Radio Properties of Brightest Cluster Members (BCM)

A1177 NGC 3551 z=0.032 SDSS very radio-quiet!

Heinz Andernach (AIFA, U.Guanajuato, Mexico) Miriam E. Ramos Ceja (BSc thes. U.Gto, Mexico)

Brightest cluster members:

- often at the geometric (dynamical?) center of clusters
- used to probe peculiar motions (deviations from Hubble flow)
- many show multiple nuclei (galaxy mergers, "cannibalism")
- some of them are unique: "cD" galaxies
 - have very extended optical "envelopes"
 - are the most luminous galaxies in the Universe
 - definition of a cD galaxy is problematic Schombert 1992: radial profile of surface brightness flattens at large radii (often unseen on DSS)
- some host a special type of radio source "wide-angle tails" (WAT), but ... what bends WATs?
- many other radio morphologies

Motivation

• Binggeli 1982

Optical alignments between BCM & clusters' galaxy distribution (up to ~20/h₇₅ Mpc) + LSS (up to ~70/h₇₅ Mpc)

- Chambers et al. 1987
 Radio-optical alignments in powerful high-z radio galaxies
- Djorgovski 1987, West 1991, Miley & deBreuck 2008 Under the hypothesis that high-z RGs are precursors of BCMs, one expects to see similar alignments at low z

West 1991: compiled 600 radio sources, z≥0.5 with PA_{maj} available

Misaligment of PA_{maj} with direction to nearest neighbou source has a mean of <45° for mutual distances <60/h₇₅ Mpc and is uniform beyond that

- → Suggestion: the alignment of radio axes of high-z RGs with the direction to the nearest neighbor RG and the alignment of BCMs with surrounding LSS ("Binggeli effect") are related via an anisotropic merging scenario
- ➔ If high-z RGs are precursors of present-day BCMs, then a signature of this alignment should be present in these BCMs

Previous radio-optical alignment studies:

- Palimaka et al. 1970, Condon et al. 1991
 78 radio E's: radio axes prefer opt. minor axes (esp. for sources >170 kpc 319 "field" radio ellipticals: prefer opt. minor axes (no relation with size)
- Sansom et al. 1987: joined data from 11 previous studies based partly on inner or outer optical isophotes and inner radio axes (jets): 197 objects with small preference for radio axes along optical minor axis
- Andernach et al. 1993; Andernach 1995
 Radio-optical orientation for 155 cluster BCMs: bimodal distribution

"Field" ellipticals: no evidence for West's anisotropic merging scenario but BCMs indeed show a small (~20%) aligned population So what "makes" the aligned sources? Not clear: not cluster R or BM, non 7 115 1 but some indication that steep radio spectrum "helps" →PRESENT PROJECT: obtain significantly larger sample, using modern radio surveys (NVSS, SUMSS, ...) and the largest existing collection of radio source lists (cf. POSTER)

Answer following questions:

 * Are BCMs different from "field" ellipticals, e.g. in their radio-optical alignment distribution?
 [BCMs are more radio luminous for same stellar mass, Best+05]

- * What causes the small excess of radio-optically aligned sources among the BCMs?
- * Are there relations between:
 - radio luminosity and galaxy ellipticity (rounder E's more radio luminous)?
 - radio morphology (distortions of tails, etc) and peculiar velocity of the galaxy in the cluster?
 - radio spectral index and intracluster medium density

Constructing a new cluster sample

Coziol, Andernach, Caretta, Alamo Martinez, Tago, AJ 137, 4795, Jun09

Use cluster catalog of Abell, Corwin & Olowin (ACO, 1989):

- 4073 rich A-clusters + 1176 supplementary S-clusters
- Redshift range z = 0.01...0.2..
- We selected clusters likely to have dominant galaxies:
 - Bautz & Morgan type BM = I or I-II
 - Rood & Sastry type RS = cD (only northern clusters)
 - Textual notes by ACO89 indicate that brightest galaxy is "cD" or has a "corona" (= envelope → cD?)

