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A quote from Wim Brouw

ASTRON

Self-calibration uses the observed data to calibrate themselfs. At first sight
this sounds like lifting yourself out of quicksand by pulling vour hair. How-
ever, two properties make this feat possible:

— most observing errors occur on a per array-element (telescope) basis:
atmospheric disturbances are above one telescope, receiver instabilities
are for receivers in one telescope (or at least decoupled from similar
instabilities in other telescopes).

— even an at first sight crowded sky field is mostly devoid of radiation,
making it possible to model the sky with a limited number of source
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Source: W. N. Brouw, “"The synthesis radio telescope: principles of operation; evolution
of data processing.” In: E. Raimond and R. Genee (eds.), "The Westerbork Observatory,
Continuing Adventures in Radio Astronomy,” Kluwer, 1996.
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Exploiting sparsity (1)

ASTRON

Data model (ME) with a “limited number of source components”

xX(t) = G A s(t) + n(t)
|-~ |

"

Voltage / signal domain solution proposed and demonstrated

- Kazemi et al., IEEE ICASSP, June 2015

Minor detail: calibration on 1 s of data for a single 195 kHz subband of
LOFAR may require 10’ Yflop (1 Yottaflop = 10% flop)

Conceptually nice, but we may need some speed-up here ...
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Exploiting sparsity (2) ASTQRON

Data model (ME) in power / visibility domain
R = @G A 2 A" G" + Z

n
Problem is non-convex, but can be solved iteratively

- Wijnholds & Chiarucci, EuSiPCo, August 2016

Compute requirements for calibration of a single subband of LOFAR
data reduced from 10’ Yflop to 10 Gflop (station correlator: ~ 1 Gflop)
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Application to LOFAR

Chiarucci & Wijnholds, MNRAS, under review AST(QON

gain phase solutions from blind calibration and standard calibration
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The phase transition diagram

Donoho & Tanner, Proc. IEEE, June 2010 AST(QON

p (sparsity factor): #components / #measurements
0 (undersampling factor): #measurements / #parameters

DT-curve: 50% chance of successful reconstruction
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Probability of success

Chiarucci & Wijnholds, MNRAS, under review AST(QON

Simulation for 20-element 2A-spaced Uniform Linear Array
p (sparsity factor): #sources / #unique visbilities (39)
O (undersampling factor): #unique visibilities (39) / #image grid points
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Impact of redundancy

Chiarucci & Wijnholds, MNRAS, under review AST(QON

Left: phase diagram for minimum redundant array
Right: phase diagram for irregular array

Lower redundancy brings us closer to DT curve

10.8 0.9
10.8 0.8

10.7 0.7

106 0.6
0.5 =05

04 0.4

0.3 03

0.2 0.2

01 0.1

WimSym77, Dwingeloo (The Netherlands), 6 — 7 July 2017 -8 -

{0.9

{0.8

10.7

0.2

0.1



Implications for self-cal

Chiarucci & Wijnholds, MNRAS, under review AST(QON

Observations:
* If map is not confusion limited, p < 0.1
* Synthesis observations provide good (u,v)-coverage: 0 > 0.2

« Large problem size: N ~ 10° - 10°

Blind calibration with sparsity
constraint is almost sure to work.

Self-calibration should be able
to recover from poor initial
estimate. 0
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A closer look at the LOFAR result

Chiarucci & Wijnholds, MNRAS, under review AST(QON

gain phase solutions from blind calibration and standard calibration
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Accuracy of blind calibration

Ben-Haim & Eldar, IEEE TSP, 2010 ASTRON

Theoretical result

If the source model is identifiable, the Cramer Rao bound for
image reconstruction is identical to that of the oracle
estimator

Consequence for self-cal

The calibration accuracy achievable with blind calibration is
identical to the accuracy achievable in calibration with DDEs
common to all receivers
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Conclusion

ASTRON

The recently developed theory of compressive
sampling provides a tool to quantitatively
understand the empirical (and sometimes
surprising) self-calibration results from the
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