HI Surveys with APERTIF

Marc Verheijen Tom Oosterloo

Boomsma

Kapteyn

Astronomical Institute

university of

groningen

Panoramic Radio Astronomy - Groningen, 2-5 Jun 2009

outline

- APERTIF on the WSRT
- Selected surveys
- Role and fate of gas in galaxy evolution
- Examples of existing blind HI synthesis surveys
- Challenges

Salient features of WSRT & APERTIF

- Westerbork Synthesis Radio Telescope
 - 14x25m dishes
 - 0.7% of collecting area of SKA
 - 3km regular east-west array baseline redundancy , no w-term in FFT
 - equatorial mounts

excellent calibration & polarisation characteristics

- <u>APERture Tile In Focus</u>
 - T_{sys} = 50K , 8 deg² FoV , A_{eff}/T_{sys} = 88 m²/K
 - 1000–1700 MHz , BW=300 MHz , Δ V=16 km/s

Imaging & Survey speeds

APERTIF versus other SKA pathfinders

	T _{sys}	FoV	BW	$(A_{eff}/T_{sys})^2$	(A/T) ² FoV	(A/T) ² FoV BW
	K	deg ²	MHz	m ⁴ K ⁻²	m ⁴ K ⁻² deg ²	m ⁴ K ⁻² deg ² MHz
				×10 ³	×10 ⁴	×10 ⁶
WSRT-14	30	0.28	160	16	0.45	0.72
APERTIF-12	50	8	300	7.8	6.2	19
ASKAP-36	50	30	300	3.7	П	33
MeerKAT-80	30	1.2	1024	40	4.8	49
ATA-42	40	4.9	200	0.43	0.21	0.42

Specific surveys for APERTIF on WSRT:

• Efficient pulsar survey machine intersecting multiple fan-beams in 8gr8 mode

Specific surveys for APERTIF on WSRT:

 Efficient pulsar survey machine intersecting multiple fan-beams in 8gr8 mode

regular 'multi-slit' diffraction grating

Specific surveys for APERTIF on WSRT:

 Efficient pulsar survey machine intersecting multiple fan-beams in 8gr8 mode

regular 'multi-slit' diffraction grating

Specific surveys for APERTIF on WSRT:

• Efficient pulsar survey machine intersecting multiple fan-beams in 8gr8 mode

Specific surveys for APERTIF on WSRT:

- Efficient pulsar survey machine intersecting multiple fan-beams in 8gr8 mode
- Overlap with LOFAR surveys all-sky continuum & polarisation survey at 1.4 GHz

Specific surveys for APERTIF on WSRT:

- Efficient pulsar survey machine intersecting multiple fan-beams in 8gr8 mode
- Overlap with LOFAR surveys

all-sky continuum & polarisation survey at 1.4 GHz

APERTIF will detect the same star forming galaxies as LOFAR.

Specific surveys for APERTIF on WSRT:

- Efficient pulsar survey machine intersecting multiple fan-beams in 8gr8 mode
- Overlap with LOFAR surveys all-sky continuum & polarisation survey at 1.4 GHz
- Selected HI surveys

Galactic Plane survey of the outer galaxy Extragalactic HI surveys out to z=0.5

HI self-absorption in DRAO and VLA Galactic Plane Surveys

Based on $(A_{eff}/T_{sys})^2 \Omega_{FoV}$: APERTIF survey speed $\approx 550 \times DRAO$ 5 x VLA

Extragalactic large-area blind HI surveys

APERTIF HI mass limits versus redshift

 5σ detection in HI mass dependent linewidth

Extragalactic large-area blind HI surveys

APERTIF HI detected mass & redshift distributions

Extragalactic large-area blind HI surveys

APERTIF HI detected mass & redshift distributions

WSRT + APERTIF located in northern hemisphere

 $8^{hr} < \alpha < 16^{hr}$, 15° <δ< 60° 4100 deg² → ~500 pointings 4 years @ 30% of time

Take advantage of SDSS

0<Z<0.25 (300 MHz) 203,425 optical SDSS redshifts at z<0.2 (DR5)

 M^*_{HI} at z=0.08 expect ~ 10⁵ HI detections

The promise of blind HI synthesis imaging surveys

• Nature of galaxy bimodality

How to sustain star formation in the 'blue cloud'? What happens to galaxies when they migrating to the red sequence? What can we learn from 'fossil records' of cold gas in 'red & dead' galaxies? Examine cold gas in relation to SFR, age of stellar populations, dust (IRAS) etc

Environmental dependence of gas content

What is the HI Mass Function in different environments What is the origin of HI deficiencies in high density regions (stripping, harassment, ...)? How effective is pre-processing in cluster outskirts and galaxy groups (tidal)? What physical processes dominate gas removal where?

