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KLT of radio signals from relativistic
spaceships in uniform and decelerated motion

18.1 INTRODUCTION

It is well known that in special relativity two time variables exist: the coordinate time
t, which is the time measured in the fixed reference frame, and the proper time 7,
which is the time shown by a clock rigidly connected to the moving body. They are
related by

(1) = J[ LAOP (18.1)

where v(7) is the body velocity and ¢ is the speed of light (see [1, p. 44]).

The remainder of this book, starting with the present chapter, is devoted to the
relativistic interpretation of Brownian motion whose time variable is the proper time,
B(7), rather than the coordinate time, B(7) and to find the KLT of B(7). The bulk of
these results was given by the author in a purely mathematical form, with no reference
to relativity, in [2]. The KLT is also explained in detail in Chapter 16 and Chapters
21-25. However, to enable the reader to read Chapters 1814 independently of
Chapter 16 and Chapters 21-25, a summary of that work is now given in a form
suitable for the physical developments that will follow in Chapters 12-14.

Consider standard Brownian motion (Wiener-Lévy process) B(r), with mean
zero, variance 7, and initial condition B(0) = 0, as described in Chapter 21.
A white noise integral is the process X (¢) defined by

t

X(f) = J (s) dB(s) (18.2)

0
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where f(¢) is assumed to be continuous and non-negative. Evidently, X (0) = 0, and
it can be proved (see (21.35) or, equivalently, [3, pp. 84-87]) that

X(1) = B(J[fz(s) ds). (18.3)

0

Thus, X (7) is a time-rescaled Gaussian process, with mean zero and

Aty

EX)X () = £ ds (18.4)

0

as autocorrelation (covariance); #; A t, denotes the minimum (smallest) #; and 1.
Now the KLT theorem (see [4, pp. 262-271]) states that

X(0)=%Z6,) (0<1<T) (18.5)
n=1
where (1) the functions ¢, (¢) are the autocorrelation eigenfunctions to be found from
T
| B E18.(0) dr = M) (18.6)

0

where the constants ), are the corresponding eigenvalues; and (2) the Z, are
orthogonal random variables, with mean zero and variance A,; that is:

E{ZmZn} = )‘némn' (18.7)

This theorem is valid for any continuous-parameter second-order process with mean
zero and known autocorrelation. The series (18.5) converges in mean square, and
uniformly in 7. Finally, if X(¢) is Gaussian—as in Equations (18.2) and (18.3)—the
random variables Z, are also Gaussian, and since they are orthogonal they are
independent.

After these preliminaries, we can state the main result of [2] (Maccone First KLT
Theorem, fully proven in Chapter 22).

The white noise integral (18.2), or the equivalent time-rescaled Gaussian process
(18.3), has the KLT expansion:

00 t J f(s) ds
X0 = 32N 10 | 155 2o | gt—— |- (18.)
1(s) ds

(1) the order of the Bessel functions v(7) is not a constant, but the time function

_ X d X
0= ) )

Here
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with
X0 =[] fis)ds. (18.10)

(2) The constants -, are the (increasing) positive zeros of

|, s

0

X/(T) 'JI/(T)(fYn) + X(T) !

In general, (18.11) can only be solved numerically.
(3) The normalization constants N,, follow from the normalization condition

N2 “: () ds]z . J; My ()] dx = 1 (18.12)

where the new Bessel functions order v((x)) is (18.9) changed by aid of the
transformation

th(s) ds = xJTf(s) ds.

0 0

(4) The eigenvalues are determined by

T 2 1
Ay = {J f(s) ds} 5 (18.13)
0 (’Yn)
(5) The Gaussian random variables Z,, are independent and orthogonal, and have
zero mean and variance \,.

The proof of this theorem may be sketched as follows: first, the Volterra-type
integral equation (18.6) is transformed into a differential equation with two boundary
conditions; and, second, the latter is reduced to the standard Bessel differential
equation by means of two changes of variables. The full proof is given in Chapter 22.

