

The Square Kilometre Array

Joseph Lazio SKA Project Scientist Naval Research Laboratory

http://www.skatelescope.org/

Square Kilometre Array The Global Radio Wavelength Observatory

- Originally: "Hydrogen telescope" Detect H I 21-cm emission from Milky Way-like galaxy at $z \sim 1$
- SKA science much broader
 ⇒ Multi-wavelength, multi-messenger
- On-going technical development
- International involvement

21st Century Astrophysics

20th Century: We discovered our place in the Universe

21st Century: We understand the Universe we inhabit

Do We Understand the Extremes of the Universe?

- Gravity
 - Can we observe strong gravity in action? (radio pulsar tests of GR)
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)
- Magnetism
- Strong force

Nuclear equation of state

How do Galaxies Form and Evolve? What is the Origin and Evolution of Stars and Planets?

- •Galaxies and the Universe
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?
- •Stars, Planets, and Life
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)

Epoch of Reionization

- Most baryons in form of H I (neutral hydrogen)
- Universe made rapid transition from largely neutral to largely ionized ($z_{ion} \sim 6-11$)

Origins

First Light

Astrobiology

Galaxy Evolution

- Gunn-Peterson trough in high-z quasars
- Electron scattering opacity in CMB analysis

SKA objective: Image the IGM transition in the H I (21-cm) line

Furlanetto et al.; Gnedin

Epoch of Reionization

A Schematic Outline of the Cosmic History Time since the Big Bang (years) The Big Bang The Universe filled with ionized gas ~ 300 thousand -The Universe becomes neutral and opaque The Dark Ages start Galaxies and Quasars begin to form The Reionization starts ~ 500 million The Cosmic Renaissance The Dark Ages end ~ 1 billion -Reionization complete, the Universe becomes transparent again Galaxies evolve ~ 9 billion The Solar System forms ~ 13 billion Today: Astronomers figure it all out! S.G. Djorgovski et al. & Digital Media Center, Caltect

Origins

First Light

Astrobiology

Galaxy Evolution

ALMA: First Galaxies

SKA: IGM and

First Galaxies

JWST: First Stars and Galaxies

X-rays: First Black Holes

Galaxy Assembly & Evolution

SKA: atomic gas, star formation, feedback

ALMA: molecular gas, star formation

Optical/UV: stars, star formation

X- and γ-rays: feedback

SKA Design Studies – Hydrogen Simulation at z=1

Astrobiology at Long Wavelengths

$\lambda > 1 \text{ cm}$

- Not affected by dust
- Complex molecules have transitions at longer wavelengths
- "Waterhole" (1.4–1.7 GHz)
- Magnetically-generated emissions from extrasolar planets

- 1 cm wavelength probes thermal radiation from "pebbles"
- Disks optically thin
- Image nearby protoplanetary disks
 - Cf. ALMA, $< 700 \ \mu m$
 - mas resolution @ 1 cm is routine, all that's lacking is *sensitivity*
- Orbital period @ $1 \text{ AU} \sim 1 \text{ yr}$
 - movies

Mayer

21st Century Astrophysics

20th Century: We discovered our place in the Universe

21st Century: We understand the Universe we inhabit

Do We Understand the Extremes of the Universe?

- Gravity
 - Can we observe strong gravity in action? (radio pulsar tests of GR)
 - What is dark matter and dark energy? (dark energy and BAOs with H I galaxies)
- Magnetism
- Strong force

Nuclear equation of state

How do Galaxies Form and Evolve? What is the Origin and Evolution of Stars and Planets?

- •Galaxies and the Universe
 - How did the Universe emerge from its Dark Ages?
 - How did the structure of the cosmic web evolve?
 - Where are most of the metals throughout cosmic time?
 - How were galaxies assembled?
- •Stars, Planets, and Life
 - How do planetary systems form and evolve?
 - What is the life-cycle of the interstellar medium and stars? (biomolecules)
 - Is there evidence for life on exoplanets? (SETI)

Fundamental Physics Dark Energy GR & BHs Strong Force

Baryon Acoustic Oscillations

Remnant of plasma acoustic oscillations in early Universe

- $D_A(z)$ = angular size distance as a function of redshift
- ~ 100 h^{-1} Mpc "standard ruler"
- Measures expansion rate of Universe

Fundamental Physics Dark Energy Gravity Strong Force

SKA: Stage IV BAOs

- Next-generation goal:
 - Survey large volume
 - Slice into redshift bins
 - Detect BAOs in each z bin
- SDSS surveyed ~ 1 Gpc³ One redshift bin ~ 0.35
- SKA targeting 100 Gpc³ (z > 1)
- H I galaxies
 - Intrinsically spectroscopic survey
 - Different biases than LST, JDEM

- Test masses on lever arm
- Pulsar Timing Array = freely-falling millisecond pulsars
- LIGO = suspended mirrors
- LISA = freely-falling masses in spacecraft

Evolution and Environment

Galaxy mergers recognized as an important part of galaxy assembly and evolution.

