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A simple introduction to the KLT
and BAM-KLT

17.1 INTRODUCTION

This chapter is a simple introduction about using the Karhunen–Loève Transform
(KLT) to extract weak signals from noise of any kind. In general, the noise may be
colored and over wide bandwidths, and not just white and over narrow bandwidths.
We show that the signal extraction can be achieved by the KLT more accurately
than by the Fast Fourier Transform (FFT), especially if the signals buried into the
noise are very weak, in which case the FFT fails. This superior performance of the
KLT happens because the KLT of any stochastic process (both stationary and non-
stationary) is defined from the start over a finite time span ranging between 0 and a
final and finite instant T (contrary to the FFT, which is defined over an infinite time
span). We then show mathematically that the series of all the eigenvalues of the
autocorrelation of the (noiseþ signal) may be differentiated with respect to T yielding
the ‘‘Final Variance’’ of the stochastic process XðtÞ in terms of a sum of the first-order
derivatives of the eigenvalues with respect to T . Finally, we prove that this new result
leads to the immediate reconstruction of a signal buried into the thick noise. We have
thus put on a strong mathematical foundation a set of very important practical
formulae that can be applied to improve SETI, the detection of exoplanets, asteroidal
radar, and also other fields of knowledge like economics, genetics, biomedicine, etc.
to which the KLT can be equally well applied with success.

17.2 A BIT OF HISTORY

The Karhunen–Loève Transform (KLT) is the most advanced mathematical
algorithm available in the year 2008 to achieve both noise filtering and data
compression in processing signals of any kind.
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It took about two centuries (�1800–2000) for mathematicians to create such a
jewel of thought little by little, piece after piece, paper after paper. It is thus difficult to
recognize who did what in building up the KLT and at the same time be fair in
attributing each individual advance to the appropriate author. In addition, mathe-
maticians, both pure and applied, often speak such a ‘‘clumsy’’ language of their own
that even learned scientists sometimes find it hard to understand them. This unfor-
tunate situation hides the esthetic beauty of many mathematical discoveries that were
often historically made by their authors more for the joy of opening new lines of
thought than for the sake of any immediate application to science and engineering.

In essence, the KLT is a rather new mathematical tool used to improve our
understanding of physical phoenomena, far superior to the classical Fourier
Transform (FT). The KLT is named for two mathematicians—the Finnish actuary
Kari Karhunen (1915–1992) [1] and the French American Michel Loève (1907–1979)
[2, 3]—who proved, independently and about the same time (1946), that the series (2)
hereafter is convergent. Put this way, the KLT looks like a purely mathematical topic,
but really this is hardly the case. As early as 1933 the American statistician and
economist Harold Hotelling (1895–1973) used the KLT (for discrete time, rather than
for continuous time), so that the KLT is sometimes called the ‘‘Hotelling Trans-
form’’. Even much earlier than these three authors the Italian geometer Eugenio
Beltrami (1835–1899) discovered as early as 1873 the SVD (Singular Value Decom-
position), which is closely related to the KLT in that area of applied mathematics
nowadays called Principal Components Analysis (PCA). Unfortunately, a complete
historical account about how these contributions developed since 1865—when the
English mathematician Arthur Cayley (1821–1895) ‘‘invented’’ matrices—simply
does not exist. We only know about ‘‘fragments of thought’’ that impair an overall
vision of both the PCA and the KLT.

In Sections 17.3–17.5, we’ll derive heuristically and step-by-step the many equa-
tions that make up for the KLT. We think that this approach is much easier to
understand for beginners than what is found in most ‘‘pure’’ mathematical textbooks,
and hope that the readers will appreciate our effort to explain the KLT as easily as
possible to non-mathematically trained people.

17.3 A HEURISTIC DERIVATION OF THE KL EXPANSION

We start by saying that the KLT was born during the years of World War Two out of
the need to merge two different areas of classical mathematics.

(1) The expansion of a deterministic periodic signal xðtÞ into a basis of orthonormal
functions (sines and cosines, in this case), typified by the classical Fourier series—
first put forward by the French mathematician Jean Baptiste Joseph Fourier
(1768–1830) around 1807,

xðtÞ ¼ a0
2
þ
X1

n¼1
½an cosðntÞ þ bn sinðntÞ� ð�� � t � �Þ: ð17:1Þ
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(2) The need to extend this too narrow and deterministic view to probability and
statistics. The much larger variety of phenomena called ‘‘noise’’ by physicists and
engineers will thus be encompassed by the new transform. This enlarged view
means considering a random function XðtÞ (notice that we denote random
quantities by capitals, and that XðtÞ is also called a ‘‘stochastic process of the
time’’). We now seek to expand this stochastic process onto a set of orthonormal
functions �nðtÞ according to the starting formula

XðtÞ ¼
X1

n¼1
Zn �nðtÞ ð17:2Þ

which is called the Karhunen–Loève (KL) expansion of XðtÞ over the finite time
interval 0 � t � T.

What are then the Zn and the �nðtÞ in (17.2)? To find out, let us start by recalling what
‘‘orthonormality’’ means for the Fourier series (17.1). Leonhard Euler (1707–1783)
had already laid the first stone towards the Fourier series (17.1) by proving that, if
xðtÞ is assumed to be periodic over the time interval �� � t � �, then the coefficients
an and bn in (17.1) are obtained from the known function (or ‘‘periodic signal’’) xðtÞ
by virtue of the equations (‘‘Euler formulae’’):

an ¼
1

�

ð�

��
xðtÞ cosðntÞ dt bn ¼

1

�

ð�

��
xðtÞ sinðntÞ dt: ð17:3Þ

If the same result is going to be true for the Karhunen–Loève expansion, the
functions of the time, �nðtÞ in (17.2) must be orthornormal (i.e., both orthogonal and
normalized to 1). That is,

ðT

0

�mðtÞ�nðtÞ dt ¼ �mn ð17:4Þ

where the �mn are the Kronecker symbols, defined by �mn ¼ 0 for m 6¼ n and �nn ¼ 1.
But what then are the Zn appearing in (17.2)? Well, a random function XðtÞ can

be thought of as something made up of two parts: its behavior in time, represented by
the functions �nðtÞ, and its behavior with respect to probability and statistics, which
must therefore be represented by the Zn. In other words, the Zn must be random
variables not changing in time (i.e., ‘‘just’’ random variables and not stochastic
processes). By doing so we have actually made one basic, new step ahead: we have
found that the KLT separates the probabilistic behavior of the random function XðtÞ
from its behavior in time, a kind of ‘‘untypical’’ separation that is achieved nowhere
else in mathematics!

Having discovered that the Zn are random variables, some trivial consequences
follow at once. Let us denote by Ef g the linear operator yielding the average of a
random variable or stochastic process. If one takes the average of both sides of the KL
expansion (17.2), one then gets (we ‘‘freely’’ interchange here the average operator
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Ef g with the infinite summation sign, bypassing the complaints of ‘‘subtle’’ math-
ematicians!)

