AST RON

CONTINUUM SURVEYS with LOFAR and synergy with large L-band surveys

Raffaella Morganti (ASTRON, Kapteyn Inst. - Groningen) and the LOFAR Survey Core Team

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Netherlands Institute for Radio Astronomy

LOFAR - Low Frequency Array - phased array telescope

 Aperture array: replace dishes by many cheap dipoles: no moving parts - relies on digital signal processing + fibre-based network + high performance super computer optimised for frequency range: 30 – 240 MHz

Frequency ranges
Two types of dipole antennaLBA 30 - 80 MHz
Sparse dipolesHBA 115 - 240 MHz
Tiles (4x4 dipoles)18+ NL Core Stations96 dipoles2x24 dipoles18+ NL Remote Stations96 dipoles48 dipoles8+ International Stations96 dipoles96 dipoles

Resolution subarcsec to degrees!

Sensitivity (after 4 h, 4 MHz bandwidth) - @ 60 MHz ~ 3 mJy - @ 150 MHz ~ 0.15 mJy Up to 8 simultaneous 4 MHz beams possible

~2 km ~80 km (~2 arcsec @200MHz) >1000 km

Roll out as we speak....

Low Band Antenna - (10) 30MHz - 80 MHz - 96 dipoles per station - Within NL only 48 can be used at a time

High Band Antenna - 120 MHz - 240 MHz - 1 tile = 4×4 antennas

- 48 tiles per station (Within NL)

Roll out as we speak....

High Band Antenna - 120 MHz - 240 MHz - 1 tile = 4×4 antennas

1 FT

- 48 tiles per station (Within NL)

Roll out as we speak....

High Band Antenna - 120 MHz - 240 MHz - 1 tile = 4×4 antennas

1 Fr

- 48 tiles per station (Within NL)

Ideal telescope for surveys

Continuum Surveys with LOFAR

Continuum surveys: one of the LOFAR Key Science Projects

Core Team

★ Huub Röttgering (PI), Philip Best, Matt Jarvis, John Conway, Matt Lehnert, Marcus Brüggen, Peter Barthel, George Miley, Raffaella Morganti, Ignas Snellen, Gianfranco Brunetti, Krzysztof Chyzy

Members (45+)

* Proposed by the partaking countries * Specific expertise, specific access to data/telescopes

- The highest redshift radio sources
- Clusters and cluster halo sources
- Starforming galaxies at moderate and high redshifts
- Serendipitous

- The highest redshift radio sources
- Clusters and cluster halo sources
- Starforming galaxies at moderate and high redshifts
- Serendipitous

Most of these topics need surveys that can find rare objects (large surveys!) and steep spectrum

- The highest redshift radio sources
- Clusters and cluster halo sources
- Starforming galaxies at moderate and high redshifts
- Serendipitous
- AGN at moderate redshift
- Gravitational lensing
- Detailed studies of low-redshift AGN
- Nearby galaxies

- Cosmological studies
- Galactic radio sources

Most of these topics need surveys that can find rare objects (large surveys!) and steep spectrum

- The highest redshift radio sources
- Clusters and cluster halo sources
- Starforming galaxies at moderate and high redshifts
- Serendipitous
- AGN at moderate redshift
- Gravitational lensing
- Detailed studies of low-redshift AGN
- Nearby galaxies

. . .

- Cosmological studies
- Galactic radio sources

Aim of the planned surveys: "general" enough to be a legacy product of LOFAR and enable a broad range of science

Most of these topics need surveys that can find rare objects (large surveys!) and steep spectrum

Proposed Radio Surveys: a wish list!

"Classical" set-up for the proposed surveys! **★** Tier 1: "Large Area": all northern sky at 15,30,60,120 MHz; `substantial area' at 210MHz **\star** Tier 2: "Deep": few x 100 sq. deg² to factor few deeper at 30,60,120,200 MHz **★** Tier 3: "Ultra-deep": Small number of pointings very deep in one frequency 150MHz

Proposed Radio Surveys: a wish list!

