CUBES IN A CAVE

Thank you...

Key Collaborators:

- David Barnes
 Monash University e-Research Centre, VLSCI Life Sciences Computation Centre
- Amr Hassan (Swinburne)
- Bernard Meade (Swinburne/University of Melbourne)
- George Bekiaris (Swinburne)
- Yuri Benovitski (Monash/Bionics Institute)
- Govinda Poudel (Monash Biomedical Imaging)

7th International PHISCC Workshop

• Thanks to Thijs van der Hulst and the SOC for the invitation to speak

Credit: Swinburne Astronomy Productions

WALLABY: The ASKAP HI All-Sky Survey Redshifted 21-cm HI; 75% of sky covered; z = 0.26 ~ 3 Gyr look-back

B.Koribalski (ATNF), L.Staveley-Smith (ICRAR) + 100 others...

Wallaby Data Products

Many very large files 4096 x 4096 x 16384 channels

 \sim 1TB per cube x 1200 cubes

Wallaby Data Products

Many very large files 4096 x 4096 x 16384 channels ~ 1TB per cube x 1200 cubes

Can we support real-time, interactive *visualisation* and *analysis* of a WALLABY cube (e.g. quality control, alternative source-finders)?

Even more individual small files

~0.5 million new galaxies [+ false detections]

What fraction of these will we ever look at? (e.g. confirmation, morphology, discovery)

The increasing volume of data from HI surveys...

Number of spectral data cubes Size of individual data cubes

...presents a serious Challenge to traditional desktop-based visualisation and analysis...

...need to investigate **NEW** and **emerging** alternatives now.

Can we support real-time, interactive *visualisation* and *analysis* of a WALLABY cube (e.g. quality control, alternative source-finders)?

Graphics Processing Units

Massively parallel

Programmable*

Computational co-processors

Providing 10x-100x speed-ups

For many scientific problems

At low cost (TFLOP/\$)

(But you can't use existing code)

[* CUDA, OpenCL, PyCUDA, Thrust, OpenACC, CUFFT, cuBLAS]

gSTAR GPU Supercomputer for Theoretical Astrophysics Research

and the second second

sgi

112 Martice

sgi

Sg

sgi

Australia's first fully-indoor national astronomy facility [AAL/EIF/Swinburne]

Credit: Gin Tan

• 48 x HIPASS

- 6884 x 6884 x 3072
- 542.33 GB
- 5-10 frames/second
- Hassan et al. (2013)

Courtesy A.Hassan

Analysing **0.5 Tbyte** (on 96 GPUs)

Task	Description	Time
Histogram	Visit each data point once	~4 sec
Global mean and standard deviation	Summarizing whole dataset into single value(s)	~2 sec
Global median	Multiple iterations to convergence (Torben's method)	~45 sec
3D spectrum tool	Quantitative data interaction: click for spectrum	20 msec

Data: GASS (N.McClure-Griffiths; ATNF)

What do you get if you cross a **GPU supercomputer** with a high-end, **immersive visualisation** environment?

CAVE2@Monash University

27320 x 3072 pixels = 84 Mpixels Graphics power: 80 TFLOP/s Stereo 3D/head tracking; Ring diameter ~8m; ~320 degrees FOV Collaboration + Accelerated Discovery

Cave Automatic Virtual Environment (CAVE)

1992: Electronic Visualization Lab, University of Illinois, Chicago

Tiled Display Walls = Commodity displays

8000×8000 pixel volume rendering of the HIPASS dataset on the CSIRO Optiportal at Marsfield, NSW. Data: R. Jurek (ATNF) from 387 HIPASS cubes. Vis: A.Hassan Image: C.Fluke

Plenty of TDWs out there...

...many list astronomy as a use case...

...very little evidence of actual use.

What are they actually good for?

(Meade et al. *in prep*)

Experiment configuration: OzlPortal

15360 x 6400 pixels = 98.3 Megapixels

Data: NASA, ESA, N.Smith (UCB), and the Hubble Heritage Team (STScI/AURA) Photo: B.Meade

Example: Galaxy Search

Images: NASA, ESA, A.Riess (STScI and JHU), D.Jones and S.Rodney (JHU), S.Faber (UCSC), H.Ferguson (STScI), and the CANDELS team.

"Search success rate"

Category	Number	Desktop	Tiled Display Wall
Astronomer	12	71%	81%
Non-astronomer	29	57%	63%
Collaboration	16	82%	89%
Overall	57	70%	77%

Most thought they did better on the TDW than reality!

Most thought TDW thought to be more "suitable" for the task

We observed *how* people use the displays

CAVE2 = 80 individual stereoscopic panels

Use the CAVE2 to look at lots of things at one time...

CAVE2 = 80 individual stereoscopic panels

Use the CAVE2 to look at lots of **THINGS** at one time...

The HI Nearby Galaxy Survey

- 34 objects
- 7" angular and 5 km/s velocity resolution
- 3 < D < 15 Mpc
- Walter, F. et al. 2008

Image credits: VLA THINGS: Walter et al. 08 Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07

The S2PLOT programming library

Demonstration: s2fits prototype (NGC6946)

- Free, open source software (V3.2.1)
- Powerful programming interface
- C/C++/Fortran (Python)
- Barnes et al. (2006), PASA, 23, 82
- <u>http://astronomy.swin.edu.au/s2plot</u>
- Support for advanced displays
- Support for interactive 3D PDF
 - Barnes & Fluke (2008) New Astronomy
 - Barnes et al. (2013) PLoS ONE

Performance: 160 (320?) THINGS-style data cubes Sort by property; Sort by eye Interact with individual object + apply to all

CAVE2 = GPU Supercomputer + Visualisation environment What else can we do with all of those GPUs?

Accelerating Kinematic Modeling (Bekiaris et al. in prep)

Gassendi HAlpha survey of SPirals (GHASP) Epinat et al. 2008a,2008b

Preliminary results

The increasing volume of data from HI surveys...

Number of spectral data cubes Size of individual data cubes

...presents a serious Challenge to traditional desktop-based visualisation and analysis...

...need to investigate **NEW** and **emerging** alternatives now.