Resolved galaxy structure and kinematics

Obtain an unbiased census of warps, lopsidedness, interactions Determine rotation curves and mass profiles probing dark matter halos Measure spin vectors & angular momentum (cosmic shear, structure formation)

Baldry et al 2004

Baldry et al 2004

Fraternali et al 2002

Oosterloo & van Gorkom 2005

Fraternali et al 2002

Fueling the Blue Cloud sustaining star formation building up stellar mass

High Velocity Clouds in MW and other galaxies

Oosterloo et al 2007

Late stages of gas accretion or minor mergers

Sancisi et al 2008

00.55

INSION (22000)

Fueling the Blue Cloud sustaining star formation building up stellar mass

High Velocity Clouds in MW and other galaxies

VSION (22000

Oosterloo et al 2007

Late stages of gas accretion or minor mergers

APERTIF will provide a full census.

The brightest lenticulars in Ursa Major

Hot action in a cool group

NGC 3998

NGC 4026

NGC 4111

 $M_{\rm R} = -21.84 \text{ (mag)}$ $M_{\rm HI} = 5.8 \times 10^8 (M_{\odot})$ $M_{\rm R} = -21.16 \ ({\rm mag})$ $M_{\rm HI} = 1.2 \times 10^9 (M_{\odot})$ $M_{\rm R} = -21.44 \ ({\rm mag})$ $M_{\rm HI} = 1.3 \times 10^9 (M_{\odot})$

The brightest lenticulars in Ursa Major

Hot action in a cool group

From Spiral to Lenticular through tidal interactions?

Stripping in action

NGC 4522 in Virgo

HI contours on optical image

HI contours on $H\alpha$ image

> Ram-pressure induced (and truncated?) star formation

HI in the Virgo cluster

Chung, van Gorkom, Kenney & Vollmer, 2007

Oosterloo & van Gorkom, 2005

Environmental dependence of gas content.

Ursa Major Virgo N 4450 🔗 € N3972 17* 54° 0 U6446 U6894 Û CF) N 4 321 U6969 16* N3992 13 N3729 N 4237 🕢 U6940 ¢^{U6923} 52° 0 N4102 (app) 0 N 4192 8 N3953 N3718 U6983 15* N 4548 🚱 È Ì N 4254 **1** N3917 N 4501 U6667 0 N 4689 U6399 50° 0 14088 N4157 0^{U6917} Θ 14 N 4639 04654 N 4222 🤇 I 3355 4085 U6773 (1950) **В** N 4569 Dec. (1950) - N 4402 O U6930 Ğ N 4216 13* N4100 48° 0 N3896 N 4388 Declination N4218 N3985♥ N3906 M 87 N3769 1135+48 💣 N4220 🕼 N3949 ₫-0 N4579 N3726 N 4647 12* ۲ 5 🛰 N4010 N3877 46° 0 N4217 Ø N4694 N 4568 N4389 Ø • 6 11* 0 N 4178 U6818 44° 0 C N3938 ক্র ⁸، ^{N4138} 10° N4013 N4183 U7089 N4117 42° 0 **പ്പ**ഠ U6962 U70\$4 9* U6973 N 4535 s 12" 0" 11^h45^m 15^m 30^m 30^m 12h 45m 40 m 35 m 30 m 20 m 15 m 25 m 10 m R.A. (1950) Right Ascension (1950) Verheijen & Sancisi 2001 Westerbork Cayatte et al 1993 Very Large Array

Environmental dependence of HI Mass Function?

HIMF flattens with increasing density

HIMF steepens with increasing density

Arecibo General Catalogue

HIPASS

Environmental dependence of HI Mass Function?

HIMF flattens with increasing density

HIMF steepens with increasing density

Arecibo General Catalogue

HIPASS

APERTIF will blindly survey all densities beyond the local universe.

Blind VLA-D HI survey of Ursa Major.

Blind VLA-D HI survey of Ursa Major.

Blind VLA-D HI survey of Ursa Major.

collapsing HIMF at $M(HI) < 10^7 M_{sun}$?

Where are these low HI-mass dwarfs?

collapsing HIMF at $M(HI) < 10^7 M_{sun}$?

