ 531 (2000)

# Basic model





CRAI

# Angular momentum toy model

CRAI



$$\vec{j} = \frac{1}{M} \int dM \ \vec{r} \times \vec{v}$$

"specific angular momentum"

#### Basic model





NB: *k* is constant for constant spin parameter and fixed angular momentum fraction in the baryons.

#### Basic model



### Fundamental mapping



Theoretical (*M*,*j*)-plane

Observed (*L*,*R*,*V*)-space



#### Projections of the fundamental plane

CRAF



### Fundamental mapping



Theoretical (*M*,*j*)-plane

Observed (*L*,*R*,*V*)-space



# Ways of exploiting rotation

CRAF



# Ways of exploiting rotation

CRAR



#### Baryon angular momentum in THINGS

CRAF



Walter et al. 2008, Leroy et al. 2008

## Mass-spin-morphology relation

CRAF

- Unbarred spirals
- Barred spirals



Obreschkow & Glazebrook, ApJ, 2014

## Mass-spin-morphology relation

CRAR

- Unbarred spirals
- Barred spirals



#### Mass-spin-morphology relation

CRAF



Obreschkow & Glazebrook, ApJ, 2014

#### Clump-instabilities?





=> Bulge growth depends on disk stability, which depends on Q ~  $\Sigma^{-1}$  ~ j/M

Bournaud 2013 [Ramses AMR hydro simulation with stellar feedback]

#### Cosmic evolution of *j*

CRAR



#### What's in the app?



1  $(M, j) \mapsto (L, R, V)$ 

In CDM, LTGs populate a band around j  $\alpha$  M^{2/3}



2

Constant surface densities satisfy j  $\alpha$  M



*j* increases with cosmic time (as [1+z]<sup>-1</sup>)

## Example 1: Size evolution

CRAI



### Example 2: Evolution of HI and H<sub>2</sub>



Average surface density of the 2000 MWs.

All 30 million mock-galaxies of S3-SAX

CRAI

Obreschkow (MNRAS 400 2009, ApJ 696 2009)

### Example 3: Where is the HI and $H_2$ ?



#### HI mass function

#### H<sub>2</sub> mass function



=> HI is locked up in low-mass galaxies; H<sub>2</sub> in high-mass galaxies.

## Example 4: Clumpy galaxies

CRAI

DYNAMO: sample of turbulent, clumpy, rotating disks in the local universe (z~0.1)



HST H $\alpha$  maps

#### Example 5: HI gas fraction



#### Importance of HI in *j*-studies

CRAI

