

HI Science with MeerKAT

and some thoughts on the array configuration

Erwin de Blok University of Cape Town

Outline

- MeerKAT Configuration
- Low HI column density
- High resolution
- Further MeerKAT talks this week about
 - high-redshift observations,
 - HIMF,
 - morphology,
 - groups,
 - clusters and parallel surveys

alo, Kioma, U.S. Neorr, Kiga, Ciebgo

Maseru Lesothe **deerK**AT Elizabeth Cape Town Google

Eve alt 1936.26 km

sio, kiona, u.s. Neov, kiga, ciebco

Maseru Lesothe MeerKAT Elizabeth Cape Town Google

Eve alt 1936.26 km

16/52/33/58# E clev 285

azila Maseru Lesothe MeerKAT Melbourne Elizabeth Tape Town Google sio, kiona, u.s. Nedra Kiga, (febeo Eve alt 1936.26 km

16%52/53/58# E clev 285

nesburg Mbaban Brisbane wazilan Maseru Lesotho MeerKAT Melbourne Elizabeth Eape Town Google SUO, KIORA, U.S. KENN, KIGA, CHERCO

Eve alt 1936.26 km

Array Configuration

- Design choices
 - Single resolution array: optimal sensitivity, but science choices must be made
 - Multiple resolution array: wide range of resolution and science, but sub-optimal sensitivity
- Ideal: find array close to sensitivity of single resolution array over a large range in resolution

- MeerKAT: multi-resolution configuration
- HI Science goals:
 - low resolution (~100"): low column densities, outskirts, cosmic web, ...
 - medium resolution (~30"): high-z studies, ...
 - high resolution (~8"): detailed galaxy studies, ...

 Find a configuration that has sensitivity over ~8" to ~100" closest to that of single resolution configurations

with Brad Frank, MSc UCT

MeerKAT configuration thoughts:

- Hybrid array:
 - ~70% of antennas in compact core with <1 km baselines
 - ~30% at longer baselines out to ~8 km

- Aim for ~constant point source sensitivity over resolution range
- No "natural" resolution, use weighting/tapering to control beam size

• central Gaussian core:

- dispersion 300 m, max baseline ~1 km
- Gaussian outer component:
- dispersion 2.5 km, max baseline ~8 km
- "Pinching" to emphasise number of short baselines: (d/d_{max})^{0.2}

optimized for an 8 hr observation

• shortest baseline 30m longest baseline 8 km

Ο

Baselines

• Example: cumulative baseline length distribution for 8 h observation towards $\delta = -70^{\circ}$

Beams

- Use weighting/tapering to control beam
- Example using M. de Villiers iAntConfig
- Weights uv samples in modified polar plane to force beam to be Gaussian

Weights and beams

example: t=8h, δ =-30°

natural uv distribution

dirty beam (natural)

Weights and beams

In progress

- Optimization for different declinations and observing times
- Evaluate sidelobe levels, dynamic ranges, ...
- Evaluate weighting schemes

Sensitivities

- Natural weighting represents optimum sensitivity
- Desired resolution and beam shape determined by weighting
- Tapering, weighting, "ideal" weighting
- Use AntConfigServer/iAntConfig

oint source sensitivity

oint source sensitivity

MeerKAT HI Science

- low resolution (~100"): low column densities, outskirts, cosmic web, ...
- medium resolution (~30"): high-z studies, ...
- high resolution (~8"): detailed galaxy studies, ...

Low column density

 Map outer parts of galaxies and cosmic web

σ _{vel} = 8 km s ⁻¹	$N_{HI} = 10^{18} \text{ cm}^{-2}$	$N_{HI} = 10^{19} \text{ cm}^{-2}$
(FWHM = 20 km s ⁻¹)	(5 σ detection)	(5 σ detection)
1 channel,	155 h	155 h
20 km s ⁻¹	90'' >	23" ≯

Fig. 1. Integrated HI emission from features which are kinematically associated with M31 and M33. The grey-scale varies between $log(N_{HI}) = 17-18$, for N_{HI} in units of cm⁻². Contours are drawn at $log(N_{HI}) = 17$, 17.5, 18, ..., 20.5. M31 is located at (RA, Dec) = (00:43, +41°) and M33 at (RA, Dec) = (01:34, +30°), The two galaxies are connected by a diffuse filament joining the systemic velocities. Broun 2004

HI Mass limits

 Assume unresolved galaxy with width W, tophat profile and 5σ peak flux

HI Mass limits

 Assume unresolved galaxy with width W, tophat profile and 5σ peak flux

HI Mass limits

 Assume unresolved galaxy with width W, tophat profile and 5σ peak flux

Galaxy Portraits

- Recent surveys such as THINGS show importance of resolution in studying
 - dark matter distribution
 - baryonic physics
 - star formation conditions

Spiral Galaxies in THINGS — The HI Nearby Galaxy Survey

Image credits: VLA THINGS: Walter et al. Spitzer SINGS: Kennicutt et al. Galex NGS: Gil de Paz et al.

Galaxy Dynamics in THINGS — The HI Nearby Galaxy Survey

Color Coding: **THINGS Atomic Hydrogen** (Very Large Array) Old stars (Spitzer Space Telescope) **Star Formation** (GALEX & Spitzer) Color coding:

The HI Nearby Galaxy Survey

THINGS HI distribution: Red-shifted (receding) Blue-shifted (approaching) **Rotation Curve**

Image credits: VLA THINGS: Walter et al. 08 Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07 Rotation Curve: de Blok et al. 08

MeerKAT THINGS

- THINGS: ~500 h
- VLA B, C and D on 34 galaxies
- per galaxy:
 - 7.5h in B
 - 2.5h in C
 - 1.5h in D

MeerKAT THINGS

 Detailed maps of nearby galaxies can be obtained in same time and ~same sensitvity as VLA-B array observation, but with the C & D short baselines (and more) included

Summary

- MeerKAT will be a multi-resolution array, concentrating on low-column densities and high resolution
- Complementary to ASKAP
- Further MeerKAT talks this week about
 - high-redshift observations,
 - HIMF,
 - morphology,
 - groups,
 - clusters and parallel surveys