 \rightarrow total of 1207 Abell clusters fulfil the above criteria

From DSS2: RA,DEC, c, OPA; get v_{rad} (NED, our comp discard 238 "BCMs" in fore- (218) or background (20!) discard 38 clusters: BCM in fg or bg or no dominant galaxy Curious: 85% of sample is in southern hemisphere (δ < 0°)

- → there is a bias in assigning lower BM types for clusters from the "new" (1989) ACO cluster sample
- → sample is certainly representative, but statistically valid : better: quantify the BCM dominance with quantitative measures (m1 - m2; m1 - m10; m1 - m*) → future!
- Obvious problem: BM and RS types and textual notes in ACO89 did NOT include redshift information
 - Before extracting radio data we got distracted by...

Peculiar Velocities of Brightest Cluster Members

Not unknown from previous observations but largely ignored . . . Standard Paradigm: BCMs tend to be cD galaxies at the bottom of the potential well of clusters i.e. with small relative velocity w.r.t. cluster mean velocity NED/Simbad/LEDA: no homogeneous morph. classes

- → we classified the BCMs ourselves
- → among the 1st-ranked galaxies the fraction of cDs is much higher than among 2nd- or 3rd-ranked ones

 \rightarrow cD galaxies make only ~40% of the 1st-ranked galaxies

For clusters with $N_z \ge 10$: $v_{pec} = (v_{BCM} - \langle v \rangle_{cl})/(1+z)$ $\rightarrow \sigma(v_{pec}) = 0.60 \sigma_{cl}$, i.e. less than for just any cluster member, but much more than commonly assumed → many BCMs are not at rest at the bottom of grav. potential; cD-type galaxies have a lower median v_{pec} , but not much! 150 median for 452 (!) 1st-ranked BCMs N in clusters with $N_{2} \ge 10$ (32% have $v_{pec} > 0.5 \sigma_{cl}$) 100 50

What is the interpretation of this ...? clusters form from merging of groups (see Coziol et al. 2009 for details)

NOW: we have a list of BCMs, positions, velocities, peculiar velocities, ellipticities, OPA's . . .

so let's return to the original objective

RADIO PROPERTIES OF BRIGHTEST CLUSTER MEMBERS

Collection of Radio Data for BCMs (I)

A) Image extraction from major surveys (NVSS, SUMSS, ...)

- necessary to control extent of the sources (catalog fluxes tend to be fitted, not integrated)
- for large enough sources \rightarrow morphological classification
- with overlays on DSS images → pertinence of source components to a single physical entity
- for some BCMs we get inner RPAs (resolution usually insufficient, except for large sources or for FIRST)

B) Flux extraction from catalogue browsers

i) Catalogue collection CATS (cats.sao.ru) ~350 catalogs with >5.4 10⁶ entries (incl.NVSS, SUMSS,...)
ii) VizieR @ CDS: 540 source lists with >5.2 10⁶ records
iii) further ~800 source lists collected by H. Andernach (not fully searchable, but many were cross-correlated with ACO89 clusters) → incompletely used ! Results of image extraction (via web scripts):

N(images) Survey	image size	contour maps	via:
979	NVSS	(15' x 15')	directly	
822	VLSS	(15' x 15')	directly	
797	SUMSS	(15' x 15')	AIPS	
83 *	WENSS	(15' × 15')	AIPS	* (<i>ð</i> >+30°)
144	WISH	(15' × 15')	AIPS	(50% missing)
160	FIRST	(3' × 3')	AIPS	

 \rightarrow Total of 2985 images \rightarrow contour maps

Images with no coincident catalogued source: if a weak source coincides with BCM \rightarrow determine flux (~115) if no source visible \rightarrow assign upper limit of 5σ (or better 3σ ?) \rightarrow (2700 flux limits)

 In few (usually well-known) cases bigger images were extracted:

Abell 3565 (IC 4296): LAS ~35' (500 $/h_{75}$ kpc) detailed VLA images by Killeen et al. (1986)

Contour maps with complex sources or doubtful radio extent → overlay onto Digitized Sky Survey image

Abell 3480 NVSS

extensions due NE and SE have opt. IDs → souce is "compact" at NVSS resolution Doubtful or intriguing cases (for future follow-up?):

Abell 2841 LAS ~10' at z=0.0643 (if one source, -4 then LLS ~ 750/h₇₅ kpc

rather unlikely, but ...

