The future of the **HI mass function**

Martin Zwaan (ESO)

Luminosity function

Relevance:

. . .

- Theories of galaxy formation and evolution
- Luminosity density

Luminosity function

Relevance:

. . .

- Theories of galaxy formation and evolution
- Luminosity density

HI mass function

Relevance:

- Theories of galaxy formation and evolution
- Neutral hydrogen gas mass density
- Missing satellites
- Baryon mass functions

First HI mass functions

• Based on optical catalogues and assumptions on gas richness (Briggs 1990)

Compare with observations: Is the Universe filled with dark galaxies? Low surface brightness galaxies?

Schechter functions

HI mass function from blind HI Surveys

- HIMF measured from blind 21-cm surveys:
 - **AHISS**: HI strip Survey (Zwaan et al 1997)
 - AS: Arecibo Slice (Spitzak & Schneider 1998)
 - ADBS: Arecibo Dual Beam Survey (Rosenberg & Schneider 2000)
 - **HIPASS**: HI Parkes All Sky Survey (Zwaan, Meyer et al 2003/2004/2005)
 - ALFALFA: Arecibo Legacy Fast ALFA Survey (Giovanelli et al 2005)

• SKA pathfinders...

HI mass function from blind HI Surveys

- HIMF measured from blind 21-cm surveys:
 - AHISS: HI strip Survey (Zwaan et al 1997)
 - AS: Arecibo Slice (Spitzak & Schneider 1998)
 - ADBS: Arecibo Dual Beam Survey (Rosenberg & Schneider 2000)
 - **HIPASS**: HI Parkes All Sky Survey (Zwaan, Meyer et al 2003/2004/2005)
 - ALFALFA: Arecibo Legacy Fast ALFA Survey (Giovanelli et al 2005)
 - SKA pathfinders...

Blind survey covering whole southern sky up to dec=+25°. 5300 detections

HIPASS results

• $M_{HI} \propto S_{int} D^2$

- $M_{HI}=10^8 M_o$ out to ~12 Mpc
- peak at ~25 Mpc
- No sharp flux limit → complicated completeness corrections

HIMF dependence on galaxy type

- Low mass end of HIMF dominated by Sm-Irr
- High mass end of HIMF dominated by Sbc-Sc
- Trend consistent with optical luminosity function

Environmental effects on HIMF?

- Steeper toward higher densities?
- Density contrast lower in HI samples than in optical samples
- Opposite effect seen by Springob et al (2004), based on optically selected galaxies

HIMF variations

Different surveys probe different depths

Large scale structure causes variations in HIMF?

Or is it differences in analysis?

Do larger surveys help?

Do larger surveys help?

• Uncertainties in HI mass function dominated by **systematic** errors

Do larger surveys help?

- Uncertainties in HI mass function dominated by **systematic** errors
- Compare optical luminosity function →

Driver et al 2005

Analysis techniques

- Most detection very close to the noise...
- Put fake sources in your data!

The HIMF and cosmic variance

HIPASS 1000 brightest galaxies

four different quadrants of the southern sky

Future challenges for HI mass function

low mass end

environment

Future challenges for HI mass function

low mass end

Future challenges for HI mass function

environment *wide*

evolution deep

- Traditionally: 1/V_{max} method (Schmidt 1968)
 - Summing volumes accessible to objects
 - Sensitive to large scale structure
- Maximum likelihood methods (Efstathiou et al 1988, Sandage et al 1979)
 - Find θ that yields maximal joint probability of detecting all sources in sample

- Traditionally: 1/Vmax method (Schmidt 1968)
 - Summing volumes accessible to objects
 - Sensitive to large scale structure
- Maximum likelihood methods (Efstathiou et al 1988, Sandage et al 1979)
 - Find θ that yields maximal joint probability of detecting all sources in sample

$$p(M_{\mathrm{HI},i}|D_i) = \frac{\theta(M_{\mathrm{HI},i})}{\int_{M_{\mathrm{HI,min}(D_i)}}^{\infty} \theta(M_{\mathrm{HI}}) dM_{\mathrm{HI}}}$$

- Traditionally: 1/Vmax method (Schmidt 1968)
 - Summing volumes accessible to objects
 - Sensitive to large scale structure
- Maximum likelihood methods (Efstathiou et al 1988, Sandage et al 1979)
 - Find θ that yields maximal joint probability of detecting all sources in sample

