Magnetic fields in nearby galaxies:

Prospects with future radio telescopes

> Rainer Beck MPIfR Bonn

Magnetic fields are widely accepted now as important in most astrophysical processes

> Key Science Projects on *Cosmic Magnetism* for LOFAR and SKA

Fundamental questions

Structure

What is the magnetic power spectrum at small and large scales ?

- **Dynamics** Do magnetic fields affect gas flows and galaxy evolution ?
- Connection

Are galaxies magnetically connected to intergalactic space ?

• Origin

When and how were the first magnetic fields generated ?

Evolution

How and how fast were galactic magnetic field amplified ? (Important for the interpretation of the radio-IR correlation !)

Magnetic field generation and amplification

Field seeding

Primordial, Weibel instability, ejection by supernovae, stellar winds or jets

Field amplification MRI, compressing / shearing flows, turbulent flows, small-scale dynamo

• Coherent field ordering Mean-field dynamo

Classical mean-field dynamo

- Ionized gas + differential rotation
 + helical turbulence + magnetic diffusion
- Microphysics approximated by the average parameters "alpha-effect" and diffusivity
- \rightarrow Dynamo equation for the large-scale field
- Generation of large-scale modes
- Field evolution: see talk by Tigran Arshakian

Antisymmetric (dipolar) dynamo mode

Need for realistic models

- MHD models: Back-reaction of the field onto turbulence and gas flow
- Global dynamo models of galaxies including rotation and gas flows (e.g. spiral arms, bar and galactic outflow)
- Dynamo action emerges automatically
- Include galaxy evolution

Limitation no 1:

Global 3-D MHD models are limited by huge computing time on present-day computers

Observational tools

Total and polarized synchrotron emission

Faraday rotation

Faraday depolarization

Zeeman effect

NGC 6946

VLA+Effelsberg 6cm Total intensity (Beck 2007)

Typical radio synchrotron disk

Structure analysis: Wavelet spectra for NGC 6946 - using 2-D isotropic wavelet functions

Three different slopes:

Frick et al. 2001

Turbulence – spiral arms – extended disk

Advantages compared to power spectra:

- Wavelet function can be adapted to structures of interest
- Positional information is preserved

Equipartition magnetic field strengths in spiral galaxies

Total field in spiral arms: $20 - 30 \ \mu G$ Regular field in interarm regions: $5 - 15 \ \mu G$ Total field in circum-nuclear rings: $40 - 100 \ \mu G$

Zeeman effect in a distant galaxy

Zeeman effect in the HI absorption line of an intervening galaxy at z=0.692 against a bright quasar: $B_{\parallel} \approx 84 \ \mu G$ (Wolfe et al. 2008)

Energy densities

Limitation no 2:

Understanding the dynamical effects of magnetic fields in galaxies is limited by the insufficient resolution of present-day radio telescopes

Typical scale lengths in disks of spiral galaxies

■ Cold & warm gas: ≈4 kpc

■ Synchrotron: ≈4 kpc

■ Cosmic-ray electrons: ≤8 kpc (upper limit due to energy losses)

■ Total magnetic field: ≥16 kpc

NGC 253

6cm VLA+Effelsberg Total intensity + B-vectors (Heesen et al. 2009)

Exponential radio halo

Extent is limited by energy losses of the cosmic-ray electrons

NGC 4569

6cm Effelsberg Polarized intensity + B-vectors (Chyzy et al. 2006)

Past interactions are best visible in the magnetic field !

Limitation no 3:

The observable extent of magnetic fields in galaxies is limited by energy losses of the cosmic-ray electrons M 51 6cm VLA+Effelsberg Total intensity + B-vectors (Fletcher et al. 2009)

Polarization vectors:

Spiral fields more or less parallel to the optical spiral arms

M 51

6cm VLA+Effelsberg Total intensity + B-vectors (Fletcher et al. 2009)

Spiral fields parallel to the inner spiral arms:

Density-wave compression

M 51

6cm VLA+Effelsberg Total intensity + B-vectors (Fletcher et al. 2009)

Spiral fields between the outer spiral arms (weak density waves):

Dynamo action? Shear?