EfXðtÞg ¼
X1

n¼1
EfZng�nðtÞ: ð17:5Þ

Now, it is not restrictive to suppose that the random function XðtÞ has a zero mean
value in time—namely, that the following equation is identically true for all values of
the time t within the interval 0 � t � T :

EfXðtÞg � 0: ð17:6Þ

In fact, were this not the case, one could replace XðtÞ by the new random function
XðtÞ � EfXðtÞg in all the above calculations, thus reverting to the case of a new
random function with zero mean value. Thus, in conclusion, the random variables Zn

too must have a zero mean value

EfZng � 0: ð17:7Þ

This equation has a simple consequence: since the variance �2
Zn

of the random
variables Zn is given by

�2
Zn
¼ EfZ2

ng � E 2fZng ð17:8Þ

by inserting (17.7) into (17.8) we get

�2
Zn
¼ EfZ2

ng: ð17:9Þ

At this point, we can make a further step ahead, that has no counterpart in the
classical Fourier series: we wish to introduce a new sequence of positive numbers �n
such that every �n is the variance of the corresponding random variable Zn, that is

�2
Zn
¼ �n ¼ EfZ2

ng > 0: ð17:10Þ

This equation provides the ‘‘answer’’ to the next ‘‘natural’’ question: Do the random
variables Zn fulfill a new type of ‘‘orthonormality’’ somehow similar to what the
classical orthonormality (17.4) is for the �nðtÞ? Since we are talking about random
variables, the ‘‘orthogonality operator’’ can only be understood in the sense of
statistical independence. The integral in (17.4) must then be replaced by the average
operator Ef g for the random variables Zn. In conclusion, we found that the random
variables Zn must obey the important equation

EfZmZng ¼ �n �mn: ð17:11Þ

In this equation, we were forced to introduce the positive �n in the right-hand side in
order to let (17.11) reduce to (17.10) in the special case m ¼ n.

As for the KL equivalent of the Euler formulae (17.3) of the Fourier series, from
the KL series (17.2) and the orthonormality (17.4) of the �nðtÞ one immediately finds
that

Zn ¼
ðT

0

XðtÞ�nðtÞ dt: ð17:12Þ
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In other words: the random variables Zn are obtained from the given stochastic
process XðtÞ by ‘‘projecting’’ this XðtÞ over the correspoding eigenvector �nðtÞ.
If one likes the language of mathematicians and of quantum physics, then one
may say that this projection of XðtÞ onto �nðtÞ occurs in the ‘‘Hilbert space’’, which
is the infinitely dimensional Euclidean space spanned by the eigenvectors �nðtÞ so that
the square of �nðtÞ is integrable over the finite time span 0 � t � T .

To sum up, we have actually achieved a remarkable generalization of the Fourier
series by defining the Karhunen–Loève expansion (17.2) as the only possible statis-
tical expansion in which all the expansion terms are uncorrelated from each other.
This word ‘‘uncorrelated’’ comes from the fact that the autocorrelation of a random
function of the time, XðtÞ, is defined as the mean value of the product of XðtÞ at two
different instants t1 and t2:

RXXðt1; t2Þ � RXðt1; t2Þ ¼ EfXðt1ÞXðt2Þg: ð17:13Þ
If we assume, according to (17.6), that the mean value of XðtÞ vanishes identically in
the interval 0 � t � T , the autocorrelation (17.13) reduces to the variance of XðtÞ
when the two instants are the same

�2
XðtÞ ¼ EfX 2ðtÞg ¼ EfXðtÞXðtÞg ¼ RXðt; tÞ: ð17:14Þ

Let us add one final remark about the basic notion of statistical independence of
the random viariables Zn. It can be proven that, while the Zn in (17.2) always are
uncorrelated (by construction), they also are statistically independent if they are
Gaussian-distributed random variables. This is fortunately the case for the Brownian
motion and for the background noise we face in SETI. So we are not concerned
about this subtle mathematical distinction between uncorrelated and statistically
independent random variables.

17.4 THE KLT FINDS THE BEST BASIS (EIGEN-BASIS) IN

THE HILBERT SPACE SPANNED BY THE EIGENFUNCTIONS OF

THE AUTOCORRELATION OF X(t)

Up to this point, we have not given any hint about how to find the orthonormal
functions of the time, �nðtÞ, and positive numbers �n (i.e., the variances of the
corresponding uncorrelated random variables Zn). In this section, we solve this
problem by showing that the �nðtÞ are the eigenfunctions of the autocorrelation
RXðt1; t2Þ ¼ EfXðt1ÞXðt2Þg and that the �n are the corresponding eigenvalues. This
is the correct mathematical phrasing of what we are going to prove. However, in
order to ease the understanding of the further maths involved hereafter, a ‘‘transla-
tion’’ into the language of ‘‘common words’’ is now provided. Consider an object—
for instance, a book—and a three-axes rectangular reference frame, oriented in an
arbitrary fashion with respect to the book. Then, the classical Newtonian mechanics
shows that all the mechanical properties of the book are described by a 3� 3
symmetric matrix called the ‘‘inertia matrix’’ (or, more correctly, ‘‘inertia tensor’’)
whose elements are, in general, all different from zero. Handling a matrix whose
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elements are all nonzero is obviously more complicated than handling a matrix where
all entries are zeros except for those on the main diagonal (i.e., a diagonal matrix).
Thus, one may be led to wonder whether a certain transformation of axes exists that
changes the inertia matrix of the book into a diagonal matrix. Newtonian mechanics
shows then that only one privileged orientation of the reference frame with respect to
the book exists yielding a diagonal inertia matrix: the three axes must then coincide
with a set of three axes (parallel to the book edges) called ‘‘principal axes’’ of the
book, or ‘‘eigenvectors’’ or ‘‘proper vectors’’ of the inertia matrix of the book. In
other words, each body posesses an intrinsic set of three rectangular axes that
describes at best its dynamics (i.e., in the most concise form). This was proven again
by Euler, and one can always compute the position of the eigenvectors with respect to
a generic reference frame by means of a certain mathematical procedure called
‘‘finding the eigenvectors of a square matrix’’.

In a similar fashion, one can describe any stochastic process XðtÞ by virtue of the
statistical quantity called the autocorrelation (or simply the correlation), defined as
the mean value of the product of the values of XðtÞ at two different instants t1 and t2,
and formally written EfXðt1ÞXðt2Þg. The autocorrelation, obviously symmetric in t1
and t2, plays for the stochastic process XðtÞ just the same role as the inertia matrix for
the book example above. Thus, if one first seeks the eigenvectors of the correlation,
and then changes the reference frame over to this new set of vectors, one achieves the
simplest possible description of the whole (signalþ noise) set.

Let us now translate the whole above description into equations. First of all, we
must express the autocorrelation EfXðt1ÞXðt2Þg by virtue of the KL expansion
(17.2). This goal is achieved by writing down (17.2) for two different instants, t1
and t2, taking the average of their product, and then (freely) interchanging the
average and the summations in the right-hand side. The result is

EfXðt1ÞXðt2Þg ¼
X1

m¼1

X1

n¼1
�mðt1Þ�nðt2ÞEfZmZng: ð17:15Þ

Taking advantage of the statistical orthogonality of the Zn, given by (17.11), (17.15)
simplifies to

EfXðt1ÞXðt2Þg ¼
X1

m¼1
�m�mðt1Þ�mðt2Þ: ð17:16Þ

Finally, we now want to let the �nðtÞ ‘‘disappear’’ from the right-hand side of (17.16)
by taking advantage of their orthonormality (17.4). To do so, we multiply both sides
of (17.16) by �nðt1Þ and then take the integral with respect to t1 between 0 and T .
One then gets:

ðT

0

EfXðt1ÞXðt2Þg�nðt1Þ dt1 ¼
X1

m¼1
�m�mðt2Þ

ðT

0

�mðt1Þ�nðt1Þ dt1

¼
X1

m¼1
�m�mðt2Þ�mn ¼ �n�nðt2Þ; ð17:17Þ
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that is

ðT

0

EfXðt1ÞXðt2Þg�nðt1Þ dt1 ¼ �n �nðt2Þ: ð17:18Þ

This basic result is an integral equation, called by mathematicians ‘‘of Fredholm
type’’. Once the correlation EfXðt1ÞXðt2Þg of XðtÞ is known, the integral equation
(17.18) yields (upon its solution, which may not be easy at all to find analytically!)
both the Karhunen–Loève eigenvalues �n and the corresponding eigenfunctions
�nðtÞ. Readers familiar with quantum mechanics will also recognize in (17.18) a
typical ‘‘eigenvalue equation’’ having the kernel EfXðt1ÞXðt2Þg.

Let us finally summarize what we have proven so far in Sections 17.3 and 17.4,
and let us use the language of signal processing, which will lead us directly to SETI,
the main theme of this chapter.

