AST (RON Netherlands Institute for Radio Astronomy

SKA NL Science Meeting Michiel van Haarlem Head of NL SKA Office SKA_NL

Dwingeloo 180524

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

IL DATA DATA DE LE DE

SKA Consortia

Michiel van Haarlem / 24 May 2018

Pre-Construction Schedule

Milestone

Telescope Manager CDR

Signal and Data Transport CDR

Infrastructure Australia CDR

Infrastructure South Africa CDR

Central Signal Processor CDR

Low Frequency Aperture Array CD

Signal & Data Transport CDR

Dish CDR

System CDR (incl. AIV)

	Date	
	17-20 April 2018	
	15-18 May 2018	
	27-29 June 2018	
	2-4 July 2018	
	25-28 September 2018	
DR	17-19 December 2018	
	17-19 December 2018	
	2019	
	March 2019	

DESIGNING THE

Square Kilometre Array

Signal and Data Transport

Signal and data transport is the backbone of the SKA telescope. The Signal and Data Transport (SaDT) Consortium is responsible for the design of three data transport networks. These include the Digital Data Backhaul (DDBH) that transports signals from the radio telescopes to the Central Signal Processor (CSP), and data products from the CSP to the Science Data Processor (SDP) and from the SDP to the regional SKA Data Centres. SaDT's work also includes the design of clocks and a custommade frequency distribution system. The consortium is led by the University of Manchester in the UK.

https://cdr.skatelescope.org

Science Data Processor

The Science Data Processor (SDP) element will focus on the design of the computing hardware platforms, software, and algorithms needed to process science data from the correlator or non-imaging processor into science data products. The Science Data Processor will have to manage the vast amounts of data being generated by the telescopes. From spectral and continuum sky surveys, to more targeted observations of objects both near and far, the SDP will ingest the data, and move it through data reduction pipelines at staggering speeds, to then form data packages which will then be passed to the scientists, and in almost realtime, make decisions about noise that is not part of those delicate radio signals. The consortium is led by the University of Cambridge in the UK.

Square Kilometre Array

https://cdr.skatelescope.org

Pulsar Search

Pul

Shijiazhuang, China, by the Vice Minister of the Chinese Ministry of Science and Technology, in the presence of be tested ahead of production of an early array.

completed the structural assembly of the first SKA dish, bringing together components from China, Germany, and Italy.

AAVS1 - prototype SKA_low station

-

Ð

THE

A

A

Contraction of the second seco

The second

The

HAR CO

The second

国家

The second

A

(A)

THE SALE

10

H.

the second

A - LA

and the second

Q.

- CO

0

Contraction of the second seco

-

0

0

Designing the SKA Telescopes From lab to Outback: the

18 December 2017, SKA Global Headquarters, Jodnell Bank, UK - It is an understatement to say that designing and building a worldclass scientific instrument comes with its challenges. The Aperture Array Verification System (AAVS1) is one of the major milestones in the journey towards delivering the final design for SKA1-low, the Australian arm of the first phase of the SKA telescope, that will eventually consist of 130,000 antennas observing low frequency signals emanating from the cosmos. The team delivering this project recently reported or the successful roll-out of a station made up of 256 antenna prototypes at the Murchson Radio-astronomy-Observatory (MRO), located in Western Australia.

"The journey leading up to the deployment and installation of a full antenna station has been a fantastic experience and a steep learning

CSP - SKA_Low Correlator/Beamformer

Central Signal Processor

The Central Signal Processor or CSP is the central processing "brain" of the SKA. It converts digitised astronomical signals detected by SKA receivers into the vital information needed by the Science Data Processor to make detailed images of deep space astronomical phenomena that the SKA is observing. It will also design a "non-image processor" in order to facilitate the most comprehensive and ambitious survey yet to find new pulsars and precisely time known pulsars. The lead organisation of the Consortium is the National Research Council of Canada (NRC).