"Classical" set-up for the proposed surveys! **★** Tier 1: "Large Area": all northern sky at 15,30,60,120 MHz; `substantial area' at 210MHz **\star** Tier 2: "Deep": few x 100 sq. deg² to factor few deeper at 30,60,120,200 MHz **★** Tier 3: "Ultra-deep": Small number of pointings very deep in one frequency 150MHz

Strong connection to the magnetism Science Project (PI Beck) - choice of freq/bands for RM

Connection to Transients - multi pass in the observation startegy

The quest for high-z radio galaxies!

- Distant radio galaxies: unique cosmic probes high energy phenomena traced to the early Universe.
- Are there HzRG at z>6? Possibility of detecting these objects close or before the epoch of reionization
- Constraints on how/when massive black holes are formed
- Progenitors of dominant cluster galaxies?

- Selection through spectral index: larger redshift \rightarrow steeper spectrum (Blumenthal & Miley, various papers de Breuck et al.)
- Physical explanation for the correlation? Radiation mechanism for producing the ultra-steep spectrum?
- Higher fraction of RG at high z located in dense environment (Klamer et al. 2005)? Radio emission probing the medium around? Search for HI absorption?

Cluster radio emission

- Diffuse radio sources in clusters \rightarrow tracers of the intercluster magnetic fields \rightarrow radio sources are shaped by the dynamics of the gas in which are embedded
- Probe the effects on the dynamics of cluster gas due to shocks waves produced by cluster mergers turbulent re-acceleration by merging of sub-clusters - leakage from cluster radio galaxies
- Determine the origin of cluster magnetic fields
- Occurrence and characteristics of diffuse radio sources as a function of redshift How did cluster relics (and magnetic field) evolve since cluster formation? Were relics more common at earlier epoch?
- Relation low-z cluster \rightarrow high-z protoclusters

ABELL 521 HALO White contours radio superimposed on Chandra X-rays Turbulent reacceleration? Laboratories for intraclustermagnetic fields, interaction with gas and cluster evolution

Brunetti et al. Nature 2008

Tier 1: The "large-area" survey

- needed for these sources => rms limit 0.1mJy/b
- Lower frequencies less sensitive but exciting new territory. $30MHz (2\pi survey) \rightarrow Set limit to detect > 100 FR1s and FR2s at$ z>7, with S/N>5. This requires rms of 3mJy/b
- Steep spectrum sources \rightarrow set 60MHz limit deep enough to detect a=-1.6 ($f_{v} \sim v^{a}$)
- larger area \rightarrow match sensitivity 60MHz?

Expected redshift distribution of radio halos above a given flux density. Solid lines more realist model (Enslin & Rottgering, 2002)

• 120 MHz (2π survey) \rightarrow aiming to detect 100 cluster halo sources beyond z~0.6 \rightarrow this requires to reach 2 mJy. S/N=20

• 210 MHz observations \rightarrow likely a limited area to same effective depth as 120MHz data for "typical" sources ($a \approx -0.8$, $f_{v} \approx v^{\alpha}$),

Area	rms	BW	Sources/1	Integration time ²	Number	Days ³	Total
deg^2	mJy	MHz	beam	hrs	pointings		source
20626	7.5	8	19026	42.0	97	14	1.8e+0
20626	3.0	8	6506	19	388	26	2.5e+0
20626	1.0	8	9301	22	435	33	4.0e+0
20626	0.1	8	12953	7.7	2149	57	2.8e+0
783	0.065	8	4045	20	250	17	1.0e+0

Table 3: Tier 1: The "All sky" survey

¹ Number of sources in the beam with a signal to noise ratio larger than 5. ² The integration time is quoted for 1 beam of 8 MHz. ³ The total number of days needed to complete the survey assuming the availability of 12 beams of 8 MHz.

Number of beams and bandwidth to be finalised - also	
depending on co-ordination with magnetism KSP!	

Starforming galaxies - what do we learn?

- High sensitivity \rightarrow growing number of starburst (decreasing radio-loud AGN) • Aim: detecting SFR $10M_{\odot}$ /yr at z~1.5 - close to the epoch where the star formation history is believed to have peaked
- More extreme SFR (100 M_o/yr) detectable high z ($z \sim 5$)
- How the relationship between star formation rate and galaxy mass evolves with z ("downsizing"?)

