
Commodity compute and data-transport 
system design in modern large-scale 

distributed radio telescopes

Chris Broekema





VRIJE UNIVERSITEIT

Commodity compute- and data-transport
system design in modern large-scale

distributed radio telescopes

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. V. Subramaniam,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen
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Summary

Abstract

In this thesis we study the architecture and design process of commodity compute and
data-transport systems in large-scale distributed radio telescopes. The goal of such sys-
tems is to facilitate the maximum viable amount of scientific discovery for the invest-
ment made. To aid our discussions, we first introduce a model to more formally express
value and cost of compute systems. This allows more granular evaluation of various
systems, based not just on their cost, but on their value potential as well.

We argue that, since modern radio telescopes are generally capable of producing
overwhelming volumes of data, the data-transport system in such an instrument should
be architected and designed together with the compute infrastructure. Examples both in
the current LOFAR telescope, as well as in the Square Kilometre Array still under devel-
opment, show that this co-design of data-transport and compute systems has significant
value benefits.

When these systems are considered together, interesting optimisations on the bound-
ary of the two may be considered. We show two such optimisations that focus on con-
trolling data-flows and reducing energy consumption of such data-flows respectively.

Finally we consider the future. Over the last couple of decades compute capacity
has continued to increase both predictably and dramatically. Current manufacturing
technologies are approaching physical limits, which make this trend unsustainable, at
least for conventional technologies. We inventory possible alternative technologies and
how these may be applied in support of a radio telescope.

High level overview

The primary goal of the work presented in this thesis is to facilitate radio astronomy by
designing efficient compute systems and associated data-transport infrastructures. This
is of course much easier said than done, if only due to the difficulty in defining what it
exactly means to design an efficient compute system. Which summarises our research
question: What is the optimal way to design a compute and data-transport system for
modern radio telescopes, and how do we define optimal? In order to place our research
into context, and at least partially guide the design process, this thesis introduces four
propositions as a central theme in the first chapter. These can be summarised as follows:
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VI Summary

1. Before designing a system, bound the problem in terms of requirements and avail-
able resources

2. Compute- and data-transport systems for radio astronomy must not be developed
in isolation

3. An architecture should not optimise for cost alone, but aim for the optimal com-
bination of cost and value

4. Interesting optimisations are possible on the boundary between data-transport and
compute systems if these are developed jointly

These propositions concisely express the recommendations and experiences that are
further documented and explored in this thesis, and can be considered its main high-level
contributions. Each chapter has some relation to one or more of these propositions, as
will be explained at the end of each chapter.

Research highlights

While the propositions introduced in Chapter 1 concisely summarise the contributions
in this thesis, we take this opportunity to highlight some of the research results here.

Introduction and concepts
To set the stage we start by describing the anatomy of a radio telescope. This is done
at high level, and from the point of view of a computer scientist focusing on the appli-
cation of commodity compute and data-transport systems, to establish the conceptual
requirements on such systems. In further chapters, in particular Chapters 3, 4 and 5,
such requirements are explored in more detail for their specific applications.

Furthermore, we establish a conceptual model that allows us to express the quality of
designs relative to others. We argue that cost, currently often the most important or only
design consideration given, should be offset by some expression of value, whatever
that value may be. The most suitable design is the one that offers the most value, in
the case of radio telescopes this is likely science, per invested Euro. Even though we
acknowledge the difficulty in measuring science output, in particular in the design phase
of an instrument, the focus on not just cost, but also value in the selection of a design or
architecture is a valuable contribution.

Architecture and design work
The concepts introduced in Chapters 1 and 2 follow from extensive relevant design
experience, some of which is shown in Chapters 3, 4 and 5.

Chapters 3 and 4 describe the architecture and design of the Square Kilometre Array
Science Data Processor. These chapters are based on two papers that were published
three years apart, and the evolution of the architecture, and the requirements that drive it,
is clearly visible. Considering that even the most recent of these chapters was published
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at least ten years before the full capacity of the Science Data Processor is needed, the
design is by necessity limited to high-level concepts. As construction draws closer, more
detailed designs will have to be made, requiring detailed knowledge of the available
hardware and how these fit in a radio telescope. In Chapters 8 and 9 we recommend
some future work to facilitate this.