AnalogVCC

CLOCK

CONFIG

Michiel van Haarlem / 24 May 2018

Collaboration between ASTRON, CSIRO & AUT

SKA1 Cost Control Project

WS / Origin	Description	LOW / MID / COMMON	Science Implication	Science Impect	5.24.2	Reduce Bmax MID from 150 to 120 km: Case B, remove infra, but add	MID	Reduction of maximum achievable resolution by 20%, although can be	3	5.25.2 Deepe Saving	Reduce PSS-MID: C, 375 nodes to 250 nodes	MID	Likely reduction in processed PSS beam number (2x) or pulsar search parameter space	4
5.39	INFRA_SA Renewable energy to outer dishes	MID	None	1		dishes to core		partially recovered with data weighting and longer integration times.		5.13.2	Reduce Bandwidth output of band 5 to 2.5GHz		Longer Band 6 observing times for some	4
5.3	Maximise use of code produced during Pre-Construction	COMMO N	None	1				Reduction of maximum achievable resolution by	8				applications (2x) Longer observing times	
5.38	Simplify DDBH LOW	LOW	None	1	5.24.1	Reduce Bmax MID from 150 to 120 km: Case C, remove Infra, remove	MID	20%, although can be partially recovered with		5.35	Reduce MID CBF and DSH BW: 5 to 1.4 GHz	MID	to achieve continuum sensitivity in Band 5 (3.6x)	4
5.38	Simplify DDBH MID	MID	None	1		dishes		data weighting and longer integration times.		5.24 / Deepe	Remove 11 MID Dishes from core		10% Array sensitivity loss in core	4
5.25.2	Reduce PSS-MID: A, 750 nodes to 500 nodes	MID	Likely none, or small reduction of pulsar search parameter space.	1	5.5.2	Reduce MID Band 5 feeds: A, from 130 to 67	MID	Placement to be determined based on full community consultation.	8	Saving 5.30 / Deepe Saving	Remove 54 LOW stations from core	1.018	10% Array sensitivity loss in core	4
5.25.2	Reduce PSS-LOW: A, 250 nodes to 167 nodes	LOW	Likely none, or small reduction of pulsar search parameter space.	1	5.25.2	Reduce PSS-LOW: B, 167 nodes to 125 nodes	LOW	Likely reduction in processed PSS beam number (1.3x) or pulsar	2	5.24 / Deepa Saving	Remove additional 11 MID Dishes		20% Array sensitivity loss in core	4
5.35	Reduce CBF-MID: Freq. Silce variant of CSP design vs. MeerKAT-based design	MID	None	1		Reduce PSS-MID: B. 500 nodes to		search parameter space Likely reduction in processed PSS beam		5.30 / Deepe Saving	1 from core	LOW	20% Array sensitivity loss in core	4
5.19	MID Frequency and Timing Standard: SaDT solution vs. MeerKAT-based solution	MID	None	1	5.25.2	375 nodes	MID	number (1.3x) or pulsar search parameter space	2	5.24.2	Reduce Bmax MID from 120 to 100 km: D, remove infra, remove next 3 dishes	MID	Lose Science (Planetary disks, High resolution Star Formation)	4
5.36	MID SPF Digitisers: DSH solution vs. MeerKAT-based solution	MID	None	1	8	SDP- HPC: Deploy 150 Pflops (from 200 Pflops)	COMMO N	Lower allowed duty cycle for HPC-Intensive observations.	3	5.5.1	Remove MID Band 1 feeds: 105 to 0	MID	Lose Science (Cosmology, Galaxy Evolution)	4
5.26 / 5.29	LOW RPF: Early Digital Beam Formation vs. Analogue Beam	LOW	None	1	5.30.0	Reduce Bmax LOW to 50km: A, remove infra, add 18 stations to core	LOW	Science Risk to EoR: Bmax.	3	5.5.2	Reduce MID Band 5 feeds: B, from 67 to 0		Lose Science (Planetary disks, Star Formation)	4
	Formation LOW Antenna: Log Periodic Design		None of the current		5.30.0	Reduce Bmax LOW to 50km: B, remove 18 stations	LOW	Science Risk to EoR: Bmax	3	_				
2	vs. Dipole Design	LOW	designs meet the L1 requirements	3	5.30a	Reduce Bmax LOW to 40km: C, remove next 18 stations	LOW	Science Risk to EoR: Bmax	3				De:	siar
8	SDP- HPC: Deploy 200 Pflops (rather than 260 Pflops)	COMMO N	Lower allowed duty cycle for HPC-intensive observations.	2		SDP- HPC: Deploy 100 Pflops (from	COMMO	Lower allowed duty cycle for					Des Bas	elin
	Reduce Bmax MID from 150 to 120		Reduction of maximum achievable resolution by 20%, although can be	3		150 Pflops)	N	HPC- Intensive observations.	1	F				
5.24.3	km: Case A, remove 3 dishes, but keep infra to 150km	MID	partially recovered with data weighting and longer integration times.			SDP- HPC: Deploy 50 Pflops (from 100 Pflops)	COMMO N	Lower allowed duty cycle for HPC-intensive observations.	4	┢	SKA1-Mid		+	
					5.31	Reduce CBF-LOW BW: A, 300 to 200 MHz	LOW	Longer observing times for continuum	4	┢	No dia	haa	122	

