Neutral Hydrogen in Galaxies from Low to High z

Sarah Blyth University of Cape Town

2 June 2009

In collaboration with: A. Bouchard, K. van der Heyden, E. de Blok, W. van Driel, RC Kraan-Korteweg, D. Obreschkow

Outline

- HI-stacking techniques: measuring HI in galaxy surveys
- Application to the nearby Universe
- Probing higher z with MeerKAT
- Summary and Outlook

HI: Big Questions

How do galaxies evolve over cosmic time?

How does Ω_{HI} evolve over time?
How is HI distributed in galaxies, and how does this vary over time?

HI: Big Questions

How do galaxies evolve over cosmic time?

•How does Ω_{HI} evolve over time? •How is HI distributed in galaxies, and how does this vary over time?

How to Measure?

Galaxy in Abell 963, z = 0.21

Observing time: 20x12 hours on WSRT

How to Measure?

To measure HI at cosmological distances we need:

I. Different techniques to optimise observation timing:

- measure the average HI content (Ω_{HI}) of galaxies for different zranges
- co-add / stack individual spectra to increase S/N
 - (being used by various groups: Zwaan (2000), Chengalur et al. (2001), Lah et al. (2007), Verheijen et al. (2007)

State of the Art

With current telescopes, HI is hard to find at intermediate z, even with stacking...

How to Measure?

To measure HI at cosmological distances we need:

I. Different techniques to optimise observation timing:

- measure the average HI content (Ω_{HI}) of galaxies for different zranges
- co-add / stack individual spectra to increase S/N
 - (being used by various groups: Zwaan (2000), Chengalur et al. (2001), Lah et al. (2007), Verheijen et al. (2007)

How to Measure?

To measure HI at cosmological distances we need:

I. Different techniques to optimise observation timing:

- measure the average HI content (Ω_{HI}) of galaxies for different zranges
- co-add / stack individual spectra to increase S/N

 (being used by various groups: Zwaan (2000), Chengalur et al. (2001), Lah et al. (2007), Verheijen et al. (2007)

2. Larger more sensitive radio telescopes with large FoV and frequency coverage:

SKASKA pathfinders (MeerKAT, ASKAP ...)

Since the HI signal is weak, we use independent measurements of galaxy z before stacking:

•STEP I: extract spectra using known positions and z

Since the HI signal is weak, we use independent measurements of galaxy z before stacking:

•STEP I: extract spectra using known positions and z

• STEP 2: Using known z values, shift all lines to common channel

Since the HI signal is weak, we use independent measurements of galaxy z before stacking:

•STEP I: extract spectra using known positions and z

• STEP 2: Using known z values, shift all lines to common channel

•STEP 3: Co-add spectra

Since the HI signal is weak, we use independent measurements of galaxy z before stacking:

• STEP 2: Using known z values, shift all lines to common channel

• STEP 3: Co-add spectra

$$M_{\rm HI} = \frac{236}{\left(\ 1+z\ \right)} \left(\frac{S_{\rm v}}{\rm mJy}\right) \left(\frac{d_{\rm L}}{\rm Mpc}\right)^2 \left(\frac{\Delta V}{\rm km\,s^{-1}}\right)$$

HI-stacking the Nearby Universe

NIBLES: W. van Driel et al.

- Nancay Interstellar Baryon Legacy Extragalactic Survey
- •AIM: Find and quantify the density of baryons in the Local Universe
- Targeted survey of 3000 SDSS galaxies with (900 < cz < 12 000 km/s)
 0.5 M_z bins
- •~35 mins per pointing

CRUMBS: Blyth, Bouchard et al.

Characterizing Radio-Undetected Masses in Baryonic Surveys

• AIMS: 'Squeeze' any/all remaining 'drops' of HI information out of the NIBLES non-detections

- Inform NIBLES observing strategy
- •non-detections = all NIBLES spectra with < 3σ HI lines

Preliminary results based on 884 NIBLES galaxies:

NIBLES data:

Preliminary results based on 884 NIBLES galaxies:

NIBLES data:

Preliminary results based on 884 NIBLES galaxies:

NIBLES data:

Preliminary results based on 884 NIBLES galaxies:

S/N	galaxies	<s<sub>HI> (mJy)</s<sub>	<m<sub>HI> (M_{sun})</m<sub>	<dl> (Mpc)</dl>	S/N stack.
<3	337	8.96 ± 0.03	1.03×10 ⁸ ± 8.22 ×10 ⁶	52 ± 2	13.8
<2.5	304	5.63 ± 0.04	6.46×10 ⁷ ± 5.38×10 ⁶	52 ± 2	9.1
<2.0	241	2.51 ± 0.02	2.87×10 ⁷ ± 2.74×10 ⁶	52 ± 2	4.2
<1.5	140	0.5 ± 0.02	•••	48 ± 3	

Preliminary results based on 884 NIBLES galaxies:

Preliminary results based on 884 NIBLES galaxies:

To understand how the non-detections were distributed, we implemented a red-blue colour cut as a morphology handle:

Preliminary results based on 884 NIBLES galaxies:

To understand how the non-detections were distributed, we implemented a red-blue colour cut as a morphology handle:

of blue galaxies drops off with distance
red non-detections mostly more distant

e.g. blue non-detections:

e.g. blue non-detections:

e.g. blue non-detections:

e.g. blue non-detections: Shifted Spectra 0.03 0.02 0.01 flux (Jy) 0.00 -0.01 -0.02 -0.03-1000-500 0 500 1000 Velocity (km/s) 0.003 Mean spectrum Reference spectra 0.002 flux (Jy) 0.001 0.000 -0.001-500 0 500 Velocity (km/s)