The Cobalt project described in Chapter 5 illustrate on a relatively small scale how
the concepts are applied in a real-life design process. Here we describe in exhaustive
detail how initial high level requirements are turned into an prototype and eventually
a production system. The problems encountered, both in finding suitable equipment
and in adapting systems to make them suitable for our application, are detailed. This
project, and in particular the detailed analysis of the shortcomings of than available
hardware systems, gained a lot of attention. The design was used for the Wilkes general
purpose computing cluster at the University of Cambridge and discussions with industry
representatives showed their interest in such detailed analysis. While we have no proof
that the Cobalt project has directly influenced industry, we have noticed an increased
availability of suitable hardware in more recent years.

Optimisations and their impact
One of the primary recommendations in this thesis is to design compute and data-
transport systems together. When applied properly, this allows interesting optimisations
to be considered, primarily on the boundary between data-transport and compute sys-
tems. In Chapters 6 and 7 we show two of such optimisations, as well as their potential
impact on the efficiency of the system.

While both of these are examples of optimisations that have the potential to signif-
icantly improve efficiency of a radio telescope system, they target radically different
parts of that efficiency spectrum. Chapter 7 aims to decrease the energy required to
receive large volumes of data by avoiding expensive kernel operations. We show that
energy can be saved by applying RDMA (Remote Direct Memory Access) technologies,
thus reducing cost without any impact on the science.

In Chapter 6 on the other hand we show that a Software-Defined Network (SDN)
allows more robustness, flexibility and potentially even functionality to be gained, with-
out significant additional cost increase. This optimisation aims to increase the amount
of science that can be done, keeping cost similar.

Future developments and conclusions
We have shown work done to design the central compute and data-transport infras-
tructure for the Square Kilometre Array. The design phase of this instrument has just
concluded, and construction is expected to commence in 2021. However, compute ca-
pacity will only be required in significant from around 2026 onward. Furthermore, cost
considerations make it likely that continuous procurements will have to be made during
the entire fifty year expected life-span of the telescope. It is therefore useful to look
at future technologies that may become available in the future, and how these may be
used in the a modern radio telescope. In Chapter 8 we summarise our current under-
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standing of both conventional and less conventional future compute systems and their
applicability.

The conclusions in this chapter, and the future work identified, form the basis of
Chapter 9. Here, we summarise the research in this thesis, and how the various chapters
contribute to the propositions introduced in Chapter 1. Some future work is suggested
based on the risks identified in the previous chapter.

Final words

In summary, in this thesis we present on overview of extensive design experience, com-
bined with the insights this has produced. The concepts and lessons learned are We show
the evolution of the system design of the Square Kilometre Array Science Data Proces-
sor as it draws closer to construction. A more detailed analysis of a central component
of the LOFAR telescope is presented as an example of a smaller scale but end-to-end de-
sign that follows the recommendations introduced in this thesis. Some optimisations are
discussed on the boundary between network and compute systems that improve the rel-
ative value of the system by focusing on different parts of the equation, cost and value.
Finally, we look at how future technologies may be used effectively in radio astronomy.
All this combined gives the reader an all-round overview of the considerations when
designing commodity compute and data-transport systems for modern distributed radio
telescopes.



Samenvatting

Resumé

Dit proefschrift beschrijft het ontwerpproces van reken- en datatransport-systemen voor
grootschalige gedistribueerde radiotelescopen, van concept tot implementatie. Het doel
van zulke systemen is het faciliteren van zoveel mogelijk wetenschap voor de gemaakte
investering. Om ons onderzoek vorm te geven, introduceren we eest een model om de
kosten en vooral ook de waarde van een geı̈ntegreert datatransport- en reken-systeem
uit te drukken. Dit geeft ons de mogelijkheid om gedetailleerder systemen te evalueren,
niet alleen open basis van kosten maar ook op basis van hun waardepotentieel.