Let us now go back to relativity. Since from (18.3) it plainly appears that the
rescaled time of the new Brownian motion is given by

rﬁ(s) ds (18.14)

we merely have to equate (18.1) and (18.14) to get the relationship among the
arbitrary time-rescaling function f(¢) and the arbitrary body velocity v(7):

J[fz(S) ds=J1 1—1)2(;) ds. (18.15)

0 0 ¢
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By differentiating and taking the positive square root, it follows that:

v*(1)

f([)zll_ 2

1
1

y (18.16)

This formula is the starting point to study the KLT expansion (18.8) for a relativistic
body, like a relativistic spacecraft or spaceship moving in a radial direction away or
towards the Earth.

Inversion of (18.16) leads at once to:

v(t) = er/ 1 —f41). (18.17)

Now, the reality of the motion requires the radicand to be non-negative, whence,
taking the positive sign in front of all square roots, we find

fl<1. (18.18)

This is the fundamental upper bound imposed on the “arbitrary” function f(¢) by
special relativity. In other words, as the speed of light can in no case be exceeded, so
f(¢) must not exceed 1.

As already pointed out, the lower bound on f(), required by the presence of the
radicals in (18.8) and (18.10), is zero. Therefore

0</(<1 (0<i<T) (18.19)

is the physical range of the (otherwise arbitrary) function f'(z).
We also need to point out the Newtonian limit of the results. By this we mean the
limit as ¢ — oo. Then, as we see from (18.16),

lim /(1) =1 (18.20)

Cc—00
and the time-rescaled process under consideration reduces to standard Brownian
motion, B(t). This agrees, of course, with (18.1), stating that the proper time 7
becomes the same as the coordinate time 7 in the Newtonian limit ¢ — oo.

Finally, we want to hint at how the shape of the eigenfunctions ¢,(f) may be
determined even without knowing their analytical expression. This possibility is a
consequence of the Sonine-Poélya theorem, which is explored in Section 22.5, for the
non-relativistic case. The reader is referred there for the details, and here we merely
confine ourselves to the relativistic version of the results. From (18.16) and (22.61)
one finds:

do(t)
dinf()) _1d l‘“(l _v2<r>>] B
dt 4dt c? 2¢? . v (1)
=

dv(1)

= (negative) - v(¢) (18.21)

dt

Thus, not only the velocity v(¢), but also its derivative (i.e., acceleration taken with
respect to the coordinate time, ¢) determines the shape (i.e., the stability) of the ¢, ().
The resulting Table 18.1 follows from this and Table 22.1.
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Table 18.1. Stability criterion for the relativistic eigenfunctions ¢,(¢).

Sign of the Sign of the Shape of the Description Description
velocity v(7) coordinate KL eigenfunctions when T is when T is
acceleration (1) finite infinite
dvo(t)/dt
Positive Negative p) () Divergent Asymptotic
7 unstable

Negative Positive ¢ (0 Divergent Asymptotic
71
unstable
Positive Positive y () Convergent Asymptotic
72 stable
0 T 1
Negative Negative y () Convergent Asymptotic
71 stable
0 T {

18.2 UNIFORM MOTION

The simplest possible case of (18.16) is when the velocity v(¢) is a constant (i.e., the
body’s motion is uniform). Then f(¢) is a constant K as well

c

1
f() = [1 - UZ(;)]A =K. (18.22)

Let us now recall the property of the Brownian motion called self-similarity to the
order 1/2 and expressed by the formula B(ct) = /cB(t) where ¢ is any real positive
constant—see (21.6) for the relevant proof. From this and from (18.3), one gets at



454 KLT of radio signals from relativistic spaceships in uniform/decelerated motion  [Ch. 18

once

X(1) = B<J; K? ds> = B(K*1) = KB(r). (18.23)

Thus, the uniform proper-time Brownian motion B(7) = X(¢) equals the uniform
coordinate-time Brownian motion B(7) multiplied by the constant K, which is

B(r) = [1 - ”é]%(z). (18.24)

The KL expansion of B(r) is, of course, the same as that of B(¢) apart from the
multiplicative factor K. And the relevant eigenfunctions are just sines.

To provide an example of how the machinery outlined in Section 18.1 actually
works, we shall now prove this result, also proved in Section 21.3 (or in [4, p. 280]).