•<M_{HI}>_{red} > <M_{HI}>_{blue}
•Non-detection bias:

- sampling HI-poor blue
- galaxies
- sampling bright red
 - galaxies

Outline

- HI-stacking techniques: measuring HI in galaxy surveys
- Application to the nearby Universe
- Probing higher z with MeerKAT
- Summary and Outlook

Produce catalogue of 6 x10⁷ galaxies (0 < z < 9.7), complete for M_(HI+H2) >10⁸ M_{sun} ▶galaxy properties incl. parameters of

realistic velocity profiles, $(W_{20}, W_{50}, F_{peak} etc.)$

We have used a simulated galaxy catalogue from Obreschkow & Rawlings et al., (arXiv:0904.2221v2):

 Obreschkow et al. simulate cosmic evolution of neutral gas (HI and H₂) based on the virtual galaxy catalogue by De Lucia on Millenium simulation (Springel et al., 2005)

Simulations Input for Stacking

We have used a simulated galaxy catalogue from Obreschkow & Rawlings et al., (arXiv:0904.2221v2):

- Obreschkow et al. simulate cosmic evolution of neutral gas (HI and H₂) based on the virtual galaxy catalogue by De Lucia on Millenium simulation (Springel et al., 2005)
- Produce catalogue of 6 x10⁷ galaxies (0 < z < 9.7), complete for M_(HI+H2) > 10⁸ M_{sun}
 - galaxy properties incl. parameters of realistic velocity profiles, (W₂₀, W₅₀, F_{peak} etc.)

Stacking Experiments for MeerKAT

We have simulated 3 survey scenarios for a single pointing observation with MeerKAT:

•Using sensitivities based on MeerKAT, 80 dish layout (E. de Blok's talk)

Set channel width = 0.096 MHz:
22.3 km/s at z = 0.1
38.5 km/s at z = 0.9

Stacking Experiments for MeerKAT

We have simulated 3 survey scenarios for a single pointing observation with MeerKAT:

•Using sensitivities based on MeerKAT, 80 dish layout (E. de Blok's talk)

Survey Scenario	Expected noise rms
SI: 3 months (90 days x I2 hours)	2.55 x 10 ⁻² mJy
S2: 6 months (180 days x 12 hours)	I.807 x I0 ⁻² mJy
S3: I year (365 x I2 hours)	I.269 x I0 ⁻² mJy

Set channel width = 0.096 MHz:
22.3 km/s at z = 0.1
38.5 km/s at z = 0.9

Simulation parameters

FoV = 0.47 deg x 0.47 deg (= 25% MeerKAT FoV)
Simulate 'real' MeerKAT bandwidth of 512 MHz & 16k channels
Set channel width = 0.096 MHz:

22.3 km/s at z = 0.1 & 38.5 km/s at z = 0.9

•Binned galaxies in z = 0.1 chunks

Quick comparison at z=0.4

SI: 3 month, single pointing

S3: I year, single pointing

Preliminary results: towards Ω_{HI}

Output <M> vs. Input <M>

Stacking technique recovers input <M> well

Preliminary results: towards Ω_{HI}

Output <M> vs. Input <M>

Stacking technique recovers input <M> well

 More refinements yet to come, but looking promising!

Summary & Outlook

- HI-stacking is a promising technique to use for targeted HI surveys to 'squeeze' out additional information from non-detections
- HI-stacking will be useful technique to use for high-z surveys with MeerKAT

Next Steps

- Scale CRUMBS up to the full NIBLES dataset
- Stack non-detections from other surveys...
- Refine simulations for MeerKAT planning:
 - investigate luminosity cuts / biases
 - inclinations, etc.

Thank you to:

W. van Driel & the NIBLES team (especially to T. Joseph and M. Ramatsoku at UCT for data reduction)

D. Obreschkow & Oxford team for the use of their galaxy simulations catalogue

My UCT colleagues for all your input

Extra slides

Picking up the CRUMBS...

Preliminary results based on 884 NIBLES galaxies:

S/N	galaxies	<s<sub>HI> (mJy)</s<sub>	<m<sub>HI> (M_{sun})</m<sub>	M _{HI_Lim} (M _{sun})	<dl> (Mpc)</dl>	S/N stack.
<3	337	8.96 ± 0.03	1.03×10 ⁸ ± 8.22 ×10 ⁶	6.4x10 ⁷	52 ± 2	13.8
<2.5	304	5.63 ± 0.04	6.46×10 ⁷ ± 5.38×10 ⁶	7.1×10 ⁷	52 ± 2	9.1
<2.0	241	2.51 ± 0.02	2.87×10 ⁷ ± 2.74×10 ⁶	3.6x10 ⁷	52 ± 2	4.2
<1.5	140	0.5 ± 0.02	•••	4.5×10 ⁷	48 ± 3	•••

More preliminary results...

More preliminary results...

Sarah Blyth | Panoramic Radio Astronomy Conference, Groningen, Netherlands | 2 June 2009

velocity (km/s)

Sarah Blyth | Panoramic Radio Astronomy Conference, Groningen, Netherlands | 2 June 2009

velocity (km/s)

Sarah Blyth | Panoramic Radio Astronomy Conference, Groningen, Netherlands | 2 June 2009

Significance of simulations

Number dist. for simulations

Input Mass dist. vs. z

Input Mass dist. vs. z