Follow-up far-IR and sub-mm very important

Figure 6: Number of expected FRII radio sources (dotted), FRI radio sources (dashed), radio-quiet quasars (dot-dashed) and star-forming galaxies (solid) as a function of redshift for the 150 MHz ultra deep LOFAR surveys.

Wilman et al. 2008 The SKADS simulated sky - http://s-cubed.physics.ox.ac.uk/

Tier 2 and 3: The "deep" and "ultra-deep" surveys

"Deep survey" - Aim is ~ 25 pointing at each frequency: 30,60,120 and 200MHz.

sources (a=-0.8)

at z=2.5

f	Area	rms	BW	Sources/1	Integration time ²	Number	Days ³	Total ¹
MHz	deg^2	mJy	MHz	beam	hrs	pointings		sources
30^{4}	1327	0.7	8	25322	355	25	30	6.3e+05
60	1184	0.25	8	37875	356	25	30	9.5e+05
120	239	0.025	8	88066	123	25	10	2.2e+06
210	78	0.016	8	28756	332	25	28	7.2e+05

at z=1.5, and 100 M_{sun}/yr at z=5

150 MHz is optimal choice for single deep pointing $\rightarrow \sim 30 \text{deg}^2 (0.0062 \text{ mJy/b})$

AST(RON

30 and 60 MHz depths set to match "large area" 120MHz data depth for typical spectral index

120 and 210 MHz data depths are set to detect SF galaxies with 10 M_{sun}/yr at z=0.5, and 100 M_{sun}/yr

"Ultra deep" survey - Although LOFAR is not competitive with eVLA for ultra-deep surveys, the low frequency still makes it interesting to carry out one (but at a single frequency) \rightarrow 10 M_{sun}/yr

Synergy with large surveys at L-band

- and high spatial resolution

most innovative part of LOFAR: wide field of view, set of low frequencies possible

• however, most of the work done so far to understand/characterise the various groups of radio sources [e.g. faint sub-mJy radio sources] is at L-band -> crucial reference point

Synergy with large surveys at L-band

- and high spatial resolution

- most natural synergy is with large surveys at L-band
- large L-band surveys on comparable time scales! → Apertif & ASKAP
 - Apertif: looking at the same sky!
 - by VLT and ALMA → overlap with ASKAP (MeerKat?)

most innovative part of LOFAR: wide field of view, set of low frequencies possible

• however, most of the work done so far to understand/characterise the various groups of radio sources [e.g. faint sub-mJy radio sources] is at L-band -> crucial reference point

• LOFAR less efficient at low dec \rightarrow nevertheless effort to cover area observable

Comparison with other surveys

Comparison with other surveys

Combining low frequency and L-band wide surveys

• many studies (see previous presentations) are already connecting L-band and low freq. deep field observations \rightarrow e.g. GMRT 610 MHz

AST(RON

The sub-mJy population

- below 1 mJy ~ 50% AGN (Padovani et al.) → 25% FRI-like \rightarrow 23% radio-quiet
- below 0.1 mJy radio-loud fraction drops vs radio-quiet counts ~costant (Ibar et al.)
- SFG dominate @50 µJy (1.4GHz) but AGN still ~25% (Seymont et al., Ibar et al.)

AGN make up a significant fraction but -> what kind of AGN? what is the nature of radioquiet - not radio silent! (low accretion rate/low efficiency? interesting for feedback?)

- no evolution for the median spectral index for faint radio sources most prevalent emission mechanism in sub-mJy regime is optically thin synchrotron (Ibar et al.)
- dominant flat-spectrum or ultra-steep ruled out?
- BUT flattening of the spectral index seen in other studies (especially @high freq, Prandoni et al.): origin?

 \rightarrow radio-quiet do not represent the faint end of radio power?