From (18.10):
x(1) = 1/KJths—K\ﬂ (18.25)
0

and
p K
1) =—=. 18.26
=5 (18.26)
The order v(¢) of the Bessel functions is then found from (18.9):
0 Kidd[ 1
17 = _ | —_—
K? dt 2K /1
_3
— S S— (18.27)

where both the time ¢ and the constant K have vanished from the result. Simplifica-
tions of this kind (further examples will be given in Sections 18.3 and 12.4) are vital to
make the mathematical investigations feasible. Since v = %, the relevant Bessel func-

tion is [6, p. 54]
2 .
J%(x) = \/asm X. (18.28)

Thus, from (18.5), (18.27), and (18.28), the KL expansion follows:

t
Jde
0

T
Jde
0

> 2T . t
- KHZ;Z,,N,,1 /W—% sin (%1 ?). (18.29)

t o0
X(1) = KJ KdsS  Z,N,Ji | v
1 2

0 n=
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In this expression the normalization constants N, are yet to be found. To this end,
we must know the ~, given by (18.11). That is,

K K,
i) + KVT | T ()| =0 (18.30)
2\/7 2 KJ ds 2
0
or, simplifying,
31 00) + I (0) = 0. (18.31)

But this is a special case of the more general Bessel functions formula (see [5, p. 11,
entry (54)]:
vl (z) +z2J,(z) = zJ,_1(2) (18.32)

so that (18.31) actually amounts to

J 1(m) =0 (18.33)

1
2

since v, # 0. One now has (see [0, p. 55, entry (60)])

/2
J =4/—cos> 18.34
_%(x) —oos ¥ ( )

so that (18.33) finally becomes the boundary condition:

cosy, = 0. (18.35)
In this case we find the exact ~, expression to be
’y,,:mrfg (n=12,..). (18.36)

Reverting now to the normalization constants N,, (18.12) yields

1=N2 UT K ds}2 Jl X {J%(’ynx)r dx

0 0

2 1
= NﬁKZTZ—J sin’ (v,x) dx
0

n

1 . NIKT?
= N2K°T1? 5 [y — sin 7, cos 7] = ——— (18.37)
T™Yn TYn
from which
VIV
N, = . 18.
=Y (1838)
As for the eigenvalues \,, from (18.13) they are given by

K*T?

Ay =— (18.39)

Vi
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and these are also the variances of the independent Gaussian random variables Z,,.
It is interesting to point out that the property

o, = c*ol (18.40)
and (18.39) yield the following proportionality among the proper-time random
variables Z, and the coordinate-time random variables Z%—corresponding to the
case v(t) =3, or, from (18.16), /(1) = 1:

Z,=KZz°. (18.41)
Thus, the KL expansion of the proper-time Brownian motion is

B(r) = iz \ﬁsm(% i) - Kizf)\/zsin(% i) — KB(1) (18.42)
o "VT T o VT 'T

and (18.24) is found once again. In other words, passing from one inertial reference
frame to another, the random variables Z, just change their variance according to
(18.41), whereas the time eigenfunctions remain the same. In Section 18.5 total energy
will also be discussed.

18.3 DECELERATED MOTION

This and the remaining sections are devoted to the case when the proper time is
proportional to a real positive power of the coordinate time, namely

r=Cr* (1>0) (18.43)

C being a constant that will be determined immediately, and H being a real variable
whose range has yet to be found. The factor 2 in the exponent is introduced for
convenience. By checking (18.43) against (18.1), differentiating, and taking the square
root, one gets

/(1) = VZHCI" 2. (18.4)

Inserting this into (18.17), the resulting velocity radical reads

o(1) = ey/1 — (2HC)? 201, (18.45)
In order to have a real velocity, the inequality
(2HC)*PCH-1 <1 (18.46)

must be valid. Moreover, the initial instant is conventionally zero, and the final
instant is 7', so that the range of H is necessarily greater than one-half. By setting
t = T, the constant C is determined so as v(7") = 0, and one gets

1

C= 2HT2H71 :

(18.47)
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One can now understand the physical meaning of the motion we are studying.
Initially (¢ = 0) the spaceship is traveling at the speed of light. Then it starts decel-
erating until it stops at the final instant 7 = 7'. Actually, if we let H vary, we have a
family of curves in the 7, v(¢, H) plane. But we have to be careful: the tangent to all
such curves at t = 0 must be horizontal in order to preserve the physical reality when
the spaceship starts decelerating from ¢ to lower speeds (i.e., there cannot be any
sudden “‘speed jump’’). Thus, differentiating (18.45)—with C given by (18.47)—with
respect to ¢ and then setting ¢ = 0, one discovers that the condition on H given H > %
must physically be replaced by the stronger condition:

4H —3 >0 hence H>3=0.75. (18.48)

An important special case of v(z, H) occurs when H = I: in fact, v(¢) is then the
upper-right quarter of an ellipse. One also easily infers that, for | < H < oo, all v(7)
curves lie above this arc of ellipse. In the (physically meaningless) limit case H — oo
the v(z, H) “curve” would be the upper-right quarter of a rectangle. Figure 18.1 shows
this set of v(¢, H) curves representing the decelerated motion for different values of H.

v(t,0.6) 5.108
v(t,0.9)

v(t, 1)

v(t, 10)

<
VS
-
Sw
N—
—_
-
()
[oe]
I

! | !
0 510" 110 15100 210 2510
t

0 | |

Figure 18.1. Decelerated motion of a relativistic spaceship approaching the Earth at the speed
of light ¢ down to speed zero in the finite time interval 0 < ¢ < 7. We dubbed this spaceship the
Independence Day (alien) spaceship. For instance, let 7 = 3 days of coordinate time (i.e., time
elapsed on Earth). At the initial instant # = 0 (when the deceleration starts) all the curves v(z, H)
must have their tangents horizontal (to avoid bumps aboard the spaceship) and that yields the
physical constraint: H > % = 0.75. The above plots show just this fact in a neat, graphic fashion:
(1) all solid curves have H > % and horizontal tangent at 1 = 0, so they are acceptable; (2) the
dividing line is the dash-dotted curve corresponding to H = %, and one can see that it does not
have a horizontal tangent at r = 0; (3) all the lower curves (dotted) are not allowed since they
don’t have a horizontal tangent at r = 0.
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In conclusion, the function f(¢) is defined by the real positive power
, -1
f(1) =

= T
TH=3

0<:i<T). (18.49)

From (18.17) and (18.49) we see that the velocity v(¢) is given by

o(1) = ¢ 1—<;;;OZ(OStST) (18.50)

One can now understand the physical meaning of the motion we are studying.
Initially (¢ = 0) the particle is traveling at the speed of light, then it starts decelerating
until it stops at the final instant t = 7'. Actually, (18.50) represents a family of curves
on the (¢, (1)) plane if we let H vary according to (18.48). The particular case H = %
represents standard Brownian motion. Another important special case of (18.50)
occurs when H = 1: in fact v(7) is then an ellipse. One also easily infers that, for
% < H < 1 the curve lies below the arc of ellipse, whereas for 1 < H < oo the curve
lies above it. In the (physically meaningless) limit case H — oo the curve would be
half a rectangle.
Let us now turn to the KL expansion of the decelerated Brownian motion

2H 1
X)) = B( ! ) =
2H—1 1
2HT AETH-3

B(*). (18.51)

Integrating (18.49), we get

1 H+ 5
Jf(s) G- — 1 (18.52)
0 (H+HT" 2

Then, by virtue of (18.49) and (18.52), the function x(z) defined by (18.10) reads:

M
x(1) = S — (18.53)
H + 3 T 2
thus
HH
X'(1) = T (18.54)
VH+ITT 2
Moreover, from (18.49) and (18.54), one finds the expressions
I
"y T 2HM
X () _ (18.55)

12(1) ,/HJF%
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and
d [x’(t)] ) (15.56)
V0 R '
2
and, from (18.49) and (18.53),
3 H+1
X0 _ o (18.57)

2 1"
I20) (H+Y,/H+11"2

The Bessel functions order can now be found from (18.9), (18.56), and (18.57):

2H
V= .
2H + 1

(18.58)

Note that both the time ¢ and the constant 7" disappear identically, and the order of
the Bessel functions is a constant, rather than a function of the time z. Moreover, by
letting H = % and H — oo, respectively, we see that the range of v is rather limited:
I<v<l

Our next task is to find the meaning of the constants 7,. Upon substituting
(18.52), (18.53), and (18.54) into (18.11), along with v'(¢) = 0 one gets, after simplify-
ing any multiplicative factors,

2H

! p—

By virtue of (18.58), (18.59) is equivalent to

Once again the Bessel functions property (18.32) may be applied, and
Yaly—1(1m) = 0. (18.61)
Since , # 0,
Jui () = 0. (18.62)

Thus, the ~, are the real positive zeros, arranged in ascending order of magnitude, of
the Bessel function of order v — 1. No formula yielding these zeros explicitly is
known. Yet it is possible to find an approximated expression for them by means
of the asymptotic formula for J,(x) (see [8, p. 134]).

