Phased Array Feed
Development for the SKA

SKA AIP Meeting
8 June 2017
PAF Consortium
• Consortium Overview
• R&D Activities
 – Pharos2
 – “Rocket Array” & ASKAP Commissioning
 – PAFs in China
 – MPIfR
• Science
• Design Constraints
• PAF requirements
• Future Steps
• Challenges
• Conclusions
PAF Consortium Overview

Eight Consortium Members

- ASTRON
- University of Manchester / Jodrell Bank
- INAF
- University of Malta
- Chalmers University / Onsala Space Observatory
- CSIRO Astronomy & Space Science
- JLRAT
- MPIfR

In-kind Contributions

- 21.6 FTE-year
- ~700k Euro
Objectives

The PAF Consortium aims to:

- Report on room temperature & cryo PAF R&D projects occurring within the member institutes
- Develop & verify requirements and performance metrics for SKA PAFs
- Progress toward possible SKA PAF Concept Designs and CoDR
- Develop a solid science & business case to support SKA PAF design work under the SKAP ODP.

- System Requirements Review (SRR) - November 2017
- Conceptual Design Review (CoDR) - November 2018
Room Temperature or Cryogenic PAFs operating up to 20 GHz with:

- Improved system temperature
- Increased/wide bandwidth (observed and processed)
- Digitisation, real-time beam-forming, calibration and data-processing
- Cryogenic cooling
- Lower power consumption
- RFI mitigation techniques
- Low cost to manufacture & operate
- Ease of manufacturability & maintainability
- Weight reduction
- Heat dissipation
A 4000 to 8000 MHz Cryogenic PAF with

- 24 active elements → 4 single-pol beams
- Upgrade to new cryogenic LNAs
- 275MHz processed BW
- Tuneable LO down-conversion
- IF over Fibre (CWDM)
- Upgrade to digital beamformer

Aim to install PHAROS2 on the 76m Lovell telescope at Jodrell Bank Observatory in April 2018
“Rocket” PAF (CSIRO)

Mk. III PAF

• Optimised for 650 - 1650 MHz (3:1)

• Element based on a conical solid of revolution

• 5 x 4 array constructed as proof-of-concept

• Measured at Parkes on the 64m Telescope, but compromised by RFI

• Aim to remeasure using narrow band receiver later in 2017/18

• Plan to develop a full-size L-band cryogenic PAF in 2018 for the Parkes 64m telescope.

Analogue Beamformer Noise Temperature
Current Focus:

• **Beamforming** - generalised beamforming approaches including beam metrology & characterisation, beam-shape and calibration

• **Sensitivity Assessment** - goal to automate the evaluation of System Equivalent Flux Density (SEFD) every time ASKAP observes its primary flux calibration source

• **Astrometry** - to understand position offsets in known sources due to possibly the ionosphere, instrumental effects, un-modelled structure in the calibration field and/or cell size of the image

• **Data Validation** - exploring how to qualify data with known deficiencies

• **Metadata** - reviewing the information that is archived with the data
In April/May, MPIfR installed a CSIRO Mk II chequerboard PAF on the 100m Effelsberg Telescope.

Initially MPIfR will investigate and evaluate noise-minimisation and specific nulling techniques in an non-optimal RFI environment.

Ultimately MPIfR plan to use the PAF for pulsar and FRB searches and for wide-field imaging.

JLRAT is working on developing a cryogenically cooled 19 dual-pol (dipole) element PAF for the FAST telescope operating from 1050 - 1450 MHz.

The motivation is to produce high-performance beams to achieve better sensitivity and continuous sky coverage over the FOV.

Initially JLRAT will complete a theoretical study on the maximum achievable sensitivity for a given array.

JLRAT is also looking at a PAF with 31 dual-pol elements for the SKA DVAC.

A simulation study of the PAF on the SKA DVAC is proposed to investigate the gain and sensitivity. This is in addition to previous modelling of a PAF and SKA dish during the optimisation of the SKA dish optics.
Frequencies ≤ 1.6 GHz

- HI emission surveys
 - “A billion galaxy survey” to investigate Dark Energy
 - Study of Baryonic Acoustic Oscillations to shrink error bars on dark energy parameters
 - Intensity Mapping Survey to determine expansion and growth history of the Universe
 - Study of the Milky Way ISM ➔ Galaxy evolution
Science with Low Frequency PAFs

- Continuum Surveys & Polarisation
 - Precision Cosmology
 - Growth of super-massive black holes
 - Gravitational lens systems
 - High resolution imaging of weak lensing
 - Magnetic field studies & rotation measures