Combined L-band with LOFAR tier1 - all sky selection of steep spectrum sources
→ ~50 microJy @1.4GHz with steep spectrum (~-1 for 200 MHz) → SFG and AGN

Combined L-band with LOFAR tier 2&3 - exploring the dependence of the spectrum index with flux? source population down to micro Jy -> nature of this population - beamed?

Possibility of identifying the self-absorbed sources! e.g. disappearing @ low freq? Compact/young: exploring the properties for radio faint samples and/or evolution with z? relation peak vs size, high-z expected free-free due to gas around?

Combined L-band with LOFAR tier1 - all sky selection of steep spectrum sources
→ ~50 microJy @1.4GHz with steep spectrum (alpha~-1 for 200 MHz) → SFG and AGN

Combined L-band with LOFAR tier 2&3 - exploring the dependence of the spectrum index with flux? source population down to micro Jy \rightarrow nature of this population - beamed?

Possibility of identifying the self-absorbed sources! e.g. disappearing @ low freq? Compact/young: exploring the properties for radio faint samples and/or evolution with z? relation peak vs size, high-z expected free-free due to gas around?

Combined L-band with LOFAR tier1 - all sky selection of steep spectrum sources
→ ~50 microJy @1.4GHz with steep spectrum (alpha~-1 for 200 MHz) → SFG and AGN

Combined L-band with LOFAR tier 2&3 - exploring the dependence of the spectrum index with flux? source population down to micro Jy \rightarrow nature of this population - beamed?

Possibility of identifying the self-absorbed sources! e.g. disappearing @ low freq? Compact/young: exploring the properties for radio faint samples and/or evolution with z? relation peak vs size, high-z expected free-free due to gas around?

■ Spectral index not enough to distinguish e.g. SFG and low power AGN → still we will learn about the **spectral properties of the radio sources** → L-band +LOFAR can provide new insights

 Radio morphology can be use as a extra parameter \rightarrow arcsec resolution NL-LOFAR, sub-arcsec E-LOFAR (very important!) +VLBI follow-up (e.g. Klockner et al. 2009, Chi et al. poster)

Combined L-band with LOFAR tier1 - all sky selection of **steep spectrum** sources \rightarrow ~50 microJy @1.4GHz with steep spectrum (alpha~-1 for 200 MHz) \rightarrow SFG and AGN

Combined L-band with LOFAR tier 2&3 - exploring the dependence of the spectrum index with flux? source population down to micro Jy \rightarrow nature of this population - beamed?

Possibility of identifying the self-absorbed sources! e.g. disappearing @ low freq? Compact/young: exploring the properties for radio faint samples and/or evolution with z? relation peak vs size, high-z expected free-free due to gas around?

• Spectral index not enough to distinguish e.g. SFG and low power AGN \rightarrow still we will learn about the **spectral properties of the radio sources** → L-band +LOFAR can provide new insights

Radio morphology can be use as a extra parameter \rightarrow arcsec resolution NL-LOFAR, sub-arcsec E-LOFAR (very important!) +VLBI follow-up (e.g. Klockner et al. 2009, Chi et al. poster) data at other wavebands crucial !! optical imaging/spectroscopy, mid/far IR, X-ray ...

Nearby radio sources - the role of gas

(z<0.3) and OH (z<0.6-0.7!) observations → possibility of studying the gas content for the most nearby radio sources → e.g. relation gas → AGN properties → duty-cycle activity

• for the nearby sources Apertif/ASKAP will provide information on the gas: deep HI

 \rightarrow Any relation between the large amount of HI (> 10¹⁰ M_{\odot}) and the radio structure? → First phase of radio activity "stopped or disturbed" by the merger (assuming the HI comes from a merger....)?

Conclusions

- LOFAR ideal telescope for surveys: roll out now, soon fun will start! • Plans for large surveys at various depth and different frequencies (from 30 to 200)
- MHz)
- Aiming at finding rare, steep spectrum objects -> high-z radio galaxies, diffuse radio sources in cluster, high-z starforming galaxies. BUT also enabling plenty of other exciting science !!!
- Important synergy with L-band large surveys: sub-mJy population, nearby AGN: duty-cycle of the activity, spectral characteristics of radio sources....