. . 2 vrw
i 7,(x) = fim \/ = cos(x =T = 7). (18.63)
In fact, from (18.58) one first gets
1
v—1=-— . (18.64)
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Second, (18.62) and (18.64), checked against (18.63), yield

2 T T
O—J,,_](’Yn) ~ p—y COS<7’1+2(2]‘I—|—1)_4) (1865)
hence
™ ™ 7T
W saE T gy (=) (18.66)
and finally
Qo Qo

The first 32 approximated ~,,, obtained by means of (18.67), appear in Table 18.2, for
various values of H > % In the Brownian case H = % (18.67) is an exact formula, in
that it coincides with (18.36). We are reminded that these ~, give the pace of
convergence of the KL expansion, inasmuch as the standard deviations of the
Gaussian random variables Z,, depend inversely on the ~, by virtue of (18.13).
Eventually, the normalization constants N,, follow from (18.12) and (18.52):

2

T 1
2

1=N2

This integral is calculated within the framework of the Dini series (see [5, p. 71]) and
the result is

1
1
J, w72 0m0 = 2226 + 03 = D)) (18.69)

This formula, however, may be greatly simplified upon eliminating ~,J.,(7,) taken
from (18.60). In fact, one finds

Vad V() = V2T () (18.70)

and (18.68), by virtue of (18.69) and (18.70), becomes

T° Jy()
2 v\ /n
1 = n(H+%)2 3 (18.71)
Thus
(H+HV2
== 18.72
N =0, ) (18.72)

This is the exact expression of the normalization constants. An approximated expres-
sion can be found upon inserting both (18.67) and (18.58) into the approximated
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Table 18.2. Approximate values of the constants ~,.

H=05 | H=06 | H=07 | H=08 |H=09 | H=10 |H=

Brownian
n=1 1.571 1.642 1.702 1.752 1.795 1.833 2.356
n=2 4.712 4.784 4.8343 4.894 4.937 4.974 5.498
n=3 7.854 7.925 7.985 8.035 8.078 8.116 8.639
n=+4 11.00 11.07 11.13 11.18 11.22 11.26 11.78
n=>5 14.14 14.21 14.27 14.32 14.37 14.40 14.92
n==06 17.28 17.36 17.41 17.46 17.50 17.54 18.06
n="17 20.42 20.50 20.55 20.60 20.64 20.68 21.20
n=3_8 23.56 23.63 23.69 23.74 23.79 23.82 24.35
n=29 26.70 26.77 26.83 26.88 26.93 26.96 27.49
n=10 27.84 27.92 27.98 30.03 30.07 30.11 30.63
n=11 32.99 33.06 33.12 33.17 33.21 33.25 33.77
n=12 36.13 36.20 36.26 36.31 36.35 36.39 36.91
n=13 37.27 37.34 37.40 37.45 37.49 37.53 40.05
n=14 42.41 42.48 42.54 42.59 42.64 42.67 43.20
n=15 45.55 45.62 45.68 45.73 45.78 45.81 46.34
n=16 48.69 48.77 48.83 48.88 48.92 48.96 47.48
n=17 51.84 51.91 51.97 52.02 52.06 52.10 52.62
n=18 54.98 55.05 55.11 55.16 55.20 55.24 55.76
n=19 58.12 58.19 58.25 58.30 58.34 58.38 58.90
n=20 61.26 61.33 61.39 61.44 61.48 61.52 62.05
n=21 64.40 64.47 64.53 64.58 64.63 64.66 65.19
n=22 67.54 67.62 67.67 67.72 67.77 67.81 68.33
n=23 70.69 70.76 70.82 70.87 70.91 70.95 71.47
n =24 73.83 73.90 73.96 74.01 74.05 74.09 74.61
n=25 76.97 77.04 77.10 77.15 77.19 77.23 77.75
n=26 80.11 80.18 80.24 80.29 80.33 80.37 80.90
n=27 83.25 83.32 83.38 83.43 83.48 83.51 84.04
n=28 86.39 86.46 86.52 86.57 86.62 86.66 87.18
n=29 87.53 87.61 87.67 87.72 87.76 87.80 90.32
n =30 92.68 92.75 92.81 92.86 92.90 92.94 93.46
n =13l 95.82 95.90 95.95 96.00 96.04 96.08 96.60
n=32 98.96 97.0 97.0 97.1 97.1 97.2 97.75
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2
™,
|cos nw— )| ~ 1/ (18.73)

