The Environmental Impact on Galaxy Evolution: Highlighting the Structure of the Local Cosmic Web

Antoine Bouchard University of Cape Town, South Africa

In collaboration with: S.L. Blyth, E. de Blok, K. van der Heyden, B. Holwerda G. Da Costa, H. Jerjen

Measuring (and understanding) the global properties of nearby galaxies

- HI survey of galaxies in the southern hemisphere (Local, CenA and Sculptor groups)
 Bouchard et al. 2005, 2006, 2007
- Hα survey of dwarfs in CenA and Sculptor
 Bouchard et al. 2009, Côté et al. 2009 (submitted)
- CRUMBS: <u>Characterising Radio-Undetected Masses in</u> <u>Baryonic Surveys (leftovers from NIBLES)</u> in collaboration with S.L. Blyth (talk was on Tuesday)

- CRUMBS preliminary results
- CRUMBS: Stacking the leftovers from NIBLES
- Caveats:
 - Detected galaxies were explicitly removed from the dataset
 - These are averages

- Wrong slope?!?!
- Blue galaxies are mostly detected by NIBLES
- Red (ie early-type) galaxies have (more) HI (than expected)
- Where does the ISM come from and why is it not forming new stars?

Bouchard et al. 2007

Global HI properties of

Zwaan et al. 2005

Bouchard et al. 2007

- What is the faint end of the HI mass function?
 - Does it exist?
- How do low mass galaxies evolve?
- How do galaxy properties vary with environment?

Environmental influence on dwarf galaxy evolution ?

Star Formation Rate (SFR)

Neutral hydrogen (HI) mass

Luminosity

Environmental influence on dwarf galaxy evolution ?

First infall? Cold gas accretion? Star Formation Rate (SFR)

Neutral hydrogen (HI) mass

Luminosity

Next step: More galaxy properties

- A systematic survey of all galaxies in the Local Universe (D < 20 Mpc) - MeerKAT THINGS
 - 3 hours per galaxy: 5σ detection limit of 8x10⁶ (D/20 Mpc)² M_{sol} (assuming an unresolved source with 20 km/s dispersion)
 - Low column density HI: sensitive to $N_{HI} = 10^{19} \text{ cm}^{-2}$ (interactions)
 - and high resolution imaging (R=8") (internal processes)

Next step: More properties

- A systematic survey of all galaxies in the Local Universe (D < 20 Mpc) - MeerKAT THINGS
 - 3 hours per galaxy: 5σ detection limit of 8x10⁶ (D/20 Mpc)² M_{sol} (assuming an unresolved source with 20 km/s dispersion)
 - Low column density HI: sensitive to $N_{HI} = 10^{19} \text{ cm}^{-2}$ (interactions)
 - and high resolution imaging (R=8") (internal processes)

Searching for the Local Cosmic Web

- A deep blind survey of a strip in the Sculptor group
 - Search for the Local Cosmic Web
 - 5σ detection limit of N_{HI}=10¹⁸ cm⁻² with 90" resolution requires 155 hours per pointing (MeerKAT)

Conclusions

- The faint end of the HI mass function may be highly dependent on environment
- The environmental parameters affecting galaxy evolution have not all been identified
 - Ram pressure stripping, cold gas accretion (inhomogenous IGM, motion in the IGM)