Reduce PSS-LOW: C, 125 nodes to 83 LOW

- Cost Control project identified & ranked potential cost saving measures
- Defined Design Baseline & **Deployment Baseline**

- SKA1 Construction Cost Cap: 650 M€ (2013) = **674 M**€ (2016)
- November 2016 cost estimate: 916.1 M€ (36% over)

Design	Deployment	Re-instatement
Baseline	Baseline	'+' means add to syster
133	130	+3 dishes at 150 km
150 km	120 km	+ infra to 150 km
133	130	+3 Band 1 Feeds for 3 dishes
133	130	+3 Band 2 Feeds for 3 dishes
133	67	+66 Band 5 feeds
500 nodes	375 nodes	+125 nodes
512	476	+36 stations (18 stns at 49 & 6
65 km	40 km	+infra to 65km
167 nodes	125 nodes	+42 nodes
260 PFLOPs	50 PFLOPs	+210 PFLOPs
	Baseline 133 150 km 133 133 133 133 500 nodes 512 65 km 167 nodes	Baseline Baseline 133 130 150 km 120 km 133 130 133 130 133 67 500 nodes 375 nodes 512 476 65 km 40 km 167 nodes 125 nodes

0	N
O	N

Setting up SKA Observatory

- Negotiations to set up SKA Intergovernmental Organisation (IGO)
- Convention now agreed
- Signing mid-September 2018
- SKA IGO active in 2020
- SKA Construction start: 2021
- Discussions on NL funding taking place
- Coalition agreement provides opportunities

Vertrouwen in de toekomst

Regeerakkoord 2017 – 2021

VVD, CDA, D66 en ChristenUnie

Michiel van Haarlem / 24 May 2018

Nederland moet tekenen voor SKA

Deciname aan de bouw en beheer van 's werelds grootste radiotelescoop van 674 miljoen euro, de Square Kilometre Array, zal Nederland geen windeieren leggen en koploper maken op gebied van data science. Tenminste, als de nieuwe regering kiest voor de optie van minimaal vijf procent deelname en hiervoor 34 miljoen opzij zet. Zeventig procent van de investering vloeit sowieso direct terug in de vorm van contracten. Een optie van tien procent zou nog beter zijn, want die genereert 300 miljoen euro aan economische waarde.

Dit zegt hoogleraar Carole Jackson, algemeen en wetenschappelijk directeur van ASTRON. Na een paar jaar onderhandelen

Duizenden ogen op het vroegste heelal

De telescopen

I constructive the first of the second secon

Suelle computers vorgen de signalen tal Australië	12.2
un Zuis'-Afrika hijum	1111
	Ξ
et alle dissat et auto, il portestetti le peteretti prette "etergençia tet auto rest statut, attentat operat alle, instat auto etterativi in derestat", etge 20 e 1 Centi et 2 Derbit cello antica ette autori, "in attentarior que que autoritat tant.	122128
aubiture bright ar mars lieps in sinderid. Ein sine books EXX outdow (or at allowin 1040 (1960) (200).	ł
the particle analysis are reconcernated	10
taningin londoi anto acialifentia can antoniginamin'an minan ananche nagilin	12
in the second second prove the second s	10
service. Unset in prologotic is set to 25- temperature of an an internet service and all	5
articles satisfactioners, det direction Deriv- tion, auss reseptibles a Rampa, to be being	1

SKA Project Schedule

Milestone

Initialing SKA Convention

Signing SKA Convention

Ratification Complete - SKA Observato

System CDR completed

Construction Proposal ready

SKA Council Approves Construction Pla

Start of Construction

Michiel van Haarlem / 24 May 2018

	Date
	23 May - 20 July 2018
	September 2018
ory	early 2020
	mid 2019
	late 2019-early 2020
an	mid 2020
	early 2021

