

Motivation

* Interaction is believed to be a driver of galaxy evolution and even small interactions leave a signature in the morphology of galaxy disks.
* To date, the search for signs of interaction to higher redshifts in quantified morphology was in Optical/UV for observational reasons.
* With SKA, MeerKAT and ASKAP millions of galaxies will be well resolved in HI.
* Is there a better signature of interaction in quantified HI morphology?

UV Disk Morphology and Interaction

Hubble Ultra Deep Field
Hubble Space Telescope • Advanced Camera for Surveys

Data

* The HI Nearby Galaxy Survey (THINGS): uniform, high-resolution HI maps of nearby galaxies.
* Spitzer Infrared Nearby Galaxy Survey (SINGS) infrared data (IRAC and MIPS)
* GALEX's Nearby Galaxy Atlas: UV data.
* Optical data from SDSS and/or SINGS ancillary.

Spiral Galaxies in THINGS - The HI Nearby Galaxy Survey

NGC 628 (M.7.4)

NGC 5194 (M 51)

\square

THINGS


```
The HI Nearby
Galaxy surver
```

color coding:
THINGS Atomic Hydrogen
(Very Large Array)
Old stars
(Spitzer Space Telescope) Star Formation
(GALEX \& Spitzer)
scale:

15,000 light years

Image credits:
VA THINGS: Waltor et al. 08 Spitzor SINGS: Kennicutt et al. 03 GALEXNGS: Cil de Paz et al. 07

Parameters

* Quantified morphology schemes use a set of scale-invariant parameters:
* Concentration (C)
* Asymmetry (A)
* Smoothnes (S)

类 Gini (G)

* Second order moment of light (\mathbf{M}_{20})
* Ellipticity (E)

CAS space

$$
\mathrm{C}=5 \log \left(\frac{\mathrm{r}_{80}}{\mathrm{r}_{20}}\right)
$$

Concentration (C)

I

I

R

abs(I-R)
$\mathrm{A}=\frac{\mathrm{abs}(\mathrm{I}-\mathrm{R})}{\mathrm{I}}$
Asymmetry (A)

Smoothness (S)
Conselice et al. (2004)

CAS space

$$
\mathrm{C}=5 \log \left(\frac{\mathrm{r}_{80}}{\mathrm{r}_{20}}\right)
$$

Concentration (C)

I

I

R

abs(I-R)
$\mathrm{A}=\frac{\mathrm{abs}(\mathrm{I}-\mathrm{R})}{\mathrm{I}}$
Asymmetry (A)

Smoothness (S)
Conselice et al. (2004)

Gini, M_{20} and Ellipticity

$M_{\mathrm{tot}}=\sum_{i}^{n} M_{i}=\sum_{i}^{n} f_{i}\left[\left(x_{i}-x_{c}\right)^{2}+\left(y_{i}-y_{c}\right)^{2}\right]$,
$M_{20} \equiv \log 10\left(\frac{\sum_{i} M_{i}}{M_{\mathrm{tot}}}\right)$, while $\sum_{i} f_{i}<0.2 f_{\mathrm{tot}}$.

* Lotz et al. (2004): * Gini (G)
* Second order moment of light (M_{20})
* Scarlata et al. (2008): * Ellipticity (E)

A tale of two Galaxies

HOLWERDA ET AL. 2010, MNRAS, IN PREP

Results

NGC 3184 (ISOLATED)

M51 (INTERACTION)

Results: Concentration

Results: Concentration

Results: Concentration

Results: Asymmetry

Results: Asymmetry

INCREASED IN HI, SIMILAR TO STAR-FORMATION TRACERS

Results: Asymmetry

INCREASED IN HI, SIMILAR TO STAR-FORMATION TRACERS

Results: Smoothness

INCREASED IN H, 24 MICRON AND UV

Results: Gini

INTERACTION ENHANCES HI INEQUALITY

Results: M20

INTERACTION ADDS MOMENT TO HI MAP

Results: Ellipticity

GENERALLY THE GALAXY IMAGE IS ELONGATED

Conclusions

* Quantified morphology over a range of wavelengths within two HI contours in two galaxies, isolated NGC 3184 and interacting M51.
* The interaction signal is strongest in UV, 24 micron and HI: star-formation and its fuel.
* HI morphology is equal or better indicator of interaction (Asymmetry, GINI and M_{20}) compared to any other wavelength.
* Interaction rate local volume with MeerKAT/ ASKAP/APERTIF, SKA up to redshifts of $z=1$.

Disturbance

* Karenchentsev et

 al. 2004* High value of θ implied close-by and massive neighbour.
* Gini and M_{20}

Non-circular Motion

* Relative

 estimate of noncircular motion($\mathrm{A}_{\mathrm{r}} / \mathrm{V}_{\text {max }}$)

* correlates with A, $1 / M_{20}$

Hubble Type

* Parameters in HI do not correlate well with Hubble (sub)type.

Distance Effects

* Bendo et al. 2008
* Asymmetry most strongly depends on distance
* Correction workable.
* Local Volume (< 60 Mpc)

Inclination Effects

\author{

* Bendo et al. 2008
}
* Affects Concentration
* Not really an issue below 60 degrees
* HI inclination estimate vital.

Conclusions (2)

粦 Initial results from the THINGS sample:
** Morphology will give a likelihood for interaction, see how well combination with dynamical info

* Hubble (sub)type classification problematic
* Inclination not a major issue till $>60^{\circ}$
* Distance \& resolution not an issue for Local Volume.

Inclination

Interacting Galaxies

Multi-wavelength