S0239: rare Z-shaped morphology artefacts in SUMSS, but no doubt about physical entity of the source

LAS ~10' z=.0648 → LLS ~750/h₇₅ kpc

S0487: Z rotated by 90° z=.0325 LLS~260 kpc

Actually: 210 sources with LAS → LLS_{med} = 160 /h₇₅ kpc 28 sources with LLS > 500 /h₇₅ kpc 7 of these with LLS > 750 /h₇₅ kpc

→ two absolutely largest sources (previously unknown):

S0122 (z=.097) LAS~9'
$$\rightarrow$$
 LLS ~ 1 Mpc !

not clear yet which of central galaxies is ID A 555 ($z_{est} = 0.1$, $N_z=1$) LAS~9' \rightarrow LLS ~ 1 Mpc ! radio core is VCS5 source (compact flat spectrum) Do we see a single WAT or a blend of several sources...?

Possible new types of rare radio morphologies ?

The "crazy" sources:

- typically very steep radio spectrum
- located at center of X-ray luminous clusters

A2626: box-shaped source

3C317 in A2052: ultra-steep spectrum, amorphous morphology

The "nasty" sources: BCM not the ID at high resolution

A2719: W lobe of "fat double" is superposed on BCM

Kapahi et al. 1998 (MRC-1Jy)

MRC B0001-233 1410.1 MHz

A few BCMs are even BL Lac objects:

Antonucci & Ulvestad 1984: WAT structure, but no inner jets detectable at various higher resolutions

other clusters with BL Lac BCMs:

A3537 A3581 S0780 The most radio-quiet BCMs found

A1177 (NGC3551) z=.032 S(1.4) <1mJy

A2079 (UGC 9861) z=.067 S(1.4) < 1mJy

P(1.4) < 2.4 10²¹ W/Hz

P(1.4) < 5.1 10²¹ W/Hz A2079 FIRST 1.4 GHz

Collection of Radio Data for BCMs (II)

- C) Collection of additional flux densities or radio images to complete the structural or spectral information
 - there are no databases to offer radio images systematically
 - bibliographical search in NED (currently only up to 2007!)
 or SIMBAD (up to date!) and recognize relevant papers
 from experience ! [include ref's from private compilation...]

→ inspect over 100 radio images in the literature

Collection of relevant data in one ASCII table: one record per measurement or bibliographical reference (some have only flux, others only structure data)

Parameters we record:

BCMname, RA/DEC, frequency, flux, error (flags for upper or lower limits), major/minor axis size, RPA(catalog), innermost RPA (or best available), largest angular size (LAS), Current status:

- 5270 data records, of which 2370 are upper limits
- 2900 are detections: 590 BCMs in 554 clusters
- However: 233/590 detected at only one frequency (weak!)
- only ~130 have useful RPAs, of which only ~100 reliable

bimodality confirmed BUT: sample is smaller than Andernach 1995 (no restriction to cluster type)

Separation of sample by LLS

 \rightarrow does not affect the (mis)alignment angle

Conclusions

No real evidence for anisotropic merging scenario, at least from radio-optical alignments of BCMs

Not easy to increase BCMs sample with good images from existing radio surveys → E-FIRST would be great!

Plans for the future:

- check VLA/AT archives for further images
- derive radio spectra and luminosities, correlate with other properties
- classify (quantitatively?) radio morphology and correlate with peculiar velocities of BCMs
 - → is the radio distortion related to v_{pec} or not ? (previous studies of NATs and WATs showed no evidence)
- SKA precursors should have the best possible sensitivity for extended sources

New very steep-spectrum sources ($\alpha > 1.4$)

A 122, A 733, A1650, A2110, A2533, A2554, A3497, S 651

```
Very flat spectrum sources (α~0)
A 1644, A2292, A2631 (inverted), A2660, A3407
```

New examples of WAT sources A 555, A 941, S 793, ...

A 133: Relic or USS lobe of double radio galaxy?

