

Pulsar science with the SKA

Gemma Janssen

Pulsar key science goals

Understanding gravity and fundamental interactions using pulsars and black holes

From Stockholm 2015 KSP workshop: searching and timing pulsars

- 1. Triple the currently known pulsar population
- 2. Find highly relativistic systems and improve tests of gravity in the strong field regime by at least one order of magnitude
- 3. Finding at least one pulsar/black hole binary and inform quantum gravity
- 4. Detect gravitational waves at nano-Hertz frequencies
- 5. Improve the mass-radius relation (NS equation of state) by more than an order of magnitude

Pulsar Astrophysics: The Next Fifty Years

IAU Symposium 337 - 4th-8th September 2017 - Jodrell Bank Observatory, University of Manchester

Pulsar science highlights Goal 1: Triple the pulsar population and find exotic systems

- Very fast MSP found with LOFAR: 707 Hz
- New relativistic double neutron binaries found
- 80+ MSPs from Fermi targeted searches
- 84 pulsars from LOTAAS
- First pulsars found with FAST

Pulsar science highlights Goal 2, 5: Tests of gravity and mass measurements

Name of Poliser & O.

Double Pulsar J0737-3039A/B; Kramer et al. in prep

PSR B1913+16; Weisberg & Huang 2016, ApJ 829, 55

Pulsar science highlights Goal 4: Detecting low-frequency gravitational waves (IPTA)

- Limits published in international IPTA framework
- Progress on theoretical expectations of GW levels from SMBHBs
- New methods in development to measure and mitigate IISM
- Improvements in understanding systematics

Plans for precursor: MeerKAT

MeerTIME: KSP on pulsar timing

- Involving AUS, SA, NZ, IT, NL, UK, DE, FR, US, CA institutions
- Management, governance, practicalities very similar to SKA1 planning
- Key Science for MeerTime:
 - Relativistic binaries; tests of GR
 - MSP timing; GW detection
 - Globular Cluster timing
 - 1000 PSR array

© SKA South Africa

Precursor/Pathfinders: PSR Building experience

Techniques:

Multibeaming: LOFAR, ARTS, MeerKAT

Coherent dedispersion: LOFAR

Fast-folding (searching): LOFAR, MeerKAT

Receivers

Next-generation receivers (PAF, UBB): ARTS, MeerKAT, existing single-dish

telescopes

Observational (1000 PSR array): CHIME, MeerKAT

Instrumentation

Pulsar community is designing and building custom hardware (searching/timing) for precursors/SKA1 central signal processors

SKA PSS/PST (Pulsar Search and Timing Systems CDRs successful Jan 2018)

Evolving Science Working Group into KSP

Q: How will the SWG evolve into a KSP?

A: Discussions started in Stockholm; single KSP with different science packages

A: Likely to follow practical experience of MeerTIME/IPTA

Q: When can the KSP get started?

A: in the building/commissioning phase

- -> pulsar astronomers known to be early to new telescopes
- -> helping in finding and resolving problems
- -> early science can be done with intermediate array (i.e. start PTA obs)

Q: Is an intermediate array release sufficient?

A: Yes, for testing and commissioning

A: BUT the full array (Baseline Design) is **essential** to achieve the KSP science goals

Potential Issues/concerns/roadblocks

- Pulsar community is putting major effort in pathfinders and precursors AND expecting great science from those.
 Risk for SKA timeline to be too distant; lose interest
- SKAO long timeline between science commissioning, verification and start of KSP requires interactive approach with SWG
- Problem solving in early stages of roll-out can be helped by early pulsar science possibilities
- Pulsar KSP needs full Baseline Design to reach transitional science goals,
 i.e. no further cuts in beams/processing/bandwidth/sensitivity
- Communication between SKAO and SWGs