By adding random noise to a deterministic signal one obtains what is called a
‘‘noisy signal’’ or, in case the signal power is much lower than the noise power, ‘‘a
signal buried into the noise’’. The noiseþ signal is a random function of the time,
denoted hereafter by XðtÞ. Karhunen and Loève proved that it is possible to represent
XðtÞ as the infinite series (called the KL expansion) given by (17.2), and this series is
convergent. Assuming that the (signalþ noise) correlation EfXðt1ÞXðt2Þg is a known
function of t1 and t2, then the orthonormal functions �nðtÞ ðn ¼ 1; 2; . . .Þ turn out to
be just the eigenfunctions of the correlation. These eigenfunctions �nðtÞ form an
orthonormal basis in what physicists and mathematicians call the space of square-
integrable functions, also called the Hilbert space. The eigenfunctions �nðtÞ actually
are the best possible basis to describe the (signal+noise), much better than any
classical Fourier basis made up by sines and cosines only. One can conclude that
the KLT automatically adapts itself to the shape of the (signalþ noise), whatever
behavior in time it may have, by adopting as a new reference frame in the Hilbert
space the basis spanned by the eigenfunctions, �nðtÞ, of the autocorrelation of the
(signalþ noise), XðtÞ.

17.5 CONTINUOUS TIME VS. DISCRETE TIME IN THE KLT

The KL expansion in continuous time, t, is what we have described so far. This may
be more ‘‘palatable’’ to theoretical physicists and mathematicians inasmuch as it may
be related to other branches of physics, or of science in general, in which time
obviously must be a continuous variable. For instance, this author spent 15 years
of his life (1980–1994) in investigating mathematically the connection between
Special Relativity and KLT. The result was the mathematical theory of optimal
telecommunications between the Earth and a relativistic spaceship either receding
from the Earth or approaching it. Although this may sound like ‘‘mathematical
science fiction’’ to some folks (who we would call ‘‘short sighted’’), the possibility
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that, in the future, humankind will send out relativistic automatic probes or even
manned spaceships, is not unrealistic. Nor is it science fiction to imagine that an alien
spaceship might approach the Earth slowing down from relativistic speeds to zero
speed. So, a mathematical physics book like [4] can make sense. There, the KLT is
obtained for any acceleration profile of the relativistic probe or spaceship. The result
is that the KL eigenfunctions are Bessel functions of the first kind (suitably modified)
and the eigenvalues are determined by the zeros of linear combinations of these Bessel
functions and their derivatives, as we shall prove in Chapters 21–27 of this book, and
especially in Chapter 22.

Other continuous-time applications of the KLT are to be found in other branches
of science, ranging, for instance, from genetics to economics. But, whatever the
application may be, if time is a continuous variable, then one must solve the integral
equation (17.18), and this may require considerable mathematical skills. In fact,
(17.18) is, in general, an integral equation of the Fredholm type, and the usual
‘‘iterated nuclei’’ procedure used to solve Fredholm integral equations may be par-
ticularly painful to achieve. The task may be much easier if one is able to reduce the
Fredholm integral equation to a Volterra integral equation, in just the way shown in
the book [4] for the time-rescaled Brownian motion in relation to Special Relativity.

But let us go back to the time variable t in the KL expansion (17.2). If this
variable is discrete, rather than continuous, then the picture changes completely.
In fact, the integral equation (17.2) now becomes . . . a system of simultaneous
algebraic equations of the first degree, that can always be solved! The difficulty here
is that this system of linear equations is huge, because the autocorrelation matrix is
huge (hundreds or thousands of elements are the rule for autocorrelation matrices in
SETI and in other applications, like image processing and the like). Also huge are the
eigenvalues of the characteristic equation (i.e., the algebraic equations whose roots
are the KL). Can you imagine solving directly an algebraic equation of degree 10,000?

So, the KLT is practically impossible to find numerically, unless we resort to
simplifying tricks of some kind. This is precisely what was done for the SETI-Italia
program by this author and his students, strongly supported by Ing. Stelio
Montebugnoli and his team [5].

17.6 THE KLT: JUST A LINEAR TRANSFORMATION IN THE

HILBERT SPACE

Although we have explained the KL expansion (17.2), we have yet to explain what the
KLT is! We do so in this section.

The next step towards the KLT proper is the rearrangement of the eigenvalues �n
in decreasing order of magnitude. Suppose we have done this. Consequently, we also
rearrange the eigenfunctions �nðtÞ so that each eigenfunction keeps corresponding to
its own eigenvalue. It can be proved that no mismatch can possibly arise in doing so,
inasmuch as each eigenfunction corresponds to one eigenvalue only—namely, it can
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be proved that there is no degeneracy (contrary to what happens in quantum physics,
where, for instance, there is a lot of degeneracy in the eigenfunctions of even the
simplest atom of all, the hydrogen atom!). Furthermore, all eigenvalues are positive,
and so, once rearranged in decreasing order of magnitude, they form a decreasing
sequence where the first eigenvalue is the largest, and is called the ‘‘dominant’’
eigenvalue by mathematicians.

We are now ready to compute the Direct KLT of the (signalþ noise). Let us use
the new set of eigen-axes to describe the (signalþ noise). Then, in the new representa-
tion, the (signalþ noise) is just the Direct KLT of the old (signal+noise). In other
words, the KLT is properly called just a linear trasformation of axes, and nothing is
easier than that! (Incidentally, this accounts for the title of Karhunen’s first paper
‘‘Über Lineare Methoden in der Wahrscheinlichkeitsrechnung’’¼ ‘‘On linear meth-
ods in the calculus of probabilities’’, [1], which obviously refers to the linear character
of the transformation of axes in the Hilbert space.)

17.7 A BREAKTHROUGH ABOUT THE KLT:

MACCONE’S ‘‘FINAL VARIANCE’’ THEOREM

The importance of the KLT as a mathematical tool superior to the FFT has already
been pointed out. However, the implementation of the KLT by a numerical code
running on computers has always been a difficult problem. Both François Biraud in
France [6] and Bob Dixon in the U.S.A. [16] failed to do so in the 1980s because all
computers then available could not make the N 2 calculations required to solve the
huge system of simultaneous algebraic equations of the first degree corresponding (in
the discrete case) to the integral equation (17.18). At the SETI-Italia facilities at
Medicina we faced the same problem, of course. But we did better than our pre-
decessors because we discovered the new theorem about the KLT that we demon-
strate in this section and call ‘‘the Final Variance theorem’’. This new theorem seems
to be even more important than the rest of research work about the KLT since it
solves directly the problem of extracting a weak sinusoidal carrier (a tone) from noise
of whatever kind (both colored and white).

The key idea of the Final Variance theorem is to differentiate the first
eigenvalue (briefly called the ‘‘dominant eigenvalue’’) of the autocorrelation of the
(noiseþ signal) with respect to the final instant T of the general KLT theory.
Remember here that this final instant T simply does not exist in the ordinary Fourier
theory, because this T equals infinity according to the Fourier theory. Therefore, the
final instant T in itself is possibly the most important ‘‘novelty’’ introduced by the
KLT regarding the classical FFT. With respect to T , we may take derivatives (called
‘‘final derivatives’’ in the remainder of this book because they are time derivatives
taken with respect to the final instant T) and integrals that have no analogs in the
ordinary Fourier theory. The ‘‘error’’ that was made in the past—even by many KLT
scholars—was to set T ¼ 1, thus obscuring the fundamental novelty represented by
the finite, real positive T as a new continuous variable playing in the game! This error
made by other scholars clearly appears, for instance, in the Wikipedia site about
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the ‘‘Karhunen–Loève Theorem’’, http://en.wikipedia.org/wiki/Karhunen-Loève_
theorem. So, by removing this silly T ¼ 1 convention we opened up new prospects
for KLT theory, as we now show by proving our ‘‘Final Variance theorem’’.

