# WBSPF – AIP Band B feed test results

Miroslav Pantaleev

On behalf of the Band B team

Miroslav Pantaleev AIP meeting, 8 - 9 June ASTRON, Dwingeloo



WIDE BAND SINGLE PIXEL FEEDS

#### Outline



- Introduction
- Feed design
- Beam pattern measurements
- Y-factor tests
- Performance analysis in SKA dish

## **Band B work package**

# VIDE BAND SINGLE PIXEL FEEDS

#### Feed design, performance analysis and system tests

- Electrical Jian Yang (Chalmers, Antenna Group) and Bin Dong (visiting researcher from NAOC)
- Mechanical Jens Dahlström (OSO)
- Performance analysis Jonas Flygare (OSO)
- System tests Magnus Dahlgren and Leif Helldner (OSO)

#### Low Noise Amplifiers - InP

Low Noise Factory – LNA prototyping

#### Low Noise Amplifiers - mHEMT

- IAF MMIC processing
- MPIfR LNA design and testing

#### **Beam Pattern Measurements**

- Yebes Observatory, Jose Antonio Lopes Perez
- Chalmers, S2, Antenna Group Jian Yang and Bin Dong

#### Requirements





Sensitivity requirement (Goal)

- Band A (1.6 5.2 GHz) : 6.5 m<sup>2</sup>/K (η ≈ 78%)
- Band B (4.6 24 GHz):

6.1 m<sup>2</sup>/K from 4.6 – 13.8 GHz (η≈70%)

4.7 TBC m<sup>2</sup>/K from 13.8 – 20 GHz ( $\eta \approx 65\%$ )

3.5 TBC m<sup>2</sup>/K from 20.0 – 24 GHz (η ≈ 60%)

- Polarization (IXR) better than 15 dB over HPBW
- Sampled Bandwidth
  - Band A: 1 x 3.6 GHz @ 12 GSPS for each pol., 6 bit
  - Band B: 2 x 2.5 GHz @ 50 GSPS for each pol., 3 bit

## **WBSPF** block diagram diagram





## Cryostat





#### **Cryostat design alternatives**





Original "single-body" concept



Sandy's concept for NgVLA



#### The Current Concept of the Cryostat for SKA WBSPF

The two feed are put in one cryostat

T\_feed and T\_LNA is 20K

Vacuum window: multi-layer Mylar

The feeds, thermal shielding, LNA and other parts are mounted from the bottom of the dewar, in order to ease the installation procedure.

Thermal load optimization / minimization is still challenging to maintain 20 K with 2 W of cooling power.



# Feed design

#### **Feed design**





- Spline-defined profiles using discrete points in CST
- Flared part 47 parameters
- Transition part 18 parameters
- Back short 10 parameters
- Genetic Algorithm used for the optimisation
- 5000 different sets of parameters evaluated

#### Feed back short design







- Four ridges with thickness of 1.5 mm
- Optimisation of the feed pin location
- Maintain small gap between ridges with large chamfering angle of 55.31 degrees
- Conical-shaped back short cavity to improve the wide bandwidth performance

## **Optimisation routine and optimisation strategy**





- Linked Matlab and CST to quick evaluate the performance
- Intermediate evaluation in MATLAB in primary fed axial-symmetric dish with half subtended angle of 51 degrees.
- Optimization goal is  $e_{ill} * e_{spill}$  followed by further optimization for improving spillover efficiency

#### Simulated beam patterns





- E, D and H plane cuts
- Co- and cross pol components are shown
- Improved mode content that results in better efficiency at the high end of the band

# Feed prototype













#### Feed performance – measurement results







#### Measurements with cryostat dummy



#### **Chalmers Port 1**



#### **Chalmers Port 1 (with Cryostat Dummy)**



**Band B Feed Efficiency in SKA dish** calculated from measured beam pattrens







# Band B InP LNA

LOW NOISE FACTORY







#### Measured Y – factor with Band B feed and LNA





#### Band B noise model and test results







# Sensitivity calculated with measured beam paterns and measured T\_rec



VIDE BAND SINGLE PIXEL FEEDS



# Thank you Questions?