

Quantifying HI Morphology Benne W. Holwerda N. PIRZKAL, W. J.G DE BLOK, A. BOUCHARD, S.-L. BLYTH, K. VAN DER HEYDEN, ED ELSON

Motivation

- Interaction is believed to be a driver of galaxy evolution and even small interactions leave a signature in the morphology of galaxy disks.
- * To date, the search for signs of interaction to higher redshifts in quantified morphology was in Optical/UV for observational reasons.
- * With SKA, MeerKAT and ASKAP millions of galaxies will be well resolved in HI.
- Is there a better signature of interaction in quantified HI morphology?

UV Disk Morphology and Interaction

STScI-PRC04-07a

NASA, ESA, S. Beckwith (STScl) and the HUDF Team

Data

- * The HI Nearby Galaxy Survey (THINGS): uniform, high-resolution HI maps of nearby galaxies.
- * Spitzer Infrared Nearby Galaxy Survey (SINGS) infrared data (IRAC and MIPS)
- * GALEX's Nearby Galaxy Atlas: UV data.
- * Optical data from SDSS and/or SINGS ancillary.

Spiral Galaxies in THINGS — The HI Nearby Galaxy Survey

Parameters

* Quantified morphology schemes use a set of scale-invariant parameters:

* Concentration (C)

* Asymmetry (A)

* Smoothnes (S)

* Gini (G)

* Second order moment of light (M₂₀)

Ellipticity (E)

Gini, M₂₀ and Ellipticity

***** Lotz et al. (2004): ***** Gini (**G**) * Second order moment of light (M_{20}) ***** Scarlata et al. (2008): # Ellipticity (E)

A tale of two Galaxies

Results

NGC 3184 (ISOLATED)

M51 (INTERACTION)

Results: Concentration

Results: Concentration

Results: Concentration

Results: Asymmetry

Results: Asymmetry

Results: Asymmetry

Results: Smoothness

Results: Gini

Results: M20

Thursday, 11 June 2009

Results: Ellipticity

Conclusions

- * Quantified morphology over a range of wavelengths within two HI contours in two galaxies, isolated NGC 3184 and interacting M51.
- * The interaction signal is strongest in UV, 24 micron and HI: star-formation and its fuel.
- * HI morphology is equal or better indicator of interaction (Asymmetry, GINI and M₂₀) compared to any other wavelength.
- * Interaction rate local volume with MeerKAT/ ASKAP/APERTIF, SKA up to redshifts of z=1.

Disturbance

- * Karenchentsev et al. 2004
- High value of O
 implied close-by
 and massive
 neighbour.

* Gini and M₂₀

Non-circular Motion

Relative estimate of noncircular motion (Ar / Vmax)

* correlates with A, 1/M₂₀

Hubble Type

* Parameters in HI do not correlate well with Hubble (sub)type.

Distance Effects

Inclination Effects

* Bendo et al. 2008
* Affects Concentration
* Not really an issue below 60 degrees
* HI inclination estimate vital.

Conclusions (2)

* Initial results from the THINGS sample:

- * Morphology will give a likelihood for interaction, see how well combination with dynamical info
- # Hubble (sub)type classification problematic
- Inclination not a major issue till > 60°
- * Distance & resolution not an issue for Local Volume.

Inclination

Multi-wavelength