Consider the eigenfunction expansion of the autocorrelation again—Equation
(17.16)—with the traditional dummy index n rewritten instead of m. Upon replacing
t1 ¼ t2 ¼ t, this equation becomes

EfX 2ðtÞg ¼
X1

n¼1
�n�

2
nðtÞ: ð17:19Þ

Since the eigenfunctions �nðtÞ are normalized to 1, we are prompted to integrate both
sides of (17.19) with respect to t between 0 and T , so that the integral of the square of
the �nðtÞ becomes just 1:

ðT

0

EfX 2ðtÞgdt ¼
X1

n¼1
�n

ðT

0

�2
nðtÞ dt ¼

X1

n¼1
�n: ð17:20Þ

On the other hand, since the mean value ofXðtÞ is identically equal to 0, one may now
introduce the variance �2

XðtÞ of the stochastic process XðtÞ defined by

�2
XðtÞ ¼ EfX 2ðtÞg � E 2fXðtÞg ¼ EfX 2ðtÞg: ð17:21Þ

Replacing (17.21) into (17.20), one gets
ðT

0

�2
XðtÞ dt ¼

X1

n¼1
�n: ð17:22Þ

This formula was first given by this author in his 1994 book [4, eq. (1.13), p. 12].
At that time, however, (17.22) was regarded as interesting inasmuch as (upon inter-
changing the two sides) it proves that the series of all the eigenvalues �n is indeed
convergent (as one would intuitively expect) and its sum is given by the integral of the
variance between 0 and T .

Back in 1994, however, the author did not understand that (17.22) had a more
profound meaning: since the final instant T is the upper limit of the time integral on
the left-hand side, the right-hand side also must depend on T . In other words, all the
eigenvalues �n must be some functions of the final instant T :

�n � �nðTÞ: ð17:23Þ

This new remark is vital in order to make further progress. In fact, one is now
prompted to let the integral on the left-hand side of (17.22) disappear by differentiat-
ing both sides with respect to the final instant T . One thus gets:

�2
XðTÞ ¼

X1

n¼1

@�nðTÞ
@T

: ð17:24Þ

This result we call the Final Variance theorem. It was discovered by this author in
May 2007 and is the key new result put forward in this chapter. It states that for any
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(either non-stationary or stationary) stochastic process XðtÞ, the Final Variance �2
XðTÞ

is the sum of the series of the first-order partial derivatives of the eigenvalues �nðTÞ with
respect to the final instant T.

Let us now consider a few particular cases of this theorem that are especially
interesting.
(1) In general, only the firstN terms of the decreasing sequence of eigenvalues will be

retained as ‘‘significant’’ by the user, and all the other terms, from the (N þ 1)th
term onward, will be declared to be ‘‘just noise’’. Therefore, the infinite series in
(17.24) becomes in practice the finite sum

�2
XðTÞ �

XN

n¼1

@�nðTÞ
@T

: ð17:25Þ

In numerical simulations, however, one always wants to make computation time
as short as possible! Therefore, one might be led to consider the first (or
dominant) eigenvalue only in (17.25); that is

�2
XðTÞ �

@�1ðTÞ
@T

: ð17:26Þ

This clearly is ‘‘the roughest possible’’ approximation to the full XðtÞ process
since we are actually replacing the full XðtÞ by its first KLT term Z1�1ðtÞ only.
However, using (17.26) instead of the N-term sum (17.25) is indeed a good
shortcut for application of the KLT to the extraction of very weak signals
from noise, as we now stress in the very important practical case of stationary
processes.

(2) If we restrict our considerations to stationary stochastic processes only (i.e.,
processes for which both the mean value and the variance are constant in time),
then (17.25) simplifies even further. In fact, by definition, the stationary processes
have the same final variance at any time (i.e., for stationary processes �2

X is a
constant). Then (17.22) immediately shows that, for stationary processes only, all
the KLT eigenvalues are linear functions of the final instant T :

�nðTÞ / T for stationary processes only: ð17:27Þ

As a consequence, the first-order partial derivatives of all the �n with respect to
T for stationary processes are just constants. In yet other words, for stationary
processes only, (17.25) becomes

XN

n¼1

@�nðTÞ
@T

� a constant with respect to T : ð17:28Þ

In particular, if one sticks again to the first, dominant eigenvalue only (i.e., to
the roughest possible approximation), then (17.28) reduces to

@�1ðTÞ
@T

� a constant with respect to T : ð17:29Þ
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In Section 17.8 we will discuss the deep, practical implications of this result for
SETI, extrasolar planet detection, asteroidal radar, and other KLT applications.

(3) Please notice that, for non-stationary processes, the dependence of the eigen-
values on T certainly is non-linear. For instance, for the well-known Brownian
motion (i.e., ‘‘the easiest of the non-stationary processes’’), one has

�nðTÞ ¼
4T 2

�2ð2n� 1Þ2
ðn ¼ 1; 2; . . .Þ ð17:30Þ

and so the dependence on T is quadratic. For the proof, just place the Brownian
motion variance �2

BðtÞ ¼ t into (17.22) and perform the integration, yielding the
T 2 directly. Of course, this is in agreement with (17.30), which will be proven in
Chapter 21 when we search for the KLT of the standard Brownian motion—see,
in particular, (21.21).

(4) Even higher than quadratic is the dependence on T for the eigenvalues of other
highly non-stationary processes. For instance, for the zero-mean square of the
Brownian motion, the KLT eigenvalues depend cubically on the final instant T ,
as will be proven in Chapter 24 by Equation (24.60). And so on for more
complicated processes, like the time-rescaled squared Brownian motions whose
KLT will found in Chapter 24.

17.8 BAM (‘‘BORDERED AUTOCORRELATION METHOD’’) TO FIND

THE NUMERIC KLT OF STATIONARY PROCESSES ONLY

The BAM (an acronym for ‘‘Bordered Autocorrelation Method’’) is an alternative
numerical technique to evaluate the KLT of stationary processes (only) that may run
faster on computers than the traditional full-solving KLT technique described in
Section 17.5. The BAM has its mathematical foundation in our Final Variance
theorem already proved in Section 17.7. In this section we describe the BAM in
detail and provide the results of numerical simulations showing that, by virtue of
the BAM, the KLT succeeds in extracting a sinusoidal carrier embedded in a lot of
noise when the FFT utterly fails.

Let us start by recalling that the standard, traditional technique to find the KLT
of any stochastic process (whether stationary or not) numerically amounts to solving
N simultaneous linear algebraic equations whose coefficient matrix is the (huge)
autocorrelation matrix. This N 2 amount of calculations is much larger than the
N 	 lnðNÞ amount of calculations required by the FFT and that’s precisely the reason
the FFT has been preferred to the KLT in the last 50 years!

Because of the Final Variance theorem proved in the previous section, however,
one is tempted to confine oneself to the study of the dominant eigenvalue, only by
virtue of just using (17.29). This means studying (17.29) for different values of the
final instant T (i.e., as a function of the final instant T).

Also, we now confine ourselves to a stationary XðtÞ over a discrete set of instants
t ¼ 0; . . . ;N.
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In this case, the autocorrelation of XðtÞ becomes the Toeplitz matrix (for
an introduction to the research field of Toeplitz matrices, see the Wikipedia site,
http://en.wikipedia.org/wiki/Toeplitz_matrix) which we denote by RToeplitz.

