SKA2: some brief thoughts on survey science

Jess Broderick (ASTRON)

SKA2 is about exponential growth

Braun et al. 2015, AASKA14, 174

- Target (e.g. SKA Design Reference Mission):
 - Sensitivity (A/T)
 - > 10 000 m² K⁻¹ (~10x SKA1)
 - Survey speed (A/T)² x FoV
 > 10¹⁰ deg² m⁴ K⁻² (~10⁴x SKA1)

- Technological capability leads to discoveries in astronomy.
- A single technology saturates in capability.
- Innovation is needed to continue exponential growth!
- AIP technologies will result in exciting, cutting-edge science!

	SKA1	SKA2	
	Proto-planetary disks;	Proto-planetary disks;	
The Cradle of Life & Astrobiology	imaging snow/ice line (@ < 100pc),	sub-AU imaging ($@ < 150 \text{ pc}$),	
Hoare, M. et al. 2015	Searches for amino acids.	Studies of amino acids.	
PoS(AASKA14)115	Targeted SETI:	Ultra-sensitive SETI: airport radar	
	airport radar 10 ⁴ nearby stars.	10^5 nearby star, TV ~10 stars.	
		Gravitational wave astronomy of	
Strong-field Tests of Gravity with Pulsars and Black Holes Kramer, M. & Stappers, B. 2015 PoS(AASKA14)036	1st detection of nHz-stochastic	discrete sources: constraining galaxy	
	gravitational wave background.	evolution, cosmological GWs and	
		cosmic strings.	
	Discover and use NS-NS and PSR-	Find all ~40,000 visible pulsars in	
	BH binaries to provide the best tests	the Galaxy, use the most relativistic	
	of gravity theories and General	systems to test cosmic censorship	
	Relativity.	and the no-hair theorem.	
	The role of magnetism from sub-	The origin and amplification of	
The Origin and Evolution of Cosmic Magnetism Johnston-Hollitt, M. et al. 2015 PoS(AASKA14)092	galactic to Cosmic Web scales,	cosmic magnetic fields,	
	the RM-grid @ 300/deg ² .	the RM-grid @ 5000/deg ² .	
	Faraday tomography of extended	Faraday tomography of extended	
	sources, 100pc resolution at 14Mpc.	sources, 100pc resolution at 50Mpc.	
	$1 \text{ kpc} @ z \approx 0.04.$	$1 \text{ kpc} @ z \approx 0.13.$	
Galaxy Evolution probed by Neutral Hydrogen	Gas properties of 10 ⁷ galaxies,	Gas properties of 10 ⁹ galaxies,	
	$\langle z \rangle \approx 0.3$, evolution to $z \approx 1$,	$\langle z \rangle \approx 1$, evolution to $z \approx 5$,	
	BAO complement to Euclid.	world-class precision cosmology.	
	Detailed interstellar medium of	Detailed interstellar medium of	
Staveley-Smith, L. & Oosterloo, T.	nearby galaxies (3 Mpc) at 50pc	nearby galaxies (10 Mpc) at 50pc	
2015, PoS(AASKA14)167	resolution, diffuse IGM down to	resolution, diffuse IGM down to	
	$N_{\rm H} < 10^{17}$ at 1 kpc.	$N_{\rm H} < 10^{17}$ at 1 kpc.	
		Fast radio bursts as unique probes of	
	Use fast radio bursts to uncover the	fundamental cosmological	
	missing "normal" matter in the	narameters and intergalactic	
The Transient Radio Sky Fender, R. et al. 2015 PoS(AASKA14)051	universe.	magnetic fields	
	Study feedback from the most	inugitette tretus.	
	energetic cosmic explosions and the	Exploring the unknown: new exotic	
	disruption of stars by super-massive	astrophysical phenomena in discovery phase space.	
	black holes		
	Star formation rates	Star formation rates	
Galaxy Evolution probed in the	$(10 \text{ M} / \text{yr to } \text{z} \sim 4)$	$(10 \text{ M}/\text{yr to } z \sim 10)$	
Radio Continuum	(10 m ₀ , j1 to 2 - 1).	(10 m ₀ , jr to 2 - 10).	
Prandoni, I. & Seymour, N. 2015	Resolved star formation astrophysics	Resolved star formation astrophysic	
PoS(AASKA14)067	(sub-kpc active regions at $z \sim 1$)	(sub-kpc active regions at $z \sim 6$)	
	Constraints on DE modified gravity	Constraints on DF modified gravity	
Cosmology & Dark Energy Maartens, R. et al. 2015	the distribution & evolution of	the distribution & evolution of	
	matter on super-horizon scales	matter on super-horizon scales.	
	competitive to Fuclid	redefines state-of-art	
PoS(AASKA14)016	Primordial non-Gaussianity and the	Primordial non-Gaussianity and the	
	matter dipole: 2× Fuelid	matter dipole: 10× Fuelid	
	matter upplie, 25 Ettend.	Direct imaging of Cosmic Dawn	
	Direct imaging of EoR structures	structures	
Cosmic Dawn and the Epoch of Reionization Koopmans, L. et al. 2015 PoS(AASKA14)001	(z = 6 - 12).	(z = 12 - 30)	
	Power spectra of Cosmic Dawn	(2 12-50).	
	down to arcmin scales	First alimnse of the Dark Ages	
	nossible imaging at 10 arcmin	(7 > 30)	
	possible imaging at to archith.	(2 ~ 50).	
	1	1	

