

MFAA Architecture & Design Trade-offs

André Gunst (ASTRON)

Ministerie van Economische Zaken, Landbouw en Innovatie

SKA-TSM is supported by subsidies from the The Northern Netherlands Provinces Alliance (SNN), Koers Noord and the Province of Drenthe.

9 June 2017

- Sensitivity (Aeff/Tsys)
- Field of View

Survey Speed

- Cost
- Power

IDFREQUENCY APERTURE ARRAY From science to technical (1)

9 June 2017

IDEFREGUENCY APERTURE ARRAY From science to technical (2)

9 June 2017

IDEFREQUENCY APERTURE ARRAY From science to technical (3)

9 June 2017

MFAA Architectural Concepts

- Antenna type
- Analog tile digital tile
- Analog beamforming all digital
- Centralized distributed architecture
- Sparse/irregular dense/regular

9 June 2017

Architecture demonstrated by ...

9 June 2017

Architecture (to be) demonstrated by ...

LFAA

9 June 2017

Regular Dense Performance

9 June 2017

Indeficiency Aperture ARRAY Irregular Sparse Performance

9 June 2017

9 June 2017

Target AAMID Requirements

- Bandwidth: 450-1450 MHz
- (optical) Field of View: > 200 deg² @ 1 GHz
- Bandwidth beam product @ 1 GHz: 500*100 MHz deg²
- A/T > 10,000 m²/K
- Survey speed > $10^{10} \text{ deg}^2 \text{ m}^4/\text{K}^2$

Field of View

9 June 2017

AID-FREQUENCY APERTURE ARRAY

The Astronomers Dream ...

- Assumptions:
 - Processed FoV fixed
 - A/T fixed

Number of MFAA Stations Trade-off

- Large stations
 - small station beams
 - more digital beams required to synthesize the FoV
 - smaller amount of stations to correlate
- Small stations
 - large station beams
 - less digital beams required to synthesize the FoV
 - more stations to correlate
- Interesting fact
 - total data rate from MFAA to correlator is constant

Relations as function of Ns

- MFAA
 - Filterbank: constant
 - Beamformer: ~ Ns⁻¹
- Central Signal Processor
 - Filterbank: constant
 - Correlator: ~ Ns
- Science Data Processor (only driving ones)
 - Gridder: ~ Ns²
 - iFFT: Ns

- "Large FoV is great!", but not for free
 - MFAA trade-offs driven by SKA2 science trade-offs
- MFAA offers lots of flexibility
- Number of stations driven by processing costs

Contact details gunst@astron.nl

9 June 2017