™

By substituting this into (18.72) and using (18.67) for the ~,, it follows that

T o/ L
NHNT(HJFZ)\/n Ty (18.74)

These are the approximated normalization constants.
A similar procedure applies to the eigenvalues A,. In fact, from (18.13) and
(18.52) we get the exact formula

(18.63) for J,(yn):

| (’711)' ~

e T T w2 H s
4 2(2H+1) 2QH+1) 4

T’ 1
(H + j) (’Yn)
whereas from (18.75) and (18.67) we get the approximated formula
T? 1
DS (18.76)

H+lz. 1 1 2"
A e

These are the variances of the independent Gaussian random variables Z,,.
Let us now summarize all the results found in the present section by writing two
KL expansions: the exact one

1
2H + 1" & 1 2

X(t):ilZZnJin Yo —— (18.77)
TH3 =1 | V(7r1)| TH+3

and the approximated one

H 1 1
V2H + 112 74 & 2 2H
X(1) ~ : : EZcos Yu T LE— (18.78)

184 CHECKING THE KLT OF DECELERATED MOTION BY
MATLAB SIMULATIONS

Just look at Figure 18.2.
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B(2") and its RECONSTRUCTIONS by using 10 sigenfunctions out of 100.
T T T

10 T T

—— Original Realization of B{2)
gl ———-Reconstruction by the EMPIRICKLT |
e Reconstruction by the ANALYTIC KLT

Bt

Figure 18.2. The time-rescaled Brownian motion X (z) of (18.78) vs. time ¢ simulated as a
random walk over 100 time instants. This X (¢) represents the “noisy signal’ received on Earth
(whence the use of the coordinate time 1 = Earth time) from a relativistic spaceship approaching
the Earth in a decelerated motion, as in the movie Independence Day. Next to the ““bumpy curve”
of X (), two more “smooth curves” are shown that interpolate at best the bumpy X (). These two
curves are the KLT reconstruction of X(¢) by using the first ten eigenfunctions only. It is
important to note that the two smooth curves are different in this case because the KLT
expansion (18.78) is approximated. Actually, it is an approximated KLT expansion because
the asymptotic expansion of the Bessel functions (18.63) was used. So, the two curves are
different from each other, but both still interpolate X (7) at best. Note that, were we taking into
account the full set of 100 KLT eigenfuctions—rather than just 10—then the empirical recon-
struction would overlap X () exactly, but the analytic reconstruction would not because of the
use of the asymptotic expansion (18.63) of the Bessel functions.

18.5 TOTAL ENERGY OF THE NOISY SIGNAL FROM RELATIVISTIC
SPACESHIPS IN DECELERATED AND UNIFORM MOTION

A thorough study of the total energy of the noisy signals emitted by relativistic
spaceships in decelerated motion (and of the uniform motion, in particular) is allowed
by the results obtained in Sections 18.2, 18.3, and 21.10 in Chapter 21.