[x B]

- * Billion galaxy surveys (continuum and HI)
- * Tens of millions of rotation measures (cosmic magnetism)

* Detailed studies of ~hundreds of nearby galaxies (+ cosmic web, Milky Way, etc.)

How are we going to meet the (very) challenging requirements to do these projects in a timely manner?

For example, SKA2-MFAA requirements: Torchinsky, Broderick et al. 2016, arXiv:1610.00683

HI surveys (21-cm spectral line)

- All-sky billion galaxy survey out to $z\sim2$ (~470 MHz).
- Cosmology (e.g. BAO constraining dark energy).
- HI absorption spectroscopy.
- Galactic HI, ISM in nearby galaxies, cosmic web.

Example key parameters:

- * Sensitivity of a few microJy/beam over a bandwidth of ~10 kHz. Column densities $< 10^{17-18}$ cm⁻².
- * Moderate angular resolution (~ few 10 arcsec).
- * Spectral dynamic range ~60 dB.
- * Bandpass stability ~ 1 in 10^6 for up to 1000 hr integration.

– Thoughts on AIP technologies:

* Survey speed of WBSPF dish generally won't meet current requirements (but see next slide).

* MFAA and PAF – what is the minimum acceptable FoV to do a large survey in a timely manner? Really need an MFAA solution...but what about studies of nearby galaxies?

- * Differences in survey speed as a function of frequency at what redshifts will the key science be?
- * Get all the bandwidth in one go (no band 1 / band 2 split as in SKA1) \rightarrow map HI over 10 Gyr of cosmic time.
- * Will there be a role for intensity mapping in SKA2?

Figure 7.1. Integration time required to detect HI galaxies at redshift z = 2 as a function of telescope sensitivity. Three HI masses are shown, 5×10^9 M₆ (solid), 10^{10} M₆ (dashed), and 3×10^{10} M₆ (dot-dash). Horizontal dotted lines indicate various fiducial integration times.

Continuum surveys – total intensity

- Three billion galaxy survey.
- Star formation rates / astrophysics out to high redshift; interplay between star formation and AGN activity.
- Weak/strong lensing.
- Galaxy cluster science.

Example key parameters:

* Sensitivity of a few nJy/beam over a bandwidth of ~few hundred MHz. Excellent surface brightness sensitivity and image fidelity.

* Angular resolution < 0.5 arcsec.

- * Image dynamic range \sim 70 dB.
- * Frequencies ~600 MHz 10 GHz.

– Thoughts on AIP technologies:

* Probably more of a focus on resolution, rather than FoV. What is a sufficient FoV? Or do we get the survey speed from the wide bandwidth?

* There is a push to focus on smaller regions with highquality ancillary data, and really go to high resolution (e.g. 30 mas; Jarvis et al. 2015)

* Wide-band radio SEDs – multi-epoch activity, nonthermal/thermal components, energy losses, etc.

* Wide bandwidths: commensality with HI – e.g. breaks degeneracies in mass models used in strong lensing studies.

Major Radio Continuum Surveys [L/S Bands, updated 2014]

Continuum surveys - polarization

- Dense rotation measure grids; magnetic field structure of Milky Way, magnetoionic media of intervening galaxies along line of sight to distant radio sources.
- Magnetic field tomography of nearby galaxies.
- Deep polarization source counts; broadband spectropolarimetry.

– Example key parameters:

* Stokes Q, U sensitivities of a few tens of nJy/beam over a bandwidth of > 500 MHz.

* Angular resolution ~ few arcsec.

* Polarization purity ~ -25 dB.

* Frequencies ~ 400 MHz - 2 GHz and above.

Thoughts on AIP technologies:

* Clear commensality with the continuum surveys. Large FoV and/or wide bandwidths for survey speed.

* Wider bandwidths definitely help with RM resolution, although diminishing returns going to higher frequencies.

* But potentially very interesting wide-bandwidth science to be done in terms of models for depolarization (e.g. Burn 1966; Tribble 1991; Sokoloff et al. 1998). Higher frequencies to recover polarized source population?

* Challenges with polarization calibration, especially off-axis response? E.g. discussion in Braun et al. 2013. Removing polarized foregrounds important for e.g. BAO studies!