We stellen dat, aangezien moderne radiotelescopen over het algemeen in staat zijn
overweldigende hoeveelheden data te transporteren, het datatransport systeem in een
dergelijk instrument gelijktijdig en samen met het rekeninfrastructuur moet worden ont-
worpen. Voorbeelden zowel in de operationele LOFAR radiotelescoop als in de nog
te bouwen Square Kilometre Array laten zien dat zulk gezamelijk ontwerp van data-
transport en rekensystemen aanzienlijke een meetbare voordelen biedt.

Wanneer deze twee componenten als één geheel worden bekeken, worden interes-
sante optimalisaties op de grens van de twee mogelijk. In dit proefschrift laten we twee
van dergelijke optimatlisaties zien, die zich respectievelijk richten op het beheersen en
sturen van datastromen het het verminderen van het energieverbruik die het ontvangen
van dergelijke datastromen met zich meebrengt.

Tot slot kijken we naar de toekomst. In de afgelopen decennia is rekenkracht drama-
tisch en voorspelbaar blijven toenemen. De huidige productietechnologiën voor reken-
componenten nadert echter fysieke grenzen en het is onwaarschijnlijk dat die trend nog
lang stand houdt, althans voor conventionele technologiën. We inventariseren mogelijke
alternatieve technologiën en hoe deze kunnen worden toegepast als rekensysteem in een
radiotelescoop.

Overzicht op hoog niveau

Het belangrijkste doel van het werk dat in dit proefschrift wordt gepresenteerd is het on-
dersteunen en faciliteren van wetenschappelijke ontdekkingen in de radioastronomie
door het ontwerpen van efficiënte computersystemen en bijbehorende datatransport-
systemen. Natuurlijk is dat veel makkelijker gezegd dan gedaan, al was het alleen maar

IX
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omdat het moeilijk is precies te definiëren wat het betekent dat een computersysteem
efficiënt is. Dit alles leidt ons tot onze onderzoeksvraag: Wat is de optimale manier
om een data-transport en rekensysteem te ontwerpen voor moderne radiotelescopen, en
hoe is optimaal gedefinieerd? Om ons onderzoek in de juiste context te plaatsen, en
ten minste gedeeltelijk het ontwerpproces te begeleiden, introduceert deze dissertatie in
het eerste hoofdstuk vier stellingen die als rode draad door het proefschrift lopen. Deze
kunnen als volgt worden samengevat:

1. Voor aanvang van een ontwerp, bakenen we eerste de grenzen wat betreft eisen
aan het systeem en beschikbare middelen om het te realiseren af

2. Datatransport- en reken-systemen voor radioastronomie moeten niet afzonderlijk
van elkaar ontworpen worden

3. Een ontwerp moet zich niet alleen richten op het minimaliseren van kosten, maar
streven naar een optimale combinatie van kosten en waarde

4. Interessante optimalisaties zijn mogelijk op de grens tussen datatransport- en
reken-systemen wanneer deze gezamenlijk worden ontworpen

Deze stellingen formuleren kort en bondig de aanbevelingen en ervaringen die in
dit proefschrift verder worden uitgewerkt en gedocumenteerd en kunnen worden gezien
als de belangrijkste bijdragen op hoog niveau van dit proefschrift. Elk inhoudelijke
hoofdstuk verwijst op enige wijze terug naar of draagt bij aan één of meer van deze
stellingen, zoals zal worden toegelicht aan het einde van elk hoofdstuk.

Hoogtepunten en blikvangers

Hoewel de in hoofdstuk 1 geı̈ntroduceerde stellingen de belangrijkste bijdragen in dit
proefschrift beknopt samenvatten, maken we van de gelegenheid gebruik om hier een
aantal van de belangrijkste onderzoeksresultaten te belichten.