Where are these low HI-mass dwarfs?

APERTIF will efficiently survey local volumes to greater depth.
HI, ICM, SFR, SP interrelations

Abell 2670

Infalling galaxies are clustered in space and velocity relates to substructures in redshift space

Butcher-Oemler effect

The fraction of blue (starforming?) galaxies in clusters increases with redshift and peaks in cluster outskirts.

Butcher-Oemler effect

The fraction of blue (starforming?) galaxies in clusters increases with redshift and peaks in cluster outskirts.

A tale of two clusters Abell 963 Abell 2192

Marc Verheijen Boris Deshev Jacqueline van Gorkom K.S. Dwarakanath Hector Bravo-Alfaro Aeree Chung Raja Guhathakurta María Montano-Castaño

Мрс

Glenn Morrisson Bianca Poggianti David Schiminovich Arpad Szomoru Eric Wilcots Min Yun Ann Zabludoff

SDSS images

z=0.188

I Mpc

A tale of two clusters Abell 963 Abell 2192

SDSS images

z=0.188

A tale of two clusters Abell 963 Abell 2192

SDSS images

z=0.188

Ultra-deep WSRT observations

- 8x10MHz bands, overlapping to cover 1160–1220 MHz Z = 0.164–0.224, surveyed volume \approx 70,000 Mpc³
- I 600 channels, covering I 8,000 km/s velocity range
 22 km/s velocity resolution (after Hanning smoothing)
- I17x12^{hr} on Abell 963, 73x12^{hr} on Abell 2192 (5–10% lost to RFI)
- Measured rms noise : 30 μ Jy and 36 μ Jy at R=22 km/s.

 $M_{HI} (min) = 2 \times 10^9 (M_{\odot}) \text{ over } 150 \text{ km/s profile width.}$ $(4\sigma \text{ in each of 3 resolution elements})$

 N_{HI} (min) = 3x10¹⁹ (cm⁻²) over 75 km/s profile width at 7 σ .

Survey Volume & Large Scale Structure

SDSS redshift cone

Survey Volume & Large Scale Structure

SDSS redshift cone

Survey Volume & Large Scale Structure

SDSS redshift cone

6 IFs

v = 1205 - 1160 MHz z = 0.179 - 0.224 cz = 53.617 - 67.230 km/s R = 88 km/s

99 preliminary 5σ HI detections with optical counterparts.

6 IFs

v = 1205 - 1160 MHz z = 0.179 - 0.224 cz = 53.617 - 67.230 km/s R = 88 km/s 99 preliminary 5σ HI detections with optical counterparts.

Detections in pilot observations

Detections in pilot observations

Revealing the surrounding field

Revealing the surrounding field

Colour-Magnitude diagrams

Galaxies with known redshifts only

optical redshifts

O: SDSS X: other

: WSRT

HI redshifts

Stacking HI spectra

Average HI mass: $\sim 2 \times 10^9$ M $_{\odot}$

Probing $\Omega_{HI}(z)$ of the universe

 $\Omega_{\rm HI}$ at z=0.2 from stacking GMRT HI spectra of starforming galaxies with optical redshifts. (Lah et al, 2007 ; Blyth this meeting)

Soon to be measured from WSRT data, but surveyed volume too small?

Probing $\Omega_{HI}(z)$ of the universe

 $\Omega_{\rm HI}$ at z=0.2 from stacking GMRT HI spectra of starforming galaxies with optical redshifts. (Lah et al, 2007 ; Blyth this meeting)

Soon to be measured from WSRT data, but surveyed volume too small?

Still a tough job for APERTIF and ASKAP given A_{eff}/T_{sys} .

Challenges

Correlator and pipelined calibration solutions?

How to keep up with the huge data flow?

How to extract HI maps, velocity fields and rotation curves for 10⁴ galaxies and recognize 'anomalies'?

How to serve the data to the public?