Heald et al. 2015

Brentjens & de Bruyn 2005

Continuum surveys - polarization

Continuum surveys - polarization

- Dense rotation measure grids; magnetic field structure of Milky Way, magnetoionic media of intervening galaxies along line of sight to distant radio sources.
- Magnetic field tomography of nearby galaxies.
- Deep polarization source counts; broadband spectropolarimetry.

– Example key parameters:

* Stokes Q, U sensitivities of a few tens of nJy/beam over a bandwidth of > 500 MHz.

* Angular resolution ~ few arcsec.

* Polarization purity ~ -25 dB.

* Frequencies ~ 400 MHz - 2 GHz and above.

Thoughts on AIP technologies:

* Clear commensality with the continuum surveys. Large FoV and/or wide bandwidths for survey speed.

* Wider bandwidths definitely help with RM resolution, although diminishing returns going to higher frequencies.

* But potentially very interesting wide-bandwidth science to be done in terms of models for depolarization (e.g. Burn 1966; Tribble 1991; Sokoloff et al. 1998). Higher frequencies to recover polarized source population?

* Challenges with polarization calibration, especially off-axis response? E.g. discussion in Braun et al. 2013. Removing polarized foregrounds important for e.g. BAO studies!

Heald et al. 2015

Brentjens & de Bruyn 2005

Quick remark on transients

 $\Omega S_0^{-3/2+\delta}$

- No substitute for FoV!
- Cosmology with FRBs; exploration of the unknown.
- Wide bandwidth to constrain physics of ejections.
- Commensality with general surveys; polarization as a diagnostic.

Other remarks

- AIP technologies are absolutely necessary to ensure that the SKA2 survey science goals can be met!
- But there isn't an obvious single solution just yet. This will depend on how the various science cases evolve with the SKA pathfinders, and SKA1. The relative importance of all-sky, deep HI may tip the balance towards a very wide FoV solution, though.
- Other important science too (e.g. simultaneous observations of spectral lines).
- Hybrid combinations?
 - * e.g. MFAA core + PAF dishes on the longest baselines.
 - * PAF + WBSPF dishes?
 - * Other combinations?
- If we make sacrifices to e.g. sensitivity of one component, what is deemed 'graceful' degradation?
- How much flexibility do we incorporate into the design to ensure unexpected discoveries (e.g. Wilkinson et al. 2015).
- Is there a successor to the current generation of AIP technologies?
- Are there new and smarter ways to process the data?

Other remarks

 AIP technologies are absolutely necessary to ensure that the SKA2 survey science goals can be met!

• But the real factor of the second of the

Vari Table 1: Selection of molecular line tracers between 1-10 GHz and within the bands of SKA-1. Lines of the imp OH radical and various other species are also of key importance but for brevity not included below.

	soli	Line	Rest freq (MHz)	SKA-1 MID band	SKA-1-SUR band
-	Oth	HCN $v_2 = 1, \Delta J = 0, J = 2$	1346.765	2	2
	Oth	HCN $v_2 = 1, \Delta J = 0, J = 4$	4488.4718	4	-
		H ₂ CO	4829	4/5	-
—	Hyt	N ₂ H+	5009.8278	4/5	-
	* e.	H ₂ CNH $1_{10} - 1_{11}, \Delta F = 0, \pm 1$	5289.813	5	-
	* P/	HCO+	6350.908	5	-
	* O1	HNC	6484.497	5	-
_		$CH_3OH 5_1 - 6_0A^+$	6668.5192	5	-
	If w	HCN $v_2 = 1, \Delta J = 0, J = 5$	6731.9098	5	-
	'ara	HCO+	8890.452	5	-
	gra	HCN $v_2 = 1, \Delta J = 0, J = 6$	9423.3338	5	-
	1.1	HNC	9724.644	5	-

- Hov

to ensure unexpected discoveries (e.g. Wilkinson et al. 2015).

- Is there a successor to the current generation of AIP technologies?
- Are there new and smarter ways to process the data?

Other remarks

- AIP technologies are absolutely necessary to ensure that the SKA2 survey science goals can be met!
- But there isn't an obvious single solution just yet. This will depend on how the various science cases evolve with the SKA pathfinders, and SKA1. The relative importance of all-sky, deep HI may tip the balance towards a very wide FoV solution, though.
- Other important science too (e.g. simultaneous observations of spectral lines).
- Hybrid combinations?
 - * e.g. MFAA core + PAF dishes on the longest baselines.
 - * PAF + WBSPF dishes?
 - * Other combinations?
- If we make sacrifices to e.g. sensitivity of one component, what is deemed 'graceful' degradation?
- How much flexibility do we incorporate into the design to ensure unexpected discoveries (e.g. Wilkinson et al. 2015).
- Is there a successor to the current generation of AIP technologies?
- Are there new and smarter ways to process the data?