Inleiding en concepten
Om ons onderzoek in de juiste context te plaatsen, beschrijven we eerst de anatomie
van een moderne gedistribueerde radiotelescoop op hoog niveau. Hiermee laten we
zien waar in een moderne radiotelescoop computer- en datatransport-systemen worden
toegepast, en wat de conceptuele eisen hieraan gesteld worden. In latere hoofdstukken,
met name Hoofstukken 3, 4 en 5 die dieper ingaan op componenten van specifieke
instrumenten, worden deze eisen verder uitgewerkt.

In Hoofdstuk 2 introduceren we een conceptueel model waarmee we de kwaliteit
van de ontwerpen kunnen uitdrukken ten opzichte van andere. We stellen hierin dat
de kosten, op dit moment vaak de belangrijkste of enige ontwerpoverweging die wordt
gegeven, gecompenseerd moeten worden door een of andere uitdrukking van waarde,
wat die waarde ook moge zijn. Het meest geschikte ontwerp is een die de meeste
waarde biedt, in het geval van radiotelescopen is dit waarschijnlijk wetenschappelijke
ontdekkingen, per geı̈nvesteerde euro. Hoewel we erkennen dat het moeilijk is om de
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waarde wetenschappelijke ontdekkingen te meten, met name in de ontwerpfase van een
instrument, is de focus op niet alleen de kosten maar ook de waarde bij de keuze van
een ontwerp of architectuur een waardevolle bijdrage.

Architectuur en ontwerp
De concepten die we in Hoofdstukken 1 en 2 worden geı̈ntroduceerd komen voort uit
aanzienlijke en relevante ervaring met het ontwerpen van rekensystemen voor radiote-
lescopen. Een deel hiervan tonen we in Hoofdstukken 3, 4 en 5. In Hoofdstukken 3
en 4 beschrijven we het ontwerpproces van de Square Kilometre Array (SKA) Science
Data Processor (SDP). Deze hoofdstukken zijn gebaseerd op twee wetenschappelijke
artikelen die drie jaar na elkaar zijn gepubliceerd. Ze tonen dan ook de evolutie van de
architectuur en eisen hieraan tijdens gedurende het ontwerpproces. Aangezien zelfs de
meest recente van deze hoofdstukken minstens tien jaar voor de bouw van de volledige
Science Data Processor is gepubliceerd, is het ontwerp noodzakelijkerwijs beperkt tot
concepten op hoog niveau. Naarmate de bouw vordert, zullen er meer gedetailleerde
ontwerpen moeten worden gemaakt, waarvoor gedetailleerde kennis nodig is van de
beschikbare rekensystemen en hoe deze in een radiotelescoop passen. In de Hoofd-
stukken 8 en 9 suggereren we dat een continue proces van testen en uitproberen van
nieuwe componenten een essentieel onderdeel vormt in het vergaren van deze infor-
matie. Het ontwerp dat in deze hoofdstukken is beschreven heeft is in Januari 2019
succesvol gepresenteerd tijdens de SDP Critical Design Review en zal de basis vormen
van het uiteindelijk te bouwen SDP ontwerp.

In Hoofdstuk 5 illustreren we hoe de eerder geı̈ntroduceerde concepten op relatief
kleine schaal zijn toegepast in het Cobalt project. Hier beschrijven we uitgebreid hoe
de eerste eisen op hoog niveau worden omgezet in een passend prototype en uitein-
delijk naar een werkend productiesysteem. De ondervonden problemen, met name
de gedetailleerde analyse van de tekortkomingen van de op dat moment beschikbare
hardware-systemen, bleek uitermate relevant. Het ontwerp werd, met kleine aanpassin-
gen, overgenomen voor het Wilkes rekencluster van de Universiteit van Cambridge
en uit gesprekken met industrie vertegenwoordigers bleek hun belangstelling voor een
dergelijke gedetailleerde analyse. Hoewel we geen direct bewijs hebben dat het Cobalt
project de industrie direct heeft beı̈nvloed, hebben we de laatste jaren een verhoogde
beschikbaarheid van geschikte hardware opgemerkt.