Redshift distributions

TRADE-OFFS: IMAGING/SURVEY SPEEDS & COSTS

NTEL	Nвм	BW	ISPEED		SSPEED		DISH	TOTAL
		MHZ	LINE	CONT			к€	M€
		-						

 14
 1
 160
 1
 1
 1
 0
 0

12	25	160	0.36	0.36	9	217	2.60
		300	0.36	0.67	17	262	3.15
	30	160	0.36	0.36	11	225	2.70
		300	0.36	0.67	20	280	3.36

14	25	160	0.49	0.49	12	217	3.03
		300	0.49	0.92	23	262	3.67
	30	160	0.49	0.49	15	225	3.15
		300	0.49	0.92	28	280	3.92

university of

groningen

Kapteyn

Astronomical Institute

erlands Organisation for

AST(RON

TRADE-OFFS: IMAGING/SURVEY SPEEDS & COSTS

NTEL NBM	BW	ISPEED		SSPEED	DISH	TOTAL
	MHZ	LINE	CONT		K€	M€

 14
 1
 160
 1
 1
 1
 0
 0

12	25	160	0.36	0.36	9	217	2.60
		300	0.36	0.67	17	262	3.15
	30	160	0.36	0.36	11	225	2.70
12	30	300	0.36	0.67	20	280	3.36

14	25	160	0.4	9 0.49	12	2	17 3.03
		300	0.4	9 0.92	23	20	62 3.67
	30	160	0.4	9 0.49	15	22	25 3.15
		300	0.4	9 0.92	28	28	30 3.92

university of

groningen

Kapteyn

Astronomical Institute

erlands Organisation for

AST(RON

IMAGING & SURVEY SPEEDS

APERTIF VERSUS OTHER SKA PATHFINDERS

	T _{sys}	FoV	BW	(A _{EFF} /T _{SYS}) ²	(A/T) ² FoV	(A/T) ² FoV BW
	К	DEG	MHZ	м ⁴ К ⁻²	M ⁴ K ⁻² DEG ²	M ⁴ K ⁻² DEG ² MHZ
				x10 ³	x10 ⁴	x10 ⁶
APERTIF-12	57	10	300	6	6.0	17
ASKAP-50	35	30	300	12	35	105
MEERKAT-50	30	1.2	512	18	2.1	11
ATA-42	40	4.9	200	0.43	0.21	0.42

university of

groningen

Kapteyn

Astronomical Institute

NWO

AST(RON

RRI - BANGALORE, 23 SEP 2008

SKA all-sky HI survey

a billion galaxies detected in HI out to z=3

SDSS

Cosmic large scale structure

Baryonic Acoustic Occilations from the clustering power spectrum

APERTIF

APERTURE TILE IN FOCUS

A FOCAL PLANE ARRAY FOR THE WSRT

PRINCIPAL INVESTIGATORS: TOM OOSTERLOO MARC VERHEIJEN

PROGRAM MANAGER:

WIM VAN CAPPELLEN

ENGINEERING TEAM:

LAURENS BAKKER MARIANNA IVASHINA OLEG SMIRNOV STEFAN WIJNHOLDS BERT WOESTENBURG JAN NOORDAM

v university of groningen

Kapteyn
 Astronomical Institute

PROTOTYPE INSTALLED IN RT5, USING THE MODIFIED LOFAR INITIAL TEST STATION

ITS CAN ACCEPT 60 SIGNAL CHAINS

FUTURE APERTIF BEAMFORMING BELOW APEX

AST(RON

3.6 DEGREES

3.6 DEGREES

AST(RON

7x8 X

3.6 DEGREES

7x8 X 8x7 Y

APERTIF prototype results

Element patterns

Steerable compound beam

university of

groningen

Kapteyn

Astronomical Institute

NWO

AST(RON

0^h50^m

40^m

R.A. (J2000)

30^m

university of Kapteyn groningen Astronomical Institute

+3

+2

+1

0

Distance from center (degrees)

-1

-2

-3

0^h50^m

AST(RON

40^m

T)

R.A. (J2000)

Astronomical Institute

0^h50^m

40^m

R.A. (J2000)

30^m

university of Kapteyn groningen Astronomical Institute

+3

+2

+1

0

Distance from center (degrees)

-1

-2

-3

0^h50^m

AST(RON

40^m

T)

R.A. (J2000)

integrated HI map

Dec. (J2000)

AST(RON

NWO

Kapteyn **Astronomical Institute**

university of

groningen

Ē.