Spiral fields: coherent or incoherent ?

Fletcher 2004

Regular field (coherent)

Anisotropic field (incoherent)

M51 VLA+Effelsberg RM 3/6cm (Fletcher et al. 2009)

> Complicated & noisy RM pattern:

Two weak dynamo modes (m=0+2), plus strong anisotropic fields

Limitation no 4:

The distinction between regular and anisotropic fields is limited by the low signal-to-noise and the low resolution of present-day polarization observations

High S/N: RMs from background sources

LMC RM 18-20cm ATCA (Gaensler et al. 2005)

Axisymmetric dynamo field ?

Limitation no 5:

Detection of large-scale field structures is limited by the small number density of polarized background sources

Four-frequency analysis in M51

Fletcher et al. 2009

Broadband RM 18/20cm Upper layer: BSS (m=1) mode

Field reversal between northern disk to inner halo – similar to that found for the Milky Way (Sun et al. 2008)

Limitation no 6:

Field patterns in the disk and the halo are hard to distinguish by broadband polarimetry

(but see next talk by George Heald)

Radio halos: Edge-on galaxies

NGC 891 3cm Effelsberg Total intensity + B-vectors (Krause 2007)

Bright radio halo with vertical field components:

Driven by a disk wind?

NGC 4631 Effelsberg 3.6cm Total intensity + B-vectors (Krause & Dumke)

Huge halo:

X-shaped field, *not* consistent with standard dynamo modes

Noisy RM pattern

Limitation no 7:

Present-day radio telescopes do not allow to resolve the structure of radio halos

Pulsar RMs in the Milky Way: Many reversals ?

Limitation no 8:

Detection of large-scale field structures in the Milky Way is limited by the small number of pulsar RMs

Polarization in the Milky Way Canadian Galactic Plane Survey (CGPS) (21cm, DRAO+Effelsberg)

Landecker, Kothes, Reich, et al.

Magnetic filaments or Faraday screens?

Limitation no 9:

Observation of the small-scale field structure in the Milky Way is limited by Faraday depolarization

Breaking the limits

Higher resolution (resolving gas-field interaction, resolving dynamo modes, less depolarization)

Larger sensitivity (A_{eff}/T_{sys}) (high S/N at high resolution, more polarized background sources, more pulsars, more Zeeman sources)

Low frequencies (extended halos, interactions, IGM fields, detection of very low RMs)

Spectro-polarimetry (resolve RM structures along the line-of-sight, reduce Faraday depolarization)

Global 3-D MHD models (understand dynamo action)

Polarization Pathfinders

← GALFACTS (Arecibo, 2008)

 $\frac{\text{LOFAR}}{(\text{Europe, 2009})}$

MPIfR

ATNF

ATNF

← ATA (Hat Creek, 2008)

SKAMP \rightarrow (Bungendore, 2009)

← EVLA (New Mexico, 2012)

 $ASKAP \rightarrow$ (Boolardy, 2012)

← MeerKAT (Karoo, 2012) APERTIF → (Westerbork, 2012)

The future I:

Low-frequency radio emission will allow to observe weak magnetic fields

30-80 MHz 110-240 MHz

Low-frequency radio observations

- Frequency of synchrotron emission: v ~ E² B
 → low frequencies trace cosmic-ray electrons in weak magnetic fields
- Lifetime of electrons due to synchrotron loss:
 t ~ υ^{-0.5} B^{-1.5}
- \rightarrow low frequencies trace old cosmic-ray electrons
- Faraday rotation: $\Delta \psi \sim \upsilon^{-2} RM$ \rightarrow low frequencies allow to measure small rotation measures

Faraday rotation errors

Detection of low RM needs:

- high signal-to-noise in polarization (S_p/σ_p) and/or
- wide frequency span ($\Delta\lambda^2$):

 $\Delta RM \approx \sqrt{3} ((S_p/\sigma_p) \Delta \lambda^2)^{-1}$

Increasing $\Delta \lambda^2$ is less expensive than increasing S_p/σ_p !