Optimalisaties en hun effecten
Een van de belangrijkste aanbevelingen in deze dissertatie is dat reken- en datatransport-
systemen gezamenlijk ontworpen dienen te worden. Wanneer dit wordt gedaan, opent
dit mogelijkheden voor interessante optimalisaties op de grens tussen datatransport- en
rekensystemen. In Hoofdstukken 6 en 7 demonstreren we twee dergelijke optimal-
isaties, alsmede hun potentiële impact op de efficiëntie van het systeem als geheel.
Hoewel het werk in deze hoofdstukken beide tot doel heeft de efficiëntie van de datat-
ransport- en computer-systemen te verbeteren, richten ze zich op totaal verschillende
onderdelen van het spectrum.



XII Samenvatting

Het werk in Hoofdstuk 7 heeft als doel de energie die nodig is om grote hoeveelhe-
den gegevens te ontvangen te verminderen door dure kerneloperaties te vermijden. We
demonstreren dat energie kan worden bespaard door het toepassen van RDMA (Remote
Direct Memory Access) technologie, waardoor de kosten worden verlaagd zonder dat
dit gevolgen heeft voor de wetenschappelijke waarde van het systeem. In Hoofdstuk
6 laten we zien dat een Software-Defined Network (SDN) kan leiden tot een flexibeler,
robuuster systeem dat zelf mogelijk meer functionaliteit biedt, zonder dat dit een signifi-
cante kostenpost met zich meerbrengt. Deze optimalisatie heeft als doel de hoeveelheid
wetenschap die kan worden gedaan te vergroten door middel van het verbeteren van
de betrouwbaarheid en het introduceren van functionaliteit, terwijl kosten min of meer
gelijk blijven.

Toekomstige ontwikkelingen en conclusies
In de voorgaande hoofdstukken hebben we het ontwerpproces van de Square Kilome-
tre Array Science Data Processor laten zien. De ontwerpfase van dit instrument is net
afgerond en de bouw zal naar verwachting in 2021 beginnen. De volledige rekenca-
paciteit zal echter pas nodig zijn wanneer het gros van de ontvangers zijn gebouwd,
rond 2026. Bovendien is het waarschijnlijk dat om kosten te besparen gedurende de
gehele verwachte levensduur van de telescoop, vijftig jaar, continu rekencapaciteit zal
worden ingekocht. Het is daarom essentieel dat er in een vroeg stadium wordt gekeken
naar de toepasbaarheid van nieuwe en toekomstige technologiën. In Hoofdstuk 8 geven
we een samenvatting hoe zowel conventionele als minder conventionele computersyste-
men zich zullen ontwikkelen in de afzienbare toekomst, en wat hun rol zou kunnen zijn
in een radiotelescoop als de SKA.

De conclusies van dit hoofdstuk, en het werk we hierin suggereren om toekomstige
technologiën in de gaten te houden, vormen de basis van Hoofdstuk 9. Hierin vatten we
het onderzoek in dit proefschrift samen en laten we per stelling zien hoe de verschil-
lende hoofdstukken hieraan hebben bijgedragen. Op basis van risico’s die in het vorige
hoofdstuk zijn gesignaleerd suggereren we aanvullend werk voor de toekomst.

Afsluitend

Samenvattend presenteren we in dit proefschrift een overzicht van uitgebreide ontwerp
ervaring van reken- en datatransport-systemen voor radiotelescopen, gecombineerd met
de inzichten die dit heeft opgeleverd. De concepten en geleerde lessen zijn samengevat
in een viertal korte stellingen die als een rode draad door het proefschrift lopen. We
tonen de evolutie van het systeemontwerp van de Square Kilometre Array Science Data
Processor gedurende het ontwerpproces. Een meer gedetailleerde analyse van een cen-
traal onderdeel van de LOFAR telescoop, de correlator en beamformer, wordt gepre-
senteerd als een voorbeeld van een kleinschaliger maar succesvol end-to-end ontwerp-
proces dat de aanbevelingen in deze dissertatie volgt. Enkele optimalisaties worden
besproken op de grens tussen datatransport- en rekensystemen die de relatieve waarde
van het systeem verbeteren door zich te richten op verschillende delen van de kosten
en de waarde vergelijking die we eerder hebben geı̈ntroduceerd. Tot slot kijken we



Afsluitend XIII

hoe toekomstige technologien̈ effectief kunnen worden gebruikt in de radioastronomie.
Dit alles bij elkaar geeft de lezer een gebalanceerd overzicht van de overwegingen die
bij het ontwerpen van reken- en datatransportsystemen voor moderne gedistribueerde
radiotelescopen aandacht verdienen.