How structure depends on sensitivity and resolution: Abell 734

Namo	hms dms BADOG T2000	Freq		mJy		mJy	" Mai	" Min	< "	deg	deg	deg	" Dict	- Sourco namo	" Bogol	Poforonao	Notor
+		3+-	4	+	-5	-+6-	+	7+	8-	+-	9-	+-)+1+	2	+3+4+5+6+	7+8+9+
A0002	-	74.		6048.7	^	300.0			450	8					80	2007AJ134.1245Cohen+ (VLSS)	
A0002	000817.5 -194029	80.		7000.									48	0005-199	222	1995AuJPh48143Slee (CUL)	
A0002	28	160.		2200.0			272	<108						0005-199*	111	1989MNRAS.236/3/Ekers+	
A0002	000817.5 -194029	160.		2500.			512	100					48	0005-199	114	1995AuJPh.,48.,143Slee (CUL)	
A0002	000815.81-193832.7	352.		2096.									71	WNB0005.7-1955	54	2002UNPUBDe Breuck+ (WISH)	
A0002	000818.82-193949.6	365.		721.0		37.0							29	B0005-199		1996AJ111.1945Douglas+ (TXS)	P
A0002	000016 6 103050	408.		1800.		60							17	0005-199 MDC D0005 100	170	1977AuJPh30509Mills&Hoskins	
A0002	_ 000810.0 -193930	408.		2080.0		60.							1 /	MRC B0005-199	100	19910DS111/ZLarge+ (MRC) 1989MNBAS 236737Ekers+	
A0002	000818.25-193936.8	960.		832.		83.							20	J0008-1939	177	1998BSA04628Mingaliev+ (PMNMi)	
A0002	Territori petrologica del ante del territori della	1400.		790.0				100708-000					1000		1000	1989MNRAS.236737Ekers+	
A0002	000818.66-193943.1	1400.		708.4	^	20.0	46.3	18.7	420	107	0	82#	25	T0000 1020	45	1998AJ115.1693Condon+ (NVSS)	NAT
A0002	000816.8 -193948	2700.		450.		15.							20	PKS B0005-199	435	1990PKS90.C., 0000Wright&Otrupcek (PKS90)	
A0002	000818.25-193936.8	3900.		198.		10.							20	J0008-1939	43	1998BSAO4628Mingaliev+ (PMNMi)	
A0002	000815.9 -193937	4850.		241.		16.							14	PMNJ0008-1939	210	1996ApJS103145Wright+ (PMN)	
A0002	000916 9 102049	5000.		250.									G	DV9 D0005 100	25	1989MNRAS.23673/Ekers+	
A0002	000818.25-193936.8	7700.		81.		4.							20	J0008-1939	235	1998BSA04628Mingaliev+ (PMNMi)	
A0002	000818.25-193936.8	11200.		44.		2.							20	J0008-1939	15	1998BSAO4628Mingaliev+ (PMNMi)	
A0005	-3	74.	<	500.0											80	2007AJ134.1245Cohen+ (VLSS)	
A0005	- 001009 09+330716 4	325.	2	18.5											54	1997A&AS124259Rengelink+ (WENSS) 1998AJ 115 1693Condon+ (NVSS)	
A0005	001009.09/1930/10.4	74.	<	500.0											80	2007AJ134.1245Cohen+ (VLSS)	
A0017	001706.38+084944.9	1400.	<	2.0											45	1998AJ115.1693Condon+ (NVSS)	
A0021	-1	74.	<	500.0											80	2007AJ134.1245Cohen+ (VLSS)	
A0021	002037 10+283933 6	325.	<	18.5											54	1997/A&AS124259Rengelink+ (WENSS) 1998AJ 115 1693Condon+ (NVSS)	
A0022B	002037:197203933:0	74.	<	500.0											80	2007AJ134.1245Cohen+ (VLSS)	
A0022B_		330.		71.5											60	1994JApA15275Bagchi&Kapahi	
A0022B_	-	1400.		21.4		0.0			105	00					30	1994JApA15275Bagchi&Kapahi	
A0022B_ A0034A	_ 002042.96-254239.5	1400.	1	500 0		0.8	< 23.9	< 17.2					11		45	1998AJ115.1693Condon+ (NVSS) 2007AJ 134 1245Cobept (VLSS)	
A0034A	002733.30-085311.4	1400.		2.0	*	1									45	1998AJ115.1693Condon+ (NVSS)	
A0034B		74.	<	500.0											80	2007AJ134.1245Cohen+ (VLSS)	