0^h50^m

40^m

R.A. (J2000)

30^m

university of Kapteyn groningen Astronomical Institute

+3

+2

+1

0

Distance from center (degrees)

-1

-2

-3

0^h50^m

AST(RON

40^m

T)

R.A. (J2000)

integrated HI map

Astronomical Institute

0^h50^m

40^m

R.A. (J2000)

30^m

university of Kapteyn groningen Astronomical Institute

+3

+2

+1

0

Distance from center (degrees)

-1

-2

-3

0^h50^m

AST(RON

40^m

T)

R.A. (J2000)

IMAGING & SURVEY SPEEDS

APERTIF VERSUS OTHER SKA PATHFINDERS

	T _{sys}	FoV	BW	(A _{EFF} /T _{SYS}) ²	(A/T) ² FoV	(A/T) ² FoV BW
	к	DEG ²	MHz	м ⁴ К ⁻²	M ⁴ K ⁻² DEG ²	M ⁴ K ⁻² DEG ² MHZ
				x10 ³	x10 ⁴	x10 ⁶
APERTIF-12	57	10	300	6	6.0	17
ASKAP-30	50	30	300	5	6.2	19
MEERKAT-80	30	1.2	512	29	5.4	28
ATA-42	40	4.9	200	0.43	0.21	0.42

/ university of / Kapteyn groningen / Astronomical Institute

N

NWO

AST(RON

 $8^{HR} < \alpha < 16^{HR}, 15^{\circ} < \delta < 60^{\circ}$ 0<Z<0.25 (300 MHz) 4177 Deg^2 ~ 450 x 12^{HR} 4 YEARS @ 30% OF TIME 203,425 OPTICAL SDSS REDSHIFTS AT Z<0.2 (DR5)

M(HI)* AT Z=0.08 1.5x10⁵ HI DETECTIONS

university of

groningen

Kapteyn

Astronomical Institute

NWO

AST(RON

8^{HR}<α<16^{HR}, 15°<δ< 60° O<Z<0.25 (300 MHz) 4177 deg² ~ 450 x 12^{HR} 4 years @ 30% of time 203,425 optical SDSS redshifts at z<0.2

M(HI)* AT Z=0.08 1.5x10⁵ HI DETECTIONS

NWO

(DR5)

AST(RON

Kapteyn Astronomical Institute

university of

8^{HR}<α<16^{HR}, 15°<δ< 60° O<Z<0.25 (300 MHz) 4177 deg² ~ 450 x 12^{HR} 4 years @ 30% of time 203,425 optical SDSS redshifts at z<0.2

M(HI)* AT Z=0.08 1.5x10⁵ HI DETECTIONS

NWO

(DR5)

AST(RON

/ Kapteyn Astronomical Institute

university of

 $8^{HR} < \alpha < 16^{HR}, 15^{\circ} < \delta < 60^{\circ}$ 0<Z<0.25 (300 MHZ) 4177 Deg^2 ~ 450 x 12^{HR} 4 YEARS @ 30% OF TIME 203,425 OPTICAL SDSS REDSHIFTS AT Z<0.2 (DR5)M(HI)* at Z=0.08

1.5x10⁵ HI DETECTIONS

university of

groningen

Kapteyn

Astronomical Institute

NWO

AST(RON

Summary & Outlook

- HI reveals physical processes unseen otherwise
- HI emission from 41 galaxies at z≈0.2 (need SKA for larger redshifts)
- Blind HI survey uncovers LSS not seen by SDSS
- Blue 'BO-galaxies' gas-poor wrt similar field galaxies
- Long-term program on WSRT completed (>200 detections expected)
- APERTIF will enable all-sky survey at 15" resolution

Summary & Outlook

- HI reveals physical processes unseen otherwise
- HI emission from 41 galaxies at z≈0.2 (need SKA for larger redshifts)
- Blind HI survey uncovers LSS not seen by SDSS
- Blue 'BO-galaxies' gas-poor wrt similar field galaxies
- Long-term program on WSRT completed (>200 detections expected)
- APERTIF will enable all-sky survey at 15" resolution

Only SKA can image this at z=1

HI deficiencies

igodot

 \bullet

 D_{HI} at $N_{HI} = 10^{20}$ atoms/cm² D_{opt} at $\mu(B) = 25$ mag/arcsec²

$$Def = \langle Log \sigma_{HI} \rangle_{T} - Log \sigma_{HI}$$
$$\sigma_{HI} = \frac{M_{HI}}{\pi (D_{opt}/2)^{2}}$$

 $D_{HI}/D_{OPt} \ll I$: enhanced central N_{HI} $D_{HI}/D_{Opt} \sim I$: overall lowered N_{HI} $D_{HI}/D_{Opt} > I$: normal N_{HI}

- ram-pressure stripping
- turbulent viscous stripping
- → never traveled close to center

So here's the problem...

We have to live with these bandpass notches...

Radio continuum imaging

Radio contours on R-band image

30x30 arcmin

10x10 arcmin

The power of a fully upgraded WSRT