CHAPTER 1
Introduction

Modern radio astronomy and computer science are both relatively young sciences that
have fairly similar histories. Both were perhaps not born out of the ruins of the second
world war, but have at least benefited greatly from the technologies developed during
that time.

The second world war saw the first programmable computers built to aid the cryp-
tographic effort of legendary computer scientists like Alan Turing. At the same time,
tumultuous developments in radar technology, and the skilled technicians trained in their
design and use, were of great help to verify the existence and kick-start the study of the
newly discovered radio universe.

The modern study of physics, in particular astrophysics, relies critically on powerful
compute systems and software to leverage these to produce cutting edge science. Ar-
guably, the continued development of ever more powerful compute resources has driven
the development of ever more capable scientific instruments. Indeed, for several ra-
dio telescopes past and present we can identify timing considerations that synchronise
compute developments and construction of the instrument. Generally this is done to
maximise the science impact of the instrument per invested Euro. In other words, in-
struments are often designed when the supporting computing equipment is infeasibly
expensive, relying on continued developments in processor, memory and storage tech-
nologies to make the supporting equipment and software affordable when construction
actually starts.

This reliance on cutting edge and affordable computing systems, make the develop-
ment of more specialised and tailored solutions attractive. Whereas most conventional
high-performance computing facilities need to support a wide variety of applications, in-
frastructure supporting an observing instrument can be optimised for a single, or small
selection, of applications.

1



2 Introduction

1.1 Compute systems and radio astronomy

The histories of radio astronomy and computer science are both short and tumultuous.
Indeed radio astronomy, and in particular aperture synthesis, parallels that of computer
science due to its heavy reliance on compute resources. It was the (re)invention of
the Fast Fourier Transform 1, and development of mini-computers fast enough to run
these at scale, that drove the development of the first aperture synthesis radio telescopes
in the late 1960’s and early 1970’s, as Martin Ryle discussed in his Nobel lecture in
1974 [133].

1.1.1 Anatomy of a modern aperture synthesis radio telescope
Modern radio telescopes generally consist of multiple smaller receivers, combined into
a single large virtual receiver using aperture synthesis. This concept, pioneered in the
1960s and 1970s with telescopes such as the one-Mile telescope in the UK and the
Westerbork Synthesis Radio Telescope in the Netherlands, is a cost-effective way to
dramatically increase the sensitivity and resolution of radio telescopes, without having
to build massive dishes. The theory is based on the van Cittert – Zernike theorem, which
states that two geographically separated receivers will sample a coherent signal from an
incoherent source, provided the source is much farther from the receivers than the re-
ceivers are from each other. The coherence function of two such receivers has a Fourier
relationship with the brightness distribution of the incoherent source sampled ([151],
chapters 2 and 152). This is called interferometry.

In other words, when two receivers sample a wavefront from a distance source, the
complex visibility function of these samples represents a point in Fourier space of the
brightness distribution of that source. Taking many such points, from a collection of
receiver pairs, allows us to reconstruct a sparse representation of the distant source by
means of an inverse Fourier transform ([151], chapter 3). Observing for a longer time
allows us to take advantage of earth rotation to fill in more of the image. In essence we
construct a large virtual telescope from multiple smaller ones, and we therefore call this
aperture synthesis. We will not go in to the details of aperture synthesis theory, instead
we refer the interested reader to the excellent standard textbook on radio interferometry
by Thompson et al. [151].