Binary Supermassive Black Holes

B0402+679 — VLBA

- Emerging multi-wavelength evidence for large number of dual AGN nuclei
- VLBA (radio) imaging
- Keck II/DEIMOS spectroscopy
 - > 30%-50% of (early-type) galaxies show evidence for recent mergers

Fundamental Forces

SKA: gravity, strong force, magnetism

X- and γ-rays: gravity, strong force

Auger: cosmic-ray

LIGO, LISA: gravity

 $G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}/c^4$

21st Century Astrophysics

Fundamental Forces and Particles

- Gravity
- Magnetism
- Strong force

Origins

- Galaxies and the Universe
- Stars, Planets, and Life

"The Universe is patiently waiting for our wits to grow sharper."

Photon frequency/wavelength/energy

Time

Polarization

Sensitivity

Field of View

Angular Resolution

The Dynamic Radio Sky

- Neutron stars
 - Magnetars
 - Giant pulses
 - Short GRBs?

- GRBs (γ-ray loud; γ-ray quiet?)
 - Afterglows
 - Prompt emission?
- Sub-stellar objects
 - Brown dwarfs
 - Extrasolar planets?
- Microquasars
- Scintillation
- UHECRs
- ETI
- Exploding black holes
- ???

Pulsating Brown Dwarfs

Dynamic Radio Sky

All-sky surveys (3C, NVSS, ...)

Nano-second pulses from the Crab pulsar, from Arecibo

Dynamic Radio Sky and 21st Century Astrophysics

SKA

Optical survey telescopes

LIGO, LISA

X- and γ-

rays

Transient sources are necessarily compact

- ► Locations of explosive or dynamic events
- ► Probe fundamental physics and astrophysics
- Radio signals modified by, and are powerful probes of, intervening media
 - Dispersion
 - Scattering
 - Faraday rotation
- Media include
 - Interplanetary medium (IPM)
 - Interstellar medium (ISM)
 - Intergalactic medium (IGM)

An International Telescope

- Reference design
- "Preliminary Specifications for the SKA" (Schillizi et al. 2007)
- Technology development
 - U.S. TDP (\$12M)
 - EC PrepSKA (EUR 5.5M + matching)

- System Requirements Review 2008 January 29–30
- International Engineering Advisory Committee 2009 April 29 – 30
- Siting
- SKA Forum

Novel antenna construction

Fiber optic transmission

Ultra wide-band feeds

Phased arrays (FoV

SKA Pathfinding

- Science pathfinding
- Novel antenna construction
- Sparse arrays
- Field of view expansion
- Wide-band feeds
- Signal transmission
- Processing and data management

Schedule for the SKA Program

2008–2013	telescope design and cost
2012	site selection, Phase I construction funding approved
2012–2013	establish SKA organisation
2013–2018	Phase I implementation at low- and mid frequencies (< 10 GHz: FoR H I pulsars)
2017 →	early science with Phase I
2013–2018	high frequency technology development
2018–2022	Phase II construction at low- and mid frequencies
2023→	Phase 3 construction at high frequencies

Square Kilometer Array The Global Radio Wavelength Observatory

- Originally: "Hydrogen telescope" Detect H I emission from Milky Way-like galaxy at $z \sim 1$
- SKA science much broader
 ⇒ Multi-wavelength, multi-messenger
- On-going technical development
- International involvement

Origins First Light Galaxy Evolution Astrobiology

Galaxy Assembly Stars *and* Gas

- Stellar "downsizing" since $z \sim 1$
- ... but gas content unchanging!
- Gas content and dynamics becoming critical part of simulations.

Origins First Light Galaxy Evolution Astrobiology

Galaxy Assembly Stars *and* Gas

Gas content and dynamics becoming critical part of simulations.

Astronomy is an *observational* science.

NGC 6946 (T. Oosterloo)

