21cm absorbers at intermediate redshifts

(Neeraj Gupta, CSIRO ATNF)

R. Srianand (IUCAA, India)

P. Petitjean (IAP, France)

P. Noterdaeme (IUCAA, India)

D.J. Saikia (NCRA, India)

Damped Lyman- Absorbers (DLAs)

(Rao et al. 2006; Prochaska et al. 2008; Noterdaeme et al. 2009)

DLA-like absorbers at z<2

21-cm absorption surveys provide an unique method to probe the physical state of the DLA-like absorbers.

- Blind surveys
- Targeted searches

MgII systems

DLAs at z<2

Most comprehensive HST survey of DLAs at z<2 based on the MgII systems

- 41 DLAs detected from 197MgII systems i.e. 36%detection rate.
- •DLA fraction increasing with W(MgII)

Our sample of Strong MgII absorbers (W>1Å)

Drawn from the 3501 W>1A
MgII systems in SDSS DR5.

•Statistically GMRT sample is indistinguishable from the parent sample.

Results from GMRT survey

400hrs of GMRT observations in 610-MHz band in last 2 years

- •-Typically each system is observed for about 8hrs with a velocity. resolution of 3.7km/s i.e. 1MHz BB BW split into 128 channels.
- 9 new 21cm absorption detections
- -velocity widths range from 5-70km/s

(Gupta et al. 2007, 2009; Srianand et al. 2008)

$$n_{21}(\tau_{21} \ge \tau_o, W_r \ge W_o, z) = C(z) * n_{MgII}(W_r \ge W_o, z)$$

$$n_{MqII}(W_r \ge W_o, z) = n_o * (1+z)^y$$

Survey design

Distribution of MgII systems searched for 21cm absorption.

Number of 21cm absorbers per unit redshift.

$$N(HI) = 1.835 * 10^{18} (T_S/f_c) \int \tau(v) dv$$

Decrease most likely due to the decrease in the CNM covering factor.

ASKAP blind 21cm absorption survey

ASKAP survey with 150 pointings of 20hrs each (3000hrs) i.e. Covering 0.5π sr of the sky will be sensitive to detect CNM in 700 absorbers.

Instataneous BW of 300MHz and FOV of 30deg².

Survey goals

- Constrain the atomic gas cross-section
- Constrain the molecular gas cross-section
- Time variation of fundamental constants
- Associated absorbers