- solution: multi-dimensional stepwise maximum likelihood methods
- Find $\theta(M_{HI},W)$
- Collapse to find HIMF
- Or, find ML-based effective volume accessible to each galaxy individually

Biases in HI mass determination

Biases in HI mass determination

Eddington effect

cosmic variance

noise bias

confusion

HI self-absorption

inclination bias

resolve large galaxies

Simulations to test HIMF recovery

- Millennium Simulation (Springel et al 2005)
- 9 million galaxies in the full simulation box (500 Mpc/h on a side)
- Stich several cubes together
- Assume a HIPASS HI mass function
- Low mass (log M_{HI}<8.5) cluster around larger ones

Simulations

- Rotational velocity HI mass relation from Obreschkow & Rawlings (2009)
- Random inclinations -> velocity widths
- Realistic scatter on all parameters
- Select galaxies from simulated boxes, assuming 'optimal smoothing'

input catalogue

Simulated HI skies

Simulated HI catalogues

Wide field HIMFs

Four different realizations of Wallaby: huge variations in HIMF based on 1/V_{max} method

Without large scale structure...

The magic of stepwise maximum likelihood

Solid: 1/V_{max} method Open: 2DSWML

(ran 2DSWML only on galaxies $M_{HI} < 10^8 M_{\odot}$)

Wallaby-type survey: HIMF expectations

- ~600,000 galaxies (depending on selection technique)
- Can see $M_{HI} = 10^7 M_o$ out to ~30 Mpc
- Can measure HIMF down to $M_{HI} \sim 10^6 \; M_{\odot}$
- Excellent for measuring HI as function of environment

Dingo HI mass functions

Ten different realizations of Dingo ultradeep: huge variations in HIMF based on 1/V_{max} method

The magic of stepwise maximum likelihood

Solid: 1/V_{max} method Open: 2DSWML

with Dingo to higher redshifts

Can reliably measure HIMF above M_{HI}^* out to z=0.3

Use Dingo to study HIMF as function of redshift

Dingo-type survey: HIMF expectations

- ~45,000 galaxies per 30° ultradeep field (depending on selection technique)
- ~12,000 galaxies per 30° deep field
- Can see $M_{HI} = 10^8 M_0$ out to $z \sim 0.07$
- Can measure HIMF out to z~0.3
- Can measure evolution of Ω_{HI} out to higher *z* using some assumptions/tricks

Ω_{HI} : the cosmic HI mass density

Ω_{HI} : the cosmic **HI mass density**

 DLAs are a "phase" not a "reservoir"

 DLAs are a "phase" not a "reservoir"

 DLAs are a "phase" not a "reservoir"

 DLAs are a "phase" not a "reservoir"

• Where is the missing gas?

HI column density distribution evolves slowly

HI column density distribution evolves slowly

- HI distribution in galaxies at z=3 similar to that today?
- Star formation laws similar at higher z?

Should we be looking at HI or H₂?

- Obreschkow & Rawlings (2009): pressure-based models predict that H₂ mass density rises quickly
- See also Zwaan & Prochaska (2006)
- Need to follow up part of a deep HIfield with ALMA

What's next? (Before SKA pathfinders?)

The Arecibo Legacy Fast ALFA Survey

	HIPASS	ALFALFA
sensitivity	13 mJy	1.7 mJy
beam	15'	3.5'
area	30000 deg ²	7000 deg ²
detections	5300	~18000?

- ALFALFA finished~ 2011/2012
- 2 times smaller error bars on HIMF, but uncertainty determined by systematics...

Predicted

detections in

Conclusions

- HI mass function fairly flat (α =-1.3)
 - but we worry about cosmic variance
- More sophisticated techniques are essential for volume corrections
 - but don't help much with deep field evolution
- Need to know HIMF as function of environment
 - ▶ also to understand 'the' local HIMF
- Need to know how HI mass function evolves
 - but all the action is in the molecules?

Implications for cosmic SFR density

Even though H₂ has very small cross section, it contributes significantly to Ω_{gas} and the SFRD

SFRD as function of HI and H_2 (at z=0):

HI at high and low z

low redshift

• 21-cm emission

high redshift

Lyα absorption

flux 0.5

flux 0.5

C

۷

flux 0.5

C

HI at high and low z

low redshift

• 21-cm emission

high redshift

Lyα absorption

flux 0.5

C

flux 0.5

C

QSO absorption line statistics from local galaxies:

QSO absorption line statistics from local galaxies:

