The deep SWIRE VLA field: faint radio populations

Veronica Strazzullo Maurilio Pannella & Frazer Owen

Panoramic Radio Astronomy Groningen, June 2009

Faint radio populations The rising of a new population

Faint radio populations

not just "AGNs" or "starbursts"?

The deep SWIRE VLA field

- a deep 20cm-selected sample
 rms at image center ~2.7 µJy
 - 1.6" resolution (Owen & Morrison 2008)
- 0.6 x 0.6 square degrees
- 490 spectroscopic redshifts

 extensive multiwavelength photometry: X-ray, FUV, NUV, U, g, r, i, z, J, H, K, IRAC (3.6, 4.5, 5.8, 8μm), MIPS(20, 70, 160μm), radio (20cm, 50cm, 90cm)

The deep SWIRE VLA field

Photometric redshifts

photo-zs for the radio sample

- 1610 sources
- 86% of the identified counterparts
- 83% of the whole radio sample

photo-z vs spec-z for radio sources

- ~300 IDs with spec-z
- median Dz/(1+z) ~ 0.0008
- RMS Dz/(1+z) ~ 5.5%
- 4% outliers

photo-z vs spec-z for the whole opt/IR parent sample

- median Dz/(1+z) < 0.003</p>
- RMS Dz/(1+z) ~ 5%
- ≤3.5% outliers

SED properties of host galaxies

 Different SED types in different locations of the L_{1.4GHz} vs redshift plot

 Simplest, expected explanation is: different
 L_{1.4GHz} are associated with different processes

• Remind: <u>non-evolving</u> <u>templates</u> describe the stellar populations at the time of observations. <u>Galaxies may change</u> <u>class as time goes by</u>

SED properties of host galaxies

 Different SED types in different locations of the L_{1.4GHz} vs redshift plot

 Simplest, expected explanation is: different L_{1.4GHz} are associated with different processes

• Remind: non-evolving templates describe the stellar populations at the time of observations. *Galaxies may change class as time goes by*

Color-magnitude of host galaxies

• <u>all</u> sources at 0.3<z<1.3 (not a flux limited sample)</p>

early-types in red sequence, star-forming galaxies in blue cloud

Color-magnitude of host galaxies

- <u>all</u> sources at 0.3<z<1.3 (not a flux limited sample)</p>
- early-types in red sequence, star-forming galaxies in blue cloud
- high density of intermediate "green valley" galaxies

- <u>flux limited samples</u>
- as expected, the nature of the host galaxies depends on the survey limiting flux

- <u>flux limited samples</u>
- as expected, the nature of the host galaxies depends on the survey limiting flux

Comparison with other classifications

The nature of the host galaxies Comparison with other classifications 4000Å break vs specific radio luminosity 2.0 D_n(4000) 1.5 AGN" 1.6 + SF galaxies + Composites 1.0 -+> Sevferts D,(4000) Liners 1.4 bsorp AGN 12 13 11 14 15 10 Best+05 log₁₀(L_{NVSS} / M*) 1.2 "starforming 1.0 12 13 15 11 14 $Log(L_{1.4GHz} / M_{*})$

The nature of the host galaxies Comparison with star-forming galaxy samples

blue galaxies in agreement with other star-forming samples
red and green galaxies have <u>on average</u> too high radio/UV fluxes as compared to star-forming samples

- Volume-limited samples
- At all redshifts, there is a significant "green population"
- All populations of faint radio galaxies evolve with redshift

Luminosity distributions and redshift evolution

Both AGN- and SF-powered sources are consistent with evolving at a similar rate, implying (in a PLE scenario) a decrease of radio luminosities of a factor ~10 since z~1.3

Looking forward

 equivalent multi-wavelength and redshift information for the <u>radio-</u> <u>undetected sources</u> in the field

more data to study (Chandra, Spitzer IRAC+MIPS, 50cm and 90cm)

more valuable insights into the actual nature of faint radio populations

- → a comparison of samples of radio vs non-radio sources in terms of stellar populations and stellar masses, with homogeneous data and analysis procedures
- → a parent sample for stacking analyses to study average radio properties
- of radio-undetected galaxy populations