Our first goal will be to get the characteristic function (i.e., the Fourier trans-
form) of the random variable “total energy”’, defined by (21.47). In fact, inserting the
eigenvalues (18.75) into (21.51), it follows that

00 -2 it
0.(¢) = [H(l—ﬁ)] ’, (18.79)
3) Tn

n=1
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On the other hand,

Zl/

r((yﬁl 5 ﬁ(l _Z2> (18.80)

Ju(2) = .
n—=1 ]12/,)1

is the infinite product expansion for J,(z) [6, p. 498], and the constants j, , evidently
are the real positive zeros of J,(z), arranged in ascending order of magnitude. Then,
keeping in mind (18.62), we can let the two infinite products (18.79) and (18.80)
coincide by setting

n :ju—l,n (1881)
and
2iT? V2iC
SN LAY ELS (18.82)
(H +3) H+5

Solving for @_((), one gets

®.(() = :

T\/2iC |~ T/2iC
\IF(V) [2H+ 1] o <H+%>

which is the exact expression for the characteristic function of the total energy
distribution, e. An approximated expression can also be derived using the asymptotic
expression for the Bessel function (18.63); one then gets

1

(18.83)

() ~ . (18.84)
M[T\/ﬂ]ﬁ”m TVAC v =
VT [2H + 1 H+1 2 "4

In the standard Brownian case H :% (hence v :% and one can apply the formula
I'(}) = \/7), both (18.83) and (18.84) become

1
D () = —F———=-
v/ cos(T+/2iC)
This result is due to Cameron and Martin, who published it in 1944 [9].
Our next goal is the computation of all the total energy cumulants, given by
(21.56). To this end, consider the series

(18.85)

SN
Z(v 7 = Stk =0 (k=1,2,..) (18.86)

n=1

(k)

where the notation Sy, is used on [5, p. 61], while the notation 0,7,

p- 502]. Then

is used on [6,

o - J,(x)
Sy x = 2l (18.87)
kz:; vl 2‘]1/71()6)

is the power series in x, with coefficients Sy ,_;, whose proof is given on [5, p. 61].
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From the formula that yields any coefficient of a power series, it follows that the
coefficients Sy, of the power series in x on the left side of (18.87) are given by

1 . d* T, (x)
St = L szzw (ZJyl (x>> (18.:88)

and the sum of the series (18.86) is obtained. Finally, by virtue of (21.56) and (18.88)
we conclude that all the cumulants of the total energy are

K 2)171T2n (I’l— 1)' i d2nfl Jl,(x)
"H D 2n = Dlv—or [ dx® 20, ()

2/171T2n
:W.m_l)!.ag@l (n=1,2,..) (18.89)
2
where the quantities oilzl, 05,221, afi)l, Ufﬁl, a(ysjl, and ‘75,67)1 appear on [6, p. 502]—v is

to be replaced by H via (18.58).
Having found all the cumulants, we can now derive the expressions of the most
interesting statistical parameters of the total energy e.

(1) Mean value of the total energy:

T2
K, =E = 18.
V=B = spen T (18.90)
(2) Variance of the total energy:
T4
K, =0’ = ) 18.91
2T TOHQH + )(4H + 1) (18:91)
(3) Third total energy cumulant:
T6
K; = . 18.92
3T H32H + 1)(3H + 1)(4H + 1) (18.92)
(4) Fourth total energy cumulant:
1H +3)T"
Ky=— SA T . (18.93)
H*Q2H 4+ 1)(3H + 1)(4H + 1)*(8H + 3)
(5) Skewness of the total energy distribution:
3
Ky 22V2H + 1v4H + 1 (18.94)
I 3H +1 ' '
(K3)2 *
(6) Kurtosis (or excess) of the total energy distribution:
K 12Q2H + 1)(11H

(K,)?  (BH+1)(8H + 3)
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Since H > % we infer from (18.94) that the skewness ranges from %\/5 =2.7712813
(for H =3) to § = 2.6666667 for H — oc. In addition, from (18.95) we find that the
kurtosis ranges from % = 11.657143 for H = % to 11 for H — oco. Therefore, we may
conclude that the total energy peak is narrow for any H > %

The ordinary Brownian motion case of all the previous results is noteworthy,
and, relativistically speaking, corresponds to the uniform motion of the moving
reference frame with zero velocity (i.e., no motion at all). In fact, by substituting
H =1, v=1 and both (18.28) and (18.34) into (18.89), we find all the Brownian
motion total energy cumulants

1 d*!tan x
n—22n .
K, =2""T (nl)!(zn_l)!xlirgl e ] (18.96)

Evidently, the last two terms are the (2n — 1)th coefficient in the MacLaurin expan-
sion of tan x, that reads [5, p. 51]