A0034B_	- 000704 76 004700 0	1400.	<	1.0											5	1995ApJ450559Becker+ (FIRST)	
A00346_	_ 002/04.76-084703.3	74.	<	500.0											80	2007AJ134.1245Cohen+ (VLSS)	
A0035	-	352.	<	18.5											54	2002UNPUBDe Breuck+ (WISH)	
A0035	002723.58-213257.5	1400.		2.8		0.5	< 56.6	< 50.8					4		45	1998AJ115.1693Condon+ (NVSS)	
A0038	002819 87+135504 8	1400	<	500.0		0.5	< 73 8	< 34 9				0#	5		45	2007AJI34.I245Cohen+ (VLSS) 1998AJ 115 1693Condon+ (NVSS)	
A0049_	002013.071133304.0	74.		1963.8	^	200.0	- 75.0	< 54.5	300	0		0 #	2		80	2007AJ134.1245Cohen+ (VLSS)	
A0049	@003128.00-112422.4	1400.		265.2	^	15.0	< 95.3	31.5	300	8 43	# 1		26		45	1998AJ115.1693Condon+ (NVSS)	NE-BD/AT
A0049	003126.5 -112343	4850.		118.		12.							59	PMNJ0031-1123	210	1996ApJS103145Wright+ (PMN)	
A0077	-3	325.	<	47.2											54	1997A&AS124259Rengelink+ (WENSS)	
A0077		330.		15.0											60	1994JApA15275Bagchi&Kapahi	
A0077		1400.		13.3											30	1994JApA15275Bagchi&Kapahi	
A0077	004028.21+293321.5	1400.		14.8		0.6	< 21.3	< 19.6					2	0037+292	45	1998AJ115.1693Condon+ (NVSS) 1995AJ 109 853Ledlow+ (CLL95)	
A0077	004020.941299921.0	-1400.		0.0					10	8		110#		00571252	10	1997ApJS108410wen+	
A0077	-	1500.		12.0												1993ApJS871350wen+	
A0077	004150 52 001000 0	5000.		4.7		0.3	2.3	1.2		108			2		1.5	0 1993AJ10553Ball+	
A0085A	_ 004100.02-091000.0	408.		300.		100.0	< (1.4	~ (1.1					3	0039-095	170	1977AuJPh 30 509Mills&Hoskins	
A0085A_	004150.4 -091811	408.	>	450.									2	0039-095B	174	1986USydn.T00JReynolds (CL_Re)	
A0085A_	-	-775.	<	1200.		200								B0039-096	1200	1976AJ815710wen	
A0085A_	_ 004150.4 -091811	843.	/	92.		200							2	0039-095B B0039-096	960	19860Sydn.T00JReynolds (CL_Re) 1976AJ 81 5710wop	
A0085A		-1400.		0.0		200			20	8				00000 000	500	1997ApJS108410wen+	
A0085A_	004150.36-091811.0	1400.		48.									3	0039-095B	15	1995AJ109853Ledlow+ (CLL95)	
A0085A_	_0004150.38-091813.7	1400.	~	56.7		2.5	16.2	15.3		8	27		3	TO04150 4 001011	45	1998AJ115.1693Condon+ (NVSS)	
AUU85A_ A0085A	004150.47-091811.3	1415	>	45.U 70		2.0	2.8	1.3		1			2	0039-095B	50	1995Apd450559BecKer+ (FIRST) 1986USvdn.T00JRevnolds (CL Re)	
A0085A_	004150.50-091811.4	-1450.		46.2				17					2		5	2009UNPUBIslas Islas J.M.+ fair	it radio companion ~20"SW
A0085A	004150.47-091811.8	1500.		46.2									1	B0039-0934	14	1996AuJPh49977Slee+ (CLS3)	
A0085A_	004149.8 -091751	2700.	<	85.		16							24	A 85.1	276	1979A&AS36237Waldthausen+ (CL_An)	
A0085A A0085A	004149.3 -091752	∠700. 4850.	<	46.		11.							27	PMNJ0041-0917	210	1996ApJS103145Wright+ (PMN)	
A0085A	004149.3 -091752	4872.	65	11.		1000						0?	- 1		1	1993AJ10553Ball+ (see their notes)	image in 1990AJ9914Bur
A0096	1	74.	<	500.0											80	2007AJ134.1245Cohen+ (VLSS)	
A0096	004621 14+393231 1	325. 1400	<	78.5 78.5											54	1997/A&AS124259Kengelink+ (WENSS) 1998AJ 115.1693Condor+ (NVSS)	
A0099_	-	74.	<	500.0											80	2007AJ134.1245Cohen+ (VLSS)	
A0099		352.	<	18.5											54	2002UNPUBDe Breuck+ (WISH)	