RToeplitz ¼

RXXð0Þ RXXð1Þ RXXð2Þ 
 
 
 
 
 
 RXXðNÞ
RXXð1Þ RXXð0Þ RXXð1Þ 
 
 
 
 
 
 RXXðN � 1Þ
RXXð2Þ RXXð1Þ RXXð0Þ 
 
 
 
 
 
 RXXðN � 2Þ

 
 
 
 
 
 
 
 
 RXXð0Þ 
 
 
 
 
 


RXXðNÞ RXXðN � 1Þ 
 
 
 
 
 
 RXXð1Þ RXXð0Þ

2
6666664

3
7777775
:

ð17:31Þ

This theorem had already been proven by Bob Dixon and Mike Kline back in 1991
[16], and will not be proven here again. We may choose N at will, but clearly the
higher the N, the more accurate the KLT of XðtÞ. On the other hand, the final instant
T in the KLT can be chosen at will and now is T ¼ N. So, we can regard T ¼ N as a
sort of ‘‘new time variable’’ and even take derivatives with respect to it, as we’ll do in
a moment.

But let us now go back to the Toeplitz autocorrelation (17.31). If we let N vary as
a new free variable, that amounts to bordering it (i.e., adding one (last) column and
one (last) row to the previous correlation). This means solving yet again the system of
linear algebraic equations of the KLT for N þ 1, rather than for N. So, for each
different value of N, we get a new value of the first eigenvalue �1 now regarded as a
function of N (i.e., �1ðNÞ). Doing this over and over again, for as many values as we
wish (or, more correctly, for how many values of N our computer can still handle!)
constitutes our BAM, the Bordered Autocorrelation Method.

But then we know from the Final Variance theorem that �1ðNÞ is proportional to N.
And such a function �1ðNÞ of course has a derivative, @�1ðNÞ=@N, that can be computed
numerically as a new function of N. And this derivative turns out to be a constant with
respect to N. This fact paves the way for a new set of applications of the KLT to all fields
of science!

In fact, numeric simulations lead to the results shown in the four plots in Figures
17.1–17.4. The first plot is the ordinary Fourier spectrum of a pure tone at 300 Hz
buried in noise with a signal-to-noise ratio of 0.5, abbreviated hereafter as SNR¼ 0.5.
For a definition of the SNR see the Wikipedia site, http://en.wikipedia.org/wiki/
Signal-to-noise_ratio Please note the following two facts:

(1) This is about as low an SNR can be before the FFT starts failing to denoise a
signal, as is well known by electrical and electronic engineers.

(2) This Fourier spectrum is obviously computed by taking the Fourier Transform
of the stationary autocorrelation of XðtÞ, as is well known from the Wiener–
Khinchin theorem (for a concise description of this theorem, see http://en.
wikipedia.org/wiki/Wiener-Khinchin_theorem).

Notice, however, that this procedure would not work for non-stationary XðtÞ because
the Wiener–Khinchin theorem does not apply to non-stationary processes. For

17.8 BAM (‘‘Bordered Autocorrelation Method’’) 423]Sec. 17.8



424 A simple introduction to the KLT and BAM-KLT [Ch. 17

Fourier spectrum of signalþnoise X ðtÞ with SNR¼0.5
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Figure 17.1. Fourier spectrum of a pure tone (i.e., just a sinusoidal carrier) with frequency at

300 Hz buried in stationary noise with a signal-to-noise ratio of 0.5.
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Figure 17.2. The KLT dominant eigenvalue �1ðNÞ over N ¼ 1,200 time samples, computed by

virtue of the BAM, the Bordered Autocorrelation Method.
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Figure 17.3. The spectrum (i.e., the Fourier Transform) of the constant derivative of the KLT

dominant eigenvalue �1ðNÞ with respect toN as given by the BAM. This is clearly a Dirac delta

function (i.e., a peak, at 300 Hz), as expected.
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Spectrum (i.e., FFT) of the first KLT eigenfunction
computed without BAM

Figure 17.4. The spectrum (i.e., the Fourier Transform) of the first KLT eigenfunction not

obtained by the BAM, but rather by the very long procedure of solving N linear algebraic

equations corresponding, in discrete time, to the integral equation (17.18). Clearly, the result is

the same as obtained in Figure 17.3 by themuch less time-consuming BAM. So, one can say that

adoption of the BAM actually made the KLT ‘‘feasible’’ on small computers by circumventing

the difficulty of the N 2 calculations requested by the ‘‘straight’’ KLT theory.



non stationary processes there are other ‘‘tricks’’ to compute the spectrum from the
autocorrelation, like the Wigner–Ville Transform, but we shall not consider them
here.

The second plot (Figure 17.2) shows the first (i.e., the dominant) KLT eigenvalue
�1ðNÞ over N ¼ 1,200 time samples. Clearly, this �1ðNÞ is proportional to N, as
predicted by our Final Variance theorem (17.27).

So, its derivative, @�1ðNÞ=@N, is a constant with respect to N. But we may then
take the Fourier Transform of such a constant and get a Dirac delta function (i.e., a
peak just at 300Hz). In other words, we have KLT-reconstructed the original tone by
virtue of the BAM. The third plot (Figure 17.3) shows such a BAM-reconstructed
peak.

Finally, this plot is of course identical to the fourth plot (Figure 17.4), showing
the ordinary FFT of the first KLT eigenfuction as obtained, not by the BAM, but by
solving the full and long system of N algebraic first-degree equations.

Let us now do the same again . . . but with an incredibly low SNR of 0.005.
Poor Fourier here is in a mess! Just look at the plot in Figure 17.5! No classical

FFT spectrum can be identified at all for such a terribly low SNR!
But for the KLT no problem!
The next plot (Figure 17.6) shows that �1ðNÞ / N, as predicted by our Final

Variance theorem (17.27).
The third plot (Figure 17.7, KLT fast way via the BAM) is the neat KLT spectrum

of the 300Hz tone obtained by computing the FFT of the constant @�1ðNÞ=@N.

-
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Fourier spectrum of signalþnoise X ðtÞ with SNR¼0.005

Figure 17.5. Fourier spectrum of a pure tone (i.e., just a sinusoidal carrier) with frequency at

300 Hz buried in stationary noise with the terribly low signal-to-noise ratio of 0.005. This is

clearly beyond the reach of the FFT, since we know there should just be one peak only at

300Hz. Fourier fails at such a low SNR.
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Figure 17.6. The KLT dominant eigenvalue �1ðNÞ for N ¼ 1,200 time samples, computed by

virtue of the BAM, for the very low SNR¼ 0.005.
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Figure 17.7. The spectrum (i.e., the Fourier Transform) of the constant derivative of the KLT

dominant eigenvalue �1ðNÞ with respect to N as given by the BAM. This is a neat Dirac delta

function (i.e., it has a peak at 300Hz, as expected).



And this is just the same as the last plot (Figure 17.4) of the dominant KLT
eigenfunction obtained by the KLT slow way of doing N 2 calculations. This proves
the superior behavior of the KLT.

17.9 DEVELOPMENTS IN 2007 AND 2008

The numerical simulations described in the previous section were performed at
Medicina during the winter 2006–2007 by Francesco Schillirò and Salvatore ‘‘Salvo’’
Pluchino [22]. These simulations suggested in a purely numerical fashion (i.e., without
any analytic proof) that the BAM leads to the following result for stationary pro-
cesses: the ordinary Fourier transform (i.e., ‘‘the spectrum’’ in the common sense,
since the processes are supposed to be stationary) of the first-order partial derivative

with respect to the final instant T of the dominant eigenvalue,
@�1ðTÞ
@T

, is just the

frequency of the feeble sinusoidal carrier buried in the mountain of noise. In SETI
language, if we are looking for a simple sinusoidal carrier sent by ET and buried in a
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Figure 17.8. The spectrum (i.e., the Fourier Transform) of the first KLT eigenfunction, not

obtained by the BAM but rather by the very long procedure of solving N linear algebraic

equations corresponding, in discrete time, to the integral equation (17.18). Clearly, the result is

the same as obtained in Figure 17.7, but this time by the much less time-consuming BAM. So,

one can say that the adoption of the BAM actually made the KLT ‘‘feasible’’ on small

computers by circumventing the difficulty of N 2 calculations requested by the ‘‘straight’’

KLT theory.



lot of cosmic noise, then the frequency we are looking for is given by the FFT of

@�1ðTÞ
@T

.