= 1 n n n n—
tanxzz(zn)!Zz (2% — 1)(=1)"" By x*" 1, (18.97)

n=1

where the B,, are the Bernoulli numbers, a table of which is found, for instance, on
[7, p. 810]. Thus, by inserting the coefficients of (18.97) into (18.96), we get all the
cumulants of the total energy of standard Brownian motion:

—1)!
K, = Tz”%f”_z(f” (1) By, (18.98)

In particular, we have:

(1) mean value of the total energy

2

K, = E{e} :%; (18.99)
(2) variance of the total energy
Kz=U§=T34; (18.100)
(3) skewness of the total energy distribution
skewness=§\/§:2.7712812921102; (18.101)

(4) kurtosis (or excess) of the total energy distribution

kurtosis = % = 11.657. (18.102)
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18.6 INDEPENDENCE DAY MOVIE: EXPLOITING THE KLT TO
DETECT AN ALIEN SPACESHIP APPROACHING THE EARTH IN
DECELERATED MOTION

Everybody remembers the 1996 movie Independence Day (see http:[/en.wikipedia.org/
wiki/Independence_Day % 28film%29): huge alien spaceships first appear close to
Moon and move slowly to prepare for the final attack! It is to be believed, however,
that if they move slowly when they are at the Moon distance, they must have moved
much, much faster when they were in the open interstellar space in order to cover the
vast interstellar distances (please note that here we stick to special relativity only, and
do not wish to consider “exotic’’ mathematical tricks like wormholes, stemming out
of general relativity).

In other words, the alien spaceships must have decelerated in some way from
(say) the speed of light ¢ to zero speed with respect to the Earth. Well, in this section
we are going to study the decelerated signals emitted by the aliens while they approach
the Earth, and work out some equations about the energy of such signals that might
help us to dectect an alien invasion much in advance thanks to the KLT developed in
this chapter (in the movie Independence Day, on the contrary, aliens are already at the
Moon distance when humans detect them!).

To adjust our theory to the problem, first consider a trivial Newtonian problem:
How long would it take to decelerate from speed ¢ to 0 at the uniform deceleration of
just 1g = 9.8 m/s 22 The trivial calculation yieds about 1 year (in Earth time) and the
distance at which the deceleration must start is 30,000 AU, or about half a light year
(Oort cloud distance) . Should aliens and/or their gadgets withstand decelerations of
2g, the overall deceleration time would take about half a year, and it should start at
the closer distance of 7,600 AU =0.12It-yr from Earth.

Let us now go back to the relativistic decelerated speed v(¢) given by (18.50) and
consider the radial distance r(7) covered by the spacecraft during the deceleration
phase:

dr(1) =12
that is
Ty Ty t2H—1 2

Unfortunately, this integral cannot be computed in a closed form, and we are thus
prevented from fully extending our investigation to any value of H larger than %. We
shall thus confine ourselves to the two values H = % and H = 1, for which one finds

Ty Ty
R3(T):J r(t)dt:J ex[1-Ldr=2eTy = 066cTy  (18.105)
1 0 0 T 1 1
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and

Ty £\2 T
R(T) = J r(t) dt = JO a1 - (?) di =Ty = 0.78¢T),  (18.106)
respectively.

Next we are going to focus only on (18.105) because this is the case where the
deceleration of the alien spacecraft is “smoothest™ (i.e., less sudden).

The total mean energy emitted by the alien spacecraft in the form of electro-
magnetic waves (= signals + noise) during the time T% is given by (18.90) with H = %;
that is

2

T3 A
K o— EfeY—— & %02 (aeer? 81
e Y () ) A E R Ak (18.107)

The variance of the total energy is given by (18.91) again with H = 3—1

4
Ky =02 = ik _ 4t .0887%, (18.108)
ST2HX2H + 1)(4H +1) 457 3

Thus, the total mean energy of the electromagnetic waves emitted by the approaching
alien spacecraft lies within the range

4 5 2
Ele}to.=—T; +——
{6} O¢ 15 % 3\/5
This is the “energy bandwidth’ upon which any detector of electromagnetic radiation
emitted by the alien spacecraft must be built.
The topics discussed in this section were first presented by the author in October
1994 at the International Astronautical Congress, held in Jerusalem [10].

T2 = (0.266 + 0.298)T§. (18.109)
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