Other modes of operation, apart from the aperture synthesis imaging mode described
above, that tries to reconstruct a visual representation of the radio brightness of the
source from the coherence between multiple receivers, are generally available as well.
The study of radio pulsars and transient radio sources, such as Fast Radio Bursts (FRBs),
generally do not require aperture synthesis, but instead focus on time-domain data. Such
observation modes co-exist in modern radio telescopes, making the instrument more
flexible and able to serve a larger scientific community, but the additional, possibly
conflicting, requirements these additional observation modes place on the instrument
signal processing components make their design more complex.

1While the invention of the FFT is generally credited to Cooley [48], analysis of work done by Gauss in the
early 19th century indicates at least some aspects had been conceived before [75].

2Chapter 14 in the second edition of Thompson et al.
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Figure 1.1: Top level overview of a generic distributed aperture synthesis radio telescope

In practical terms, a modern aperture synthesis radio telescope consists of the fol-
lowing components, as shown in Figure 1.1:

1. antennas, receivers and digitisers

2. receiver signal processing

3. correlator and beamformer

4. intermediate processing into science-ready intermediate products

5. science processing into science products

In Figure 1.1 we have identified the area of interest for this thesis. This is based
on the potential to use commodity computing, instead of custom designed hardware.
While the boundary between custom- and commodity hardware differs between instru-
ments, we can generally state that this decision is based on reduced data rates as data
moves through the system, and increased compute requirements per bit of data. On this
boundary, we generally have a number of real-time processes on commodity hardware
to receive data large volumes of data and process at high spectral and temporal resolu-
tion. When this data volume is reduced, the real-time requirement is reduced as well
and data can be temporarily stored for further, more iterative, processing. This mix of
compute profiles makes commodity computing in modern distributed radio telescopes
such an interesting challenge.

Aperture synthesis imaging modes generally drive the compute- and data-transport
requirement in modern radio telescopes. Therefore, the analysis of these observation
modes is often prioritised, with time domain science cases following closely behind to
verify they fit within the scope defined by the imaging modes.
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Receivers

The receivers, the antennas and associated electronics needed to capture and condition
the radio signal we want to observe, are the most visible and recognisable component
of a radio telescope. Large, fully movable dishes, such as the ones shown in Figure 1.2,
have been the poster child for radio astronomy for some time.

However, more recently and at lower frequencies, such large and expensive dish
systems have been supplemented by large numbers of simple, omni-directional receivers
that are combined in software. An example of an operational instrument based on many
such low-cost antennas is LOFAR [158], the central Superterp of which is shown in
Figure 1.3.

Receivers may contain analogue signal processing hardware for amplification and
filtering. In some cases, in particular the LOFAR high-band antennas, several such
receivers are combined using an analogue beamformer, essentially a weighted or un-
weighted addition, into a single virtual receiver. This results in a smaller and more
sensitive beam pattern compared to that of a single receiver and reduces the data rate by
a factor equal to the number of elements in the antenna array.

While still in the analogue domain, initial filtering and amplification is applied. Next,
the analogue signal is digitised, often after being down converted. This is generally done
early and close to the receiver to take advantage of more robust digital data transmission
technologies over longer distances, although advances in Radio Frequency over Fibre
have made short range transfers of analogue data possible [165]. A generic receiver and
digitisation pipeline is shown in Figure 1.4. No digital computing is done in the receiver,
and we will not discuss receivers in detail in this thesis.

Receiver signal processing

Receiver signal processing usually consists of a digital filter, often implemented as a
polyphase filterbank consisting of a number of Finite Impulse Response (FIR) filters,
feeding into a single Fast Fourier transform (FFT). This results in a spectrally separated
channelised signal, the number of channels depending on the size of the Fast Fourier
Transform and the number of FIR filters. A selection of channels can be discarded to
reduce data transmission load and save on required compute capacity in the components
further upstream. When omni-directional receivers are used, an optional spatial beam-
forming step, a coherent addition of weighted omni-directional signals, may be applied.
This beamformer requires spectrally similar signals from different receiver, while the
polyphase filterbank results in a collection of spectral channels per receiver. Therefore,
before beamforming, the data needs to be re-ordered as shown in the generic receiver
signal processing pipeline in Figure 1.5.

