HI in Void Galaxies: probing the lowest density environments

Thijs van der Hulst

Erwin Platen Rien van de Weygaert Kathryn Stanonik Jacqueline van Gorkom Miguel Aragon-Calvo Jim Peebles **Kapteyn Institute**

Kapteyn Institute Kapteyn Institute Columbia University Columbia University Johns Hopkins Univ. Princeton University

The complex picture of galaxy formation in ΛCDM

The Trouble with Void-Galaxies

Voids are inhabited by small faint Galaxies
 restricted to nearby distances

Selecting/Finding Void galaxies requires both deep and large fraction of the sky.

Voids are large underdense regions
 covering large fraction of the sky

The Trouble with Void-Galaxies

SDSS Density Reconstruction

Delaunay Tessellation Fields Estimator (Schaap 2000, A&A 363, 29) Watershed Void Finder (Platen et al. 2007 MNRAS 380, 551) Cosmic Spine formalism (Aragon-Calvo et al. 2007 A&A 474, 315)

SDSS density reconstruction

SDSS environments

Void-Galaxy Sample

Geometrically Defined Sample

- Using the SDSS redshift catalogue
- Within a redshift range from 0.01 < z < 0.025
- 250 galaxies with the lowest density values ~0.2 x cosmic mean
- Avoid galaxies that lie in front or behind clusters of galaxies (fingers of god)
- Ranked them according to the distance of the void-centers.
 Pick the most centrally located

VOID_004	VOID_005	VOID_008	VOID_008	VOID_009
J121908.24+372844.1	J114303.01+404939.1	J102235.27+453821.2	J151211.81+243344.1	J153132.44+343055.8
VOID 013	VOID 018	VOID 022	VOID 025	VOID 029
J092252.91+513243.6	J141916.95+472839	J104807.05+430525.4	J141326.45+503841.7	J103913.14+310650.4
VOID_035	VOID_036	VOID_041	VOID_051	VOID_055
J085453.8+181924.7	J144338.46+322002.7	J145659.94+313308.5	J121718.54+124742.8	J114124.92+415221.9
53				
VOID_061	VOID_068	VOID_069	VOID_071	VOID_078
J145314.6+462910.8	J093602.69+515638.6	J111029.61+134558.1	J142540.62+443835.3	J145909.32+324756.3
.//				
VOID_080	VOID_088	VOID_098	VOID_114	VOID_121
J122123.12+393659.4	J135838.3+292121.4	J153035.83+264408.5	J154452.18+362845.6	J105042.23+315119.6

HI Observation of VoidGalaxies

- Westerbork Synthesis Radio Telescope
- 12h integration, 25" resolution, 0.5 mJy/beam rms
- Voids within z < 0.025 [50-85 Mpc]
- Void galaxies: near the centers of voids
- 50 galaxies were selected out 250 candidates
- 38 have been observed
- Pilot sample (15) reduced

Pilot Project

14 out of 15 galaxies detected

M _{stellar}	5 - 40	$10^8 \mathrm{M}_{\odot}$
M _{HI}	5 - 40	$10^8 M_{\odot}$
M _{dyn}	5 - 40	$10^9 M_{\odot}$

5 new companions with $M_{HI} \sim 5~10^7~M_{\odot}$

1 non-detection

13 Rotating Galaxies: 1 polar disk, 1warped, 2 interacting, 2 with close companions

Interacting Void Systems

Stanonik et al (2009), in preparation

Interacting Void Systems

Stanonik et al (2009), in preparation

Optical Properties of the Selection

Comparison to other VG samples: Blue boxes: Sample from Szomoru (1996) Average redshift of z~0.05

Red crosses

Optical Selected sample of Grogin & Geller (2000). Same average distance <Mr> = -20, here <Mr> = -18

A Void galaxy in an 'Empty' Wall

Galaxies within a distance of 10 Mpc

A void galaxy with a polar disk

Stanonik et al 2009 ApJ 696, L6

Cold Accretion out of Voids??

Galaxies within a distance of 10 Mpc

Summary

- The SpineWeb method was developed for finding Voids, Walls and Filaments
- The Method is based on Morphology & Topology of the density field; (almost) Parameter Free
- SDSS Density Field has been reconstructed (DTFE)
- SDSS Galaxies were Classified according to the Spine Web environment
- HI observation were carried out of void galaxies
- Pilot Data suggest that Void galaxies are building up their stellar component from remaining and infalling cold HI gas
- Polar Disk Galaxy found within a Large Scale Wall in between two large voids

Preliminary Conclusions

- Global properties such as HI-mass content, Tully-Fisher, etc relations seem to be no different than the trends in denser environments
- Despite having selected the most (globally) isolated galaxies, nearly half show signs of perturbed HI disks or signs of merging events. (Warp, Polar Disk, Merging)
- Five very faint nearby HI detected companion were discovered:

$$\begin{split} \mathsf{M}_r &= [-11.5, -14., -14.1, -14.9, -16.2] \\ \mathsf{M}_{\mathsf{HI}} &= [\ 0.6, \ 0.6, \ \ 3.7, \ \ 1.4, \ \ 4.5 \] \ 10^8 \ \mathsf{M}_\odot \end{split}$$