- Transients & Pulsars
 - Slow (imaging) transients
 - Pulsar survey → test of gravity, equation of state of matter
 - Fast (sub-second) transient detection*

Frequencies $\sim 4 - 8+ \text{ GHz}$

- Spectral lines studies
- Fast C-band continuum surveys, and polarization meas. in particular in the Galactic Plane (to improve existing surveys to $\sim 2.5'$ resolution)
- Flat spectra transients/pulsars, (e.g. magnetars)
- Excited rotational states of OH near 6.03 GHz: Zeeman effect, star formation
- CH3OH (6.7 GHz): survey of methanol masers, gas kinematics, UC HII region
- Formaldehyde line emission at 4.8 GHz
- Confusion limited polarization mapping of Galaxy Clusters and Supernova Remnants
- Hydrogen recombination lines around 5 GHz
- High Dispersion Measure pulsar searches toward the Galactic Centre and inner Galaxy
Dish have allowed for inclusion of a PAF in their design:

- PAF to use SPF Band 1 location on feed indexer
- \(\leq 1.6\text{m} \text{ diameter} \times \sim 500\text{mm} \text{ deep} \) (TBC)
- Weight up to 250kg (TBC)
- Axial mechanical de-rotation
- Power 1150W (TBC) on indexer; 2600W (TBC) for digitiser & beamformer \(\Rightarrow \) Too Low??
- Digitiser & beamformer located in separate RFI shielded bunker

Many of these parameters need to be verified \(\Rightarrow \) ECPs?
SKA-MID Feed Indexer
SKA-Mid PAF De-Rotation

- The SKA-Mid offset Gregorian antenna will require beam de-rotation.

- A system for mechanical de-rotation is planned on the indexer, but it's not clear that this is a viable since the beam weights will still require constant updating.

- Electrical de-rotation will most likely be needed instead.
Low Frequency PAF

Preliminary Requirements

- 475 - 1425 MHz (3:1)
- 950 MHz processed BW
- $T_{\text{sys}} \sim 15K$
- 30 beams @ 1 GHz
- 128 x 15m SKA-MID dishes
- ~200 ports (channels) or ~100 dual-pol elements (TBC)
- N ports/beam with N → 200, i.e. beam-forming using both polarisations

10 times increase in Survey Speed on SKA-MID
High Frequency PAF

Preliminary Requirements (TBC)

- 4600 - 13800 MHz (3:1)
- 950 MHz processed BW (TBC)
- \(T_{sys} \sim 15K \)
- 30 beams @ 13 GHz
- 128 x 15m SKA-MID dishes
- \(~200\) ports (channels) or \(~100\) dual-pol elements (TBC)
- N ports/beam with \(N \rightarrow 200 \)
- RF down-conversion \(\Rightarrow \) distributed LO?

Possible Band 5 replacement?
Future Steps

- Refresh the system requirements from the updated Science cases
- Verify all requirements and update relevant ICDs with SKA-MID
- Develop metrics for verifying the requirements

And Investigate ...

- methods for cryo-cooling a SKA PAF with consideration to power cost drivers
- direct digitisation - Xilinx RFSoC
- a PAF on the MPI SKA-Mid verification antenna in 2-3 years from now (TBC)

International PAF Workshop, CSIRO Sydney - November 14-16
Challenges

• Noise performance & bandwidth competitive with traditional feed horn based systems ➔ cryogenically cooled
• Sky de-rotation - electronic, software
• System cost - component, manufacturability, signal processing, maintainability, installation
• Cryogenic cooling
• System size & weight
• Power - total requirement, RFI, efficiency
• Cooling - power, weight, RFI, robust, cost
• Data transport & processing
• Beamforming algorithm development
• Calibration
Conclusions

• SKA Science
 – “require observational statistics on a very large scale” *, which is best done with a large field-of-view survey instrument.
 – cases appear strongest in SKA Band 1 and Band 5

• If the SKA1 cost control cuts Band 5 SPF, this may improve the case for Band 5 PAFs

• Cryogenically cooled PAFs hold the key!

• Advances in FPGAs (& GPUs) will help to reduce complexity and cost of the data processing, but it is not yet clear whether this will be enough. ASIC’s should also not be ruled out.

• There is still much to learn and R&D to be done.

* Torchinsky, S.A., “The Questions that Drive the Specifications”, SKADS Conference 2009
Acknowledgements

• Simon Johnston
• Alessandro Navarrini
• Alex Dunning
• Aaron Chippendale
• Douglas Haymen
• The PAF work package teams
• The Dish Consortium (Thomas Kusel, George Smit, et al.)

Thank You!