Other SKA Developments

- France, Spain set to join SKA Organisation
- Portugal to join when IGO is formed
- SKA KSP workshop & general science meeting
 - At the new SKA Headquarters
 - 8-12 April 2019
- MeerKAT inauguration 13 July 2018

AST(RON

Themes for Today

- Updates from the Science Working Groups/Focus Groups
- What are the concerns or issues important input to SKA Board
- Plans for Transition from SWG/FG to KSPs
 - How? When?
- How are pathfinders/precursors being used to prepare for SKA?
- Thoughts on SKA Regional Centres

Current Radio Astronomy Archives

1 Petabyte (PB)

LOFAR Long Term Archive

36PB

LIBRARYOF CONGRESS 5PB

United States

4PB

Future SKA Science Archive

PER YEAR

• 1 Petabyte

searches on GOOGLE 98PB

<image>

uploads to facebook, 180PB

SOOPB

APERTIF

2PB

SKA Regional Centres

- SKA Regional Centres (SRCs) will host the SKA science archive
- Provide access and distribute data products to users
- Provide access to compute and storage resources
- Provide analysis capabilities
- Provide user support
- Multiple regional SRCs, locally resourced and staffed

Primary interface for SKA data analysis

Regional Centre Functionality

Data Discovery

- Observation database
- Associated metadata
- Quick-look data products
- Flexible catalog queries
- Integration with VO tools
- Publish data to VO

- Reprocessing and calibration
- High resolution imaging
- Mosaicing
- Source extraction
- Catalog re-creation
- DM searches

Michiel van Haarlem / 24 May 2018

Data Analysis

- Multi-wavelength studies
- Catalog cross-matching
- Light-curve analysis
- Transient classification
- Feature detection
- Visualization

Advanced European Network of E-infrastructures for Astronomy with the SKA

- We need input from SKA Science Working Groups & Focus Groups
- Regular Interactions to discuss use cases and functionality
- Test Regional Centre "Design" as it progresses using pathfinders & precursor data

Design and specification of a distributed, **European SKA Regional Centre to support the** astronomical community in achieving the scientific goals of the SKA

EC Horizon 2020 (€3 million)

13 countries, 28 partners, SKAO, host countries, e-infrastructures (EGI, GÉANT, RDA), NREN's

Three year project (2017-2019)

Themes for Today

- Updates from the Science Working Groups/Focus Groups
- What are the concerns or issues important input to SKA Board
- Plans for Transition from SWG/FG to KSPs
 - How? When?
- How are pathfinders/precursors being used to prepare for SKA?
- Thoughts on SKA Regional Centres Science engagement with Regional Centre design process

Michiel van Haarlem / 24 May 2018

How to find relevant information

- <u>https://astronomers.skatelescope.org/</u>
- <u>https://astronomers.skatelescope.org/documents/</u>
- Check that documents aren't out of date
 - Through SWG/FG or <u>SKA.org</u> science team

Contact us:

- Jess Broderick NL SKA Project Scientist broderick@astron.nl
- or <u>haarlem@astron.nl</u>

Observing Bands Discussion Document

Operational SDP pipeline SKA Regiona Error Budget Survey Perfc Science Plar Anticipated :

SKA1-LOW LOW configu LOW configu Configuratio

Documentat kml file

Cost Contro Cost Contro

ar 11	Document Number	SKA-TEL-SKO-000081
v	Document Type	
y gi	Revision	
gi O	Author	R. Braun et al
at	Date Document Classification	UNRESTRICTED
	Status	

Michiel van Haarlem / 24 May 2018

SCIENCE AND OPERATIONS PLANNING

Document number	SKA-TEL-SKO-(
Document Type	
Revision	
Author	SKAO Science and O
Date	
Document Classification	UNRE
Status	

Assembly, Integration & Verification Event	Low Stations	Date for Low	Mid Dishes SKA+MK
AA1	18	C0+35	8 + 0
AA2	64	C0+47	64 + 0
AA3	256	C0+58	120 + 8
AA4	512	C0+70	133+64

C0 = the date for construction contracts to be awarded