Receiver signal processing is characterised by very high data rates and very low com-
putational intensity 3. Furthermore, data flows through the pipeline continuously, and
the processing is static in that the algorithms are well known and not expected to change
during the lifetime of the instrument. This means that this component is well suited to be
implemented in dedicated hardware, often based on FPGA (Field Programmable Gate

3Computational intensity is defined as the number of floating point operations per byte of data moved
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Figure 1.2: The Westerbork Synthesis Radio Telescope. ©ASTRON.
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Figure 1.4: A generic receiver pipeline, including Low Noise Amplifiers (LNAs), ana-
logue filters and digitisation components, with and without analogue beamforming.

Array) technology (for example Uniboard2 [136]). For these reasons, receiver signal
processing will not be discussed in this thesis.

Correlator and beamformer

The correlator and beamformer component receives data from the receiver signal pro-
cessing system and applies a comprehensive re-ordering. Receiver signal processing re-
sults in a data stream that, for a single receiver, contains all selected frequency channels.
The correlator and beamformer requires data from all receivers per frequency channel.
For instruments with widely separated receivers or receiver stations, the observed wave-
front may arrive at receivers delayed by multiple samples. This is corrected by delay
compensation, by shifting samples appropriately. Next, a second filter is applied to that
data, increasing the spectral granularity of the data. This increased spectral detail offers
opportunity to mitigate clock drift effects and the ripple introduced by the first band-
pass filter bank, as well as the sub-sample delays caused by geographical separation of
receivers.

The correlator produces the product from each receiver pair, while the beamformer,
similar to the receiver processing beamformer, applies weighted addition of all receivers
into a spatial beam. Incoherent (non-weighted) addition is often offered when sensitivity
over a large field of view is desired. After the correlator and / or beamformer is applied,
data can integrated in time and / or frequency to reduce the volume of data to manageable
levels. A generic correlator and beamformer is shown in Figure 1.6.

The correlator and beamformer are configurable components, able to run a combi-
nation of polyphase filterbanks, complex correlators and coherent (i.e. weighted) or
incoherent (unweighted) beamformers. Although configurable per observation mode,
this sub-system is fairly static, unlike the intermediate processing sub-system described
in the next section.
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Whereas receiver processing is generally local to the receiver, the beamformer and
correlator brings together data from all receivers in the instrument. Therefore, in gen-
eral, there is only a single, centrally located and highly optimised, correlator and beam-
former system per instrument. A geographically distributed correlator and beamformer
is possible in theory, but in particular in modern large scale radio telescopes with many
receivers data volumes explode during processing, making a single central correlator
and beamformer a much more attractive solution.

Compared to receiver signal processing, the correlator and beamformer are gener-
ally characterised by marginally lower data rates and, depending on the number of re-
ceivers or receiver stations, have a higher computational intensity. The correlator and
beamformer are real-time processing components, meaning that data streaming from
receiver processing and data rates are challenging. These characteristics mean that the
correlator and beamformer may be efficiently implemented in dedicated hardware, as is
currently envisioned for the SKA, or in commodity hardware, as in LOFAR. Both have
their advantages, which we will not discuss in detail in this thesis, and depending on
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the frequency range the instrument is designed to observe at and number of receivers
or receiver stations in the instrument either may be better suited for the task. How-
ever, we will show the design and implementation of a highly optimised correlator and
beamformer for the LOFAR telescope, based on commodity hardware.

Intermediate processing

Intermediate processing makes science-ready data products from the beams or visibili-
ties that have been produced by the correlator and beamformer. Whereas the previous
components have well defined functionality (even though not all are implemented in ev-
ery telescope and some of these are configurable), intermediate processing is much more
diverse. The functionality can roughly be summarised as taking the instrument data as
delivered by the previous components and turning it into science-ready data products
for analysis by the astronomer. This generally involves