Why?
No analytic proof of this numerical result was ever found at Medicina. But this

author had made the first step towards the then missing analytic proof by proving the
Final Variance Theorem in May 2007, and persisted in discussing this ‘‘frontier
result’’ with other radioastronomers. One year later, in June 2008, he went to
Dwingeloo, the Netherlands, and met with the ASTRON Team working on a poss-
ible implementation of SETI on the brand-new LOFAR radiotelescope. Dr. Sarod
Yatawatta of ASTRON then made the next step toward the missing analytic proof:
he derived an unknown analytic expression for the KLT eigenvalues of the ET
sinusoidal carrier [24]. Unfortunately, Dr. Yatawatta made two analytical errors
in his derivation (described hereafter), which this author discovered and corrected
in September 2008.

In conclusion, the final, correct version of all these equations is explained in the
next two sections, and it proves that the Fourier Transform of the first derivative of
the KLT eigenvalues with respect to the final instant T is indeed the frequency of the
‘‘unknown’’ ET signal, but only for stationary processes, of course.

For non-stationary processes (i.e., for transient phoenomena as actually happens
in practical SETI, since all celestial bodies move, rather than rest), the story is
much more complicated, and this author is convinced that a much more refined
mathematical investigation has to be made: but this will be our next step, not
described in this book yet!

17.10 KLT OF STATIONARY WHITE NOISE

Before we give the analytic proof that the Fourier Transform of
@�1ðTÞ
@T

is the

frequency of the unknown ET signal, we must understand what the KLT of
stationary white noise is.

Stationary white noise is defined as the one ‘‘limit’’ stochastic process that is
completely uncorrelated (i.e., the autocorrelation of which is the Dirac delta
function). In other words, denoting the stationary white noise by WðtÞ, one has
by definition

EfWðt1ÞWðt2Þg ¼ �ðt1 � t2Þ: ð17:32Þ
If one now seeks the KLT of stationary white noise, one must of course insert the

autocorrelation (17.32) into the KLT integral equation (17.18), getting

�n�nðt2Þ ¼
ðT

0

EfWðt1ÞWðt2Þg�nðt1Þ dt1 ¼
ðT

0

�ðt1 � t2Þ�nðt1Þ dt1 ¼ �nðt2Þ: ð17:33Þ

This proves that:
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(1) The KLT eigenvalues of stationary white noise are all equal to 1.
(2) Any set of orthonormal eigenfunctions �nðtÞ in the Hilbert space is a suitable

basis to represent stationary white noise.

Since any set of orthonormal eigenfunctions �nðtÞ in the Hilbert space is a suitable
basis to represent stationary white noise, from now one we shall adopt the
easiest possible such basis; that is, the simple Fourier basis made up only by
orthonormalized sines over the finite interval 0 � t � T :

�nðtÞ ¼
ffiffiffiffi
2

T

r
sin

2�n

T
t

� �
�WnðtÞ: ð17:34Þ

Of course, this set of basis functions fulfills the orthonormality condition

ðT

0

WmðtÞWnðtÞ dt ¼
ðT

0

ffiffiffiffi
2

T

r
sin

2�m

T
t

� �


ffiffiffiffi
2

T

r
sin

2�n

T
t

� �
dt ¼ �mn: ð17:35Þ

This property will be used in the next section, where we give the proof that the

Fourier Transform of
@�nðTÞ
@T

is indeed (twice) the frequency of the unknown ET

sinusoidal carrier buried in white, cosmic noise. We conclude this section by pointing
out the first analytical error made by Dr. Yatawatta in his personal communication
to this author [24]: he forgot to put the square root in (17.34). This of course means
that his further results were flawed, even more so since he made a second analytical
error later, which we shall not describe. But the key ideas behind his proof were
perfectly correct, and we shall describe them in the next section.

17.11 KLT OF AN ET SINUSOIDAL CARRIER BURIED IN WHITE,

COSMIC NOISE

Consider a new stochastic process SðtÞ made up by the sum of stationary white noise

WðtÞ plus an alien ET sinusoidal carrier of amplitude a and frequency � ¼ !

2�
; that is,

SðtÞ ¼WðtÞ þ a sinð!tÞ: ð17:36Þ
What is the KLT of such a (signalþ noise) process? This is the central problem of

SETI, of course.
To find the answer, first build up the autocorrelation of this process:

EfSðt1ÞSðt2Þg ¼ EfWðt1ÞWðt2Þg þ a2 sinð!t1Þ sinð!t2Þ

þ aEfWðt1Þ sinð!t2Þg þ aEfWðt2Þ sinð!t1Þg: ð17:37Þ

The last two terms in (17.37) represent the two cross-correlations between the white
noise and the sinusoidal signal. It is reasonable to assume that the white noise and the
signal are uncorrelated, and so we shall simply replace these two cross-correlations by
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zero. The autocorrelation (17.37) of the (signalþ noise) stochastic process SðtÞ thus
becomes

EfSðt1ÞSðt2Þg ¼ EfWðt1ÞWðt2Þg þ a2 sinð!t1Þ sinð!t2Þ: ð17:38Þ

In order to proceed, we now make use of the eigenfunction expansion of the
autocorrelation (17.16), which, replaced into (17.38), changes it into

X1

m¼1
�Sm

Smðt1ÞSmðt2Þ ¼
X1

m¼1
�Wm

Wmðt1ÞWmðt2Þ þ a2 sinð!t1Þ sinð!t2Þ: ð17:39Þ

In the last equation, the SmðtÞ clearly are the (unknown) eigenfunctions of the
(signalþ noise) process SðtÞ, and the �Sm

are (unknown) corresponding eigenvalues.
In the right-hand side, the �Wm

are the eigenvalues of the stationary white noise,
which we know to be equal to 1, but, for the sake of clarity, let us keep the symbol
�Wm

rather than replacing it by 1.
To proceed further, we now must get rid of both t1 and t2 in (17.39), and there is

only one way to do so: use the orthonormality of the eigenfuctions appearing in
(17.39). We shall do so in a moment. Before, however, let us make the following
practical consideration: since the signal is much waker than the noise (by assumption)
(i.e., the signal-to-noise ratio is much smaller than 1, or SNR� 1), then, numerically
speaking, the (signalþ noise) eigenfunctions SmðtÞ must not differ very much from
the pure white noise eigenfunctions WmðtÞ. And, similarly, the (signalþ noise)
eigenvalues �Sm

must not differ very much from the corresponding pure white noise
eigenvalues �Wm

. In other words, the hypothesis that SNR� 1 amounts to the two
approximate equations

SmðtÞ �WmðtÞ

�Sm
� �Wm

¼ 1:

)
ð17:40Þ

Of course, only the first of these two equations will play a role in the two integrations
that we are now going to perform: once with respect to t1 and once with respect to t2,
and both over the interval 0 � t � T . As a consequence, the new orthonormality
condition (nearly) holds:

ðT

0

Smðt1ÞWnðt1Þ dt1 � �mn ð17:41Þ

and, similarly, ðT

0

Skðt2ÞWnðt2Þ dt2 � �kn ð17:42Þ

So, let us now multiply both sides of (17.39) byWnðt1Þ and integrate with respect
to t1 between 0 and T . Because of (17.41) and (17.35) one has:

X1

n¼1
�Sn

Snðt2Þ �
X1

n¼1
�Wn

Wnðt2Þ þ a2 sinð!t2Þ
ðT

0

Wnðt1Þ sinð!t1Þ dt1 ð17:43Þ

The good point is that the integral appearing in the right-hand side of this equation
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can be found. In fact, replacing Wnðt1Þ by virtue of (17.34) and integrating, one gets

