Tracing the merger rate of the Universe with Apertif (and ASKAP)

John McKeen (ASTRON)

and

Alan Roy (MPIfR)
Outline

★ Brief introduction to OH masers
★ The merger rate of the Universe
★ *Apertif* and ASKAP
★ The local OH maser luminosity function
★ Model predictions and survey strategies
★ Current prospects at moderate and high redshifts
OH masers

Maser emission from hydroxyl is seen at 1.667 and 1.665 GHz (rest frame.)

Radiative excitation from a strong infrared field and low de-excitation results in an over populated excited state.

Amplification through stimulated emission occurs from a coherent gain medium (a continuum source).

Radiation has a very high surface brightness and is beamed to the observer.

Found in regions of hot (~160 K), dense gas (<10^7 cm^-3) => most luminous termed OH mega-masers (> 10 L☉) and are typically associated with regions of intense star-formation.
OH masers

FWHM distribution for Darling & Giovanelli 2001

Redshift vs. Number

Rest-frame FWHM (km/s) vs. Number
Simple model for maser emission requires a pumping field and stimulating photons.

\[L_{\text{OH}} \propto L_{\text{FIR}} L_{\text{RAD}}^{\gamma-1} \propto L_{\text{FIR}}^\gamma \]

\[1 < \gamma < 2 \quad \text{(Baan 1989)} \]

Need to find low \(L_{\text{OH}} \) and \(L_{\text{FIR}} \) masers to investigate \(\gamma \).

Target strong IR sources with radio emission to find OH masers.

(Darling & Giovanelli 2002)
The merger rate

Observations of galaxy pairs in HDF and HUDF show mergers increase with z. (U)LIRGS ($L_{\text{FIR}} > 10^{11} L_\odot$) are thought to be caused by galaxy mergers.

Targeted searches find 2--15 per cent of ULIRGS have OH megamasers (e.g. Staveley-Smith et al. 1992; Darling & Giovanelli et al. 2002)

Merger rate turnover at $z = 1.3$? (Ryan et al. 2008)
Apertif and ASKAP

Telescope: 12 x 25 m
- **Beam-size:** 15 arcsec
- **Fov:** 8 deg² (FPA)
- **Bandwidth:** 300 MHz
- **Frequency range:** 900 -- 1700 MHz (z < 0.85)
- **Line sensitivity (150 kms⁻¹):** 0.15 mJy/beam (12 hr) 0.52 mJy/beam (1 hr)

Telescope: 36 x 12 m
- **Beam-size:** 10 arcsec
- **Fov:** 30 deg² (FPA)
- **Bandwidth:** 300 MHz
- **Frequency range:** 700 -- 1700 MHz (z < 1.38)
- **Line sensitivity (150 kms⁻¹):** 0.21 mJy/beam (12 hr) 0.73 mJy/beam (1 hr)
Luminosity function I. DG02

Pointed survey with Arecibo of a complete sample of 311 ULIRGS (redshifts and FIR flux-density limited).

53 OH maser galaxies between redshifts 0.1 -- 0.23 (0.63 Gpc3)

$\Phi(L) \propto L_{\text{OH}}^{-0.64 \pm 0.21} \text{ Mpc}^{-3} \text{ dex}^{-1}$

Darling & Giovanelli 2002
Sample of 74 known OH maser galaxies considered to be reliable (includes DG02 sample).

Represented by a Schechter function instead of a power-law.

Exponential cut-off heavily decreases high luminosity objects.

Effects LF at high z.

Kloekner 2003
The shallow slope of the luminosity function results in more sources found over larger area surveys.
Density evolution

To characterize the evolution, we need to cleanly differentiate between merger models.

Modest surveys of 3 months observations in total look good.
Luminosity evolution

Given the changing nature of galaxies (dusty at higher z, increased SFR), there is likely to be luminosity evolution of the OH maser luminosity function.

\[L_{\text{OH}} \propto L_{\text{FIR}}^\gamma \quad \gamma = 1 -- 2 \]
Uncertainty on the LF slope

For a fixed survey time of 2100 hours.

One ASKAP field is not so useful.

10 ASKAP fields provide good coverage of LF over all redshifts

100 ASKAP fields give good constraints at low-z.

Quarter and half sky surveys provide similar results.
Current prospects

Blind (16 hr) observation of a single field with e.g. the GMRT.

Can differentiate between evolutionary models.

Non-detections still a constraint!

Darling & Giovanelli 2002
OH in the high redshift Universe

Gravitational lensing can be used to magnify distant OH maser galaxies to be detected with current telescopes (e.g. GMRT, VLA, WSRT)

Finding even a single lensed OH maser system can place a useful constraint on the evolution parameter m.

This technique found the most distant water maser known at $z = 2.64$ (Impellizzeri et al., Nature, 2008).
Summary and issues

- Surveys with *Apertif* and ASKAP have the potential to find 10000s of OH megamasers galaxies with modest integration times.

- These OH maser galaxies can be used to investigate the merger rate of the Universe - providing luminosity evolution can be accounted for.

- Much of this work can be done in tandem with wide/deep HI surveys that are planned.

- The uncertainty in the luminosity function makes any solid predictions difficult to make.

- Identifying the OH maser galaxies in optical/IR/FIR fields could be an issue.

- Interested? - join the extragalactic OH maser projects (see Alan Roy for ASKAP).