Polarization surveys with LOFAR

Plans:

- All-sky shallow surveys at 30, 60, 120, 200 MHz: Search for polarized sources, determine RMs
- Deeper survey of ~ 60 nearby galaxies: RM grid
- Very deep survey of ≈ 20 nearby galaxies: Diffuse pol + RM maps, RM grid

Issues:

- Instrumental & ionospheric calibration
- Accuracy of Galactic foreground subtraction
- Intrinsic depolarization within background sources: Background source density may be low

The future II:

Recognition of large-scale field structures via RM grids

Faraday rotation grids at ≈1.4 GHz with SKA pathfinders

■ ATA: A/T≈ 25, $\Delta v \approx 0.2$ GHz, $\sigma \approx 20$ µJy/beam at 1.4 GHz in 12h $\rightarrow \approx 30$ sources per deg²

■ ASKAP, APERTIF: A/T≈ 80, $\Delta v \approx 0.3$ GHz, $\sigma \approx 10 \mu$ Jy/beam at 1.4 GHz in 12h $\rightarrow \approx 50$ sources per deg²

■ MeerKAT: A/T≈ 200, $\Delta v \approx 0.5$ GHz, $\sigma \approx 2 \mu$ Jy/beam at 1.4 GHz in 12h $\rightarrow \approx 200$ sources per deg²

• EVLA: A/T \approx 400, $\Delta v \approx 1$ GHz, $\sigma \approx 1 \mu$ Jy/beam at 1.4 GHz in 12h $\rightarrow \approx 400$ sources per deg²

ASKAP

POSSUM: POlarisation Survey of the Universe's Magnetism

- POSSUM wide (all sky): ≈ 50 sources per deg²
 - can recognize large-scale fields in LMC+SMC
- POSSUM deep (one field): ≈ 400 sources per deg²
 - can measure integrated pol from distant galaxies (see talk by Jeroen Stil)

BROLGA: Broadband Radio Observations of Local Groups with ASKAP (including RM grids) (see talk by Tobias Westmeier)

Faraday rotation through spiral galaxies

Stepanov et al. 2008

SKA

Bisymmetric regular field

Turbulent field

Sum

Recognition of large-scale field structures needs \geq 10 RMs from background sources

The future III:

Resolving magnetic field details with the SKA

SKA core station

Faraday rotation grids with the SKA

• A/T \approx 2000, $\Delta_V \approx 0.5$ GHz

• $\sigma \approx 20$ nJy/beam at 1.4 GHz in 12h

■ \rightarrow ≈ 5000 sources per deg²

SKA RM SUIVEY (simulation by Bryan Gaensler)

\approx 10000 polarized sources shining through M31

Deep RM grids with the SKA

Stepanov et al. 2008

Recognition of simple field patterns:

Can be applied to galaxies out to ≈ 100 Mpc distance
 (≈ 60000 galaxies)

3-D reconstruction of field patterns:

Can be applied to galaxies out to ≈ 10 Mpc distance
 (≈ 50 galaxies)

Future rotation measures of pulsars in the Milky Way

Cordes 2001

Known pulsars and pulsars to be detected with the SKA

Resolving diffuse emission with the SKA

- Intensity of diffuse emission scales as (beamsize)²
- Observation time scales as (S/N)² x (beamsize)⁻⁴
- \rightarrow Resolving diffuse polarized emission requires very high sensitivity and hence the SKA
- Note: Short antenna spacings needed to detect the largest scales

Summary: Future observations

Diffuse radio polarization:

- Polarization survey of distant galaxies: Effelsberg, GALFACTS, ASKAP, APERTIF
- Magnetic fields in outer disks and halos, intergalactic fields: LOFAR
- Detailed magnetic field structure in nearby galaxies: EVLA, SKA

RM grids of background sources:

- Field patterns in nearby galaxies & Milky Way: EVLA, ASKAP, APERTIF
- Field patterns in distant galaxies: EVLA, MeerKAT, SKA
- Evolution of galactic magnetic fields: SKA

Pulsar RMs:

• Detailed structure of the Milky Way's field: ASKAP, APERTIF, SKA