X1

k¼1
�Sk

Skðt2Þ �
X1

k¼1
�Wk

Wkðt2Þ þ a2 sinð!t2Þ 

2
ffiffiffi
2
p

�n
ffiffiffiffi
T
p

sinð!TÞ
!2T 2 � 4�2n2

ð17:44Þ

We next multiply this equation by Wnðt2Þ and integrate with respect to t2 between 0
and T . Because of (17.42) and (17.35), (17.44) becomes:

�Sn
� �Wn

þ a2
2
ffiffiffi
2
p

�n
ffiffiffiffi
T
p

sinð!TÞ
!2T 2 � 4�2n2

ðT

0

Wnðt2Þ sinð!t2Þ dt2: ð17:45Þ

Again, the integral in the last equation can be computed—it is actually the same
integral as in (17.43)—and so the conclusion is

�Sn
� �Wn

þ a2
8�2n2T sin2ð!TÞ
ð!2T 2 � 4�2n2Þ2

: ð17:46Þ

This is Yatawatta’s main result (corrected by Maccone). Let us now point out clearly
that the eigenvalues on the left are a function of the final instant T ; that is,

�Sn
ðTÞ � �Wn

þ a2
8�2n2T sin2ð!TÞ
ð!2T 2 � 4�2n2Þ2

: ð17:47Þ

This equation clearly shows that

(1) For T ! 0, the fraction in the right-hand side approaches zero, and so the
eigenvalues of the signalþ noise approach the pure white noise eigenvalues (as
is intuitively obvious).

(2) For n!1, again the fraction in the right-hand side approaches zero, and so the
eigenvalues of the signalþ noise approach the pure white noise eigenvalues
(as again is intuitively obvious). This result may justify numerically the practical
approximation made by the Medicina engineers when they confined their
simulations to the first eigenvalue only (roughest approximation). In other
words, the dominant eigenvalue of the signal+noise is given by

�S1
ðTÞ � �W1

þ a2
8�2T sin2ð!TÞ
ð!2T 2 � 4�2Þ2

¼ 1þ a2
8�2T sin2ð!TÞ
ð!2T 2 � 4�2Þ2

: ð17:48Þ

This completes our analysis of the KLT of a sinusoidal carrier buried in white, cosmic
noise.

17.12 ANALYTIC PROOF OF THE BAM–KLT

We are now ready for the analytic proof of the BAM-KLT method.
Let us first re-write (17.47) in a form in which the pure white noise eigenvalues are

replaced by 1:

�Sn
ðTÞ � 1þ a2

8�2n2T sin2ð!TÞ
ð!2T 2 � 4�2n2Þ2

: ð17:49Þ
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We then notice that the final instant T appears three times in the right-hand side of
the last equation:

(1) once in the numerator outside the sine;
(2) once in the numerator inside the sine;
(3) once in the denominator.

Therefore, the partial derivative of (17.49) with respect to T will be made up by the
sum of three terms:

(1) One term with the derivative of the T in the numerator (i.e., 1 times the sine
square). This brings a term in the cosine of TWICE the sine argument, since one
obviously has

sin2ð!TÞ ¼ 1
2
� 1

2
cosð2!TÞ: ð17:50Þ

(2) One term with the derivative of the T inside the sine. This brings a term in the sine
of TWICE the sine argument, because one has

2 sinð!TÞ cosð!TÞ ¼ sinð2!TÞ: ð17:51Þ
(3) One term with the derivative of the T in the denominator. This does not bring

any term in either the sine or the cosine, but just a rational function of T that we
shall give in a moment. In fact, we now prefer to skip the lengthy and tedious
steps leading to the derivative of (17.49) with respect to T and just give the final
result.

In conclusion, the derivative of (17.49) with respect to T is given by the following sum
of three terms:

@�Sn
ðTÞ

@T
� Coeff1ðTÞ 
 sinð2!TÞ þ Coeff2ðTÞ 
 cosð2!TÞ þ Coeff3ðTÞ ð17:52Þ

where the three coefficients turn out to be (after lengthy calculations)

Coeff1ðTÞ ¼ a2
8�2n2!T

ð!2T 2 � 4�2n2Þ2
;

Coeff2ðTÞ ¼ a2
4�2n2ð3!2T 2 þ 4�2n2Þ
ð!2T 2 � 4�2n2Þ3

;

Coeff3ðTÞ ¼ �a2
4�2n2ð3!2T 2 þ 4�2n2Þ
ð!2T 2 � 4�2n2Þ3

:

9
>>>>>>>>>=

>>>>>>>>>;

ð17:53Þ

But the right-hand side of (17.52) is no more than . . . the simple Fourier series

expansion of
@�Sn
ðTÞ

@T
. Moreover, (17.52) shows that

@�Sn
ðTÞ

@T
is a periodic function of

T with frequency 2!T . We conclude that: The Fourier transform of
@�Sn
ðTÞ

@T
equals

twice the frequency of the buried alien sinusoidal carrier. In other words, the
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frequency of the alien signal is a HALF of the frequency found by taking the Fourier

transform of
@�Sn
ðTÞ

@T
.

And the BAM–KLT method is thus proved analytically.

17.13 KLT SIGNAL-TO-NOISE RATIO (SNR) AS A FUNCTION OF THE

FINAL T , EIGENVALUE INDEX n, AND ALIEN FREQUENCY �

We now derive a consequence from the eigenvalue relationship (17.47) dealing with
the signal-to-noise ratio (abbreviated SNR) in the KLT theory. We shall call it the
‘‘KLT–SNR Theorem’’. The proof is as follows.

Consider Equation (17.10), showing that the eigenvalues �n of any KL expansion
are actually the variances of the zero-mean corresponding uncorrelated (i.e., orthog-
onal, in the probabilistic sense) random variables Zn. If we apply this to the KLT of
stationary unitary white noise, described in Section 17.10, the conclusion is that the
�Wm

are the mean values of the square of the corresponding orthogonal (i.e., uncor-
related random variables Z2

Wn
)

�Wm
¼ EfZ2

Wn
g: ð17:54Þ

Now, the definition of the signal-to-noise ratio (which we prefer to denote SNR,
rather than S/R) of a sinusoidal signal with amplitude a buried in the noise with
amplitude ZWn

is just:

SNR ¼ power of the signal

power of the noise
¼ a2

EfZ2
Wn
g
¼ a2

�Wm

: ð17:55Þ

This definition can now be inserted into (17.47) divided by �Wm
; that is,

�Sn
ðTÞ

�Wn

� 1þ a2

�Wn


 8�
2n2T sin2ð!TÞ

ð!2T 2 � 4�2n2Þ2
; ð17:56Þ

with the result that (17.56) is changed into

�Sn
ðTÞ

�Wn

� 1þ SNR 
 8�
2n2T sin2ð!TÞ

ð!2T 2 � 4�2n2Þ2
: ð17:57Þ

Solving this for SNR yields

SNRðT ; n; !Þ �
�Sn
ðTÞ

�Wn

� 1

� �

 ð!

2T 2 � 4�2n2Þ2

8�2n2T sin2ð!TÞ
: ð17:58Þ

For SETI applications, it may be preferable to re-express the last formula directly in

terms of the ‘‘alien’’ frequency � ¼ !

2�
, instead of !. Equation (17.58) is thus changed

into

SNRðT ; n; �Þ �
�Sn
ðTÞ

�Wn

� 1

� �

 2�

2ð�2T 2 � n2Þ2

n2T sin2ð2��TÞ : ð17:59Þ
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This is our KLT–SNR Theorem. Since the quantity

�Sn
ðTÞ

�Wn

� 1

� �
> 0 ð17:60Þ

has a positive numeric value just slighty above zero, from (17.59) we conclude that

SNRðT ; n; �Þ ¼ OðT 3Þ as T !1
SNRðT ; n; �Þ ¼ Oðn2Þ as n!1
SNRðT ; n; �Þ ¼ Oð�4Þ as � !1.

8
><

>:
ð17:61Þ

These equations yield the ‘‘pace of increase’’ of the KLT–SNR, and should be of
importance in writing down the numeric codes for the actual implementation of the
KLT.

17.14 GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS)

IMPROVED BY THE KLT

GNSS is an acronym for Global Navigation Satellite Systems referring to the main
four satellite navigation systems (i.e., GPS, GLONASS, Compass, and Galileo)
already constructed or under construction in the U.S.A., Russia, China, and Europe,
respectively. Several regional navigation satellite systems are also part of GNSS (see,
e.g., the Wikipedia site: http://en.wikipedia.org/wiki/Satellite_navigation). All the
GNSS face the difficult mathematical problem of extracting weak signals from back-
ground noise. If background noise was white over the allotted bandwidths, then the
usual FFT would be the ideal mathematical solution to this problem. But, in reality,
background noise is far from being white because of the huge amount of radio
frequency interference (RFI) produced as a result of the growth of civilization, which
then expands into space but fails to fade away sufficiently.

In June 2011 there was an important development for the application of the KLT
to GNSS: a young telecommunication expert at the European Space Agency, Dr.
Arkadiusz Szumski, published a review article [27] about this author’s previous 2008
paper on the KLT and BAM-KLT [26]. Szumski also wrote ex-novo suitable com-
puter codes, carried out several numerical simulations, and proved beyond any
engineer’s doubt that the KLT is enormously superior to the traditional FFT, es-
pecially for the GNSS. Space companies are thus likely to take the KLT seriously
from now on. This author regrets that his lifetime of mathematical discoveries in this
field will hardly bring him any economic benefit, but maybe some accolades.

Anyway, let us now briefly report on some key aspects of Szumski’s paper [27].
Szumski considers wideband signal detection by the KLT. He describes a case

where SNR¼ �12 dB (i.e., SNR¼ �0.063 where signal power is 6.3% of noise
power). This is far too much for FFT. We do not reproduce the plots obtained by
Szumski, but just confine ourselves to repeating his conclusive words: ‘‘To summarize
the simulation results, one can observe that the KLT technique indeed is able to
detect wideband signals even in the presence of strong noise, whereas the STFT
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(Short Time Fourier Transform) and Wigner–Ville methods clearly fail.’’ Szumski
then continues: ‘‘We also analyzed a chirp signal with a wide-frequency boundary.
This type of signal was chosen to enable us to evaluate the performance of KLT in
detecting a dynamic, non-stationary signal. Figure 8 (of Szumski’s paper [27]) shows
the KLT spectrogram and the power spectrum. For a signal with SNR¼ �12 dB the
spectrogram is a little frayed, but still readable. The KLT is able to detect the chirp
signal in the noise.’’

In the section entitled ‘‘BAM-KLT: A step closer to fast KLT’’ of his paper [27],
Szumski wrote: ‘‘Again, the biggest drawback of the KLT is its complexity and its
resulting high computational burden. As with the Fourier transform, however, which
became popular when its fast implementation (the FFT) became available, the KLT
has the potential to experience a similar boost if a fast KLT implementation is
discovered. Maccone has already presented an innovative way of using the KLT,
which paves the way towards a faster algorithm.’’ The article then continues by
enlisting the key new formula of the BAM-KLT (i.e., the ‘‘Final Variance Theorem’’
(16.24)). Also reported by Szumski is its first-term-only (i.e. ‘‘dominant eigenvalue
only’’) particular case (16.26).

In January 2012 this author personally thanked Szumski for having written the
simulation codes based on the paper [27]. Hopefully, this will attract increasingly
more attention to the KLT and BAM-KLT techniques by those who had previously
not yet realized their terrific potential of replacing the FFT by the KLT and BAM-
KLT for GPS, GLONASS, Galileo, and Compass. Szumski, however, did not
consider the relativistic KLT described by this author in this book and in his 2009
book Deep Space Flight and Communications: ESA engineers pull back from showing
interest in ‘‘Star Trek telecommunications’’, as that still smacks of sci-fi too much!

17.15 HOW TO EAVESDROP ON ALIEN CHAT

Following the Paris First IAA Workshop on Searching for Life Signatures (held at
UNESCO, Paris, September 22–26, 2008, and organized by this author), the British
popular science magazine New Scientist published the following article on October
30, 2008, that well summarizes the key features of the present scientific discussion.

How to eavesdrop on alien chat

30 October 2008

From New Scientist Print Edition.

Jessica Griggs

ET, phone . . . each other? If aliens really are conversing, we are not picking up what they are

saying. Now one researcher claims to have a way of tuning in to alien cellphone chatter.

On Earth, the signal used to send information via cellphones has evolved from a single

carrier wave to a ‘‘spread spectrum’’ method of transmission. It’s more efficient, because
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chunks of information are essentially carried on multiple low-powered carrier waves, and

more secure because the waves continually change frequency so the signal is harder to

intercept.

It follows that an advanced alien civilisation would have made this change too, but the

search for extraterrestrial life (SETI) is not listening for such signals, says Claudio Maccone,

co-chair of the SETI Permanent Study Group based in Paris, France.

An algorithm known as the Fast Fourier Transform (FFT) is the method of choice for

extracting an alien signal from cosmic background noise. However, the technique cannot

extract a spread spectrum signal. Maccone argues that SETI should use an algorithm known

as the Karhunen–Loève Transform (KLT), which could find a buried conversation with a

signal-to-noise ratio 1000 times lower than the FFT.

A few people have been ‘‘preaching the KLT’’ since the early 1980s but until now it has

been impractical as it involves computing millions of simultaneous equations, something

even today’s supercomputers would struggle with. At a recent meeting in Paris called

Searching for Life Signatures, Maccone presented a mathematical method to get around

this burden and suggested that the KLT should be programmed into computers at the new

Low Frequency Array telescope in the Netherlands and the Square Kilometre Array

telescope, due for completion in 2012.

Seth Shostak at the SETI Institute in California agrees that theKLTmight be the way to

go but thinks we shouldn’t abandon existing efforts yet. ‘‘It is likely that for their own

conversation they use a spread-spectrummethod but it is not terribly crazy to assume that to

get our attention they might use a ‘ping’ signal that has a lot of energy in a narrow band—the

kind of thing the FFT could find.’’

‘‘It is likely that aliens use the same spread-spectrum method of transmission as us on

their cellphones.’’

From issue 2680 of New Scientist magazine,

30 October 2008, p. 14.

17.16 CONCLUSIONS

Let us summarize the main results of this chapter.
When the stochastic process XðtÞ is stationary (i.e., it has both mean value and

variance constant in time), then there are two alternative ways to compute the first
KLT dominant eigenfunction (i.e., the roughest approximation to the full KLT
expansion, which may be ‘‘enough’’ for practical applications!):

(1) (long way)—either you compute the first eigenvalue from the autocorrelation and
then solve the huge (N 2) system of linear equations to get the first eigenfunction;

(2) (short way¼BAM)—or you compute the derivative of the first eigenvalue with
respect to T ¼ N and then Fourier-transform it to get the first eigenfunction.

In practical, numerical simulations of the KLT it may be much less time-consuming
to choose option (2) rather than option (1).
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In either case, the KLT of a given stationary process can retrieve a sinusoidal
carrier out of the noise for values of the signal-to-noise ratio (SNR) that are three
orders of magnitude lower than those that the FFT can still filter out. In other words,
while the FFT (at best) can filter out signals buried in noise with an SNR of about 1
or so, the KLT can, say, filter out signals that have an SNR of, say, 0.001 or so.

This is the superior achievement of the KLT over the FFT.
The BAM (Bordered Autocorrelation Method) is an alternative numerical

technique to evaluate the KLT of stationary processes (only) that may run faster
on computers than the traditional full-solving KLT technique. In this chapter we
have provided the results of numerical simulations that show, by virtue of the BAM,
how the KLT succeeds in extracting a sinusoidal carrier embedded in a lot of noise
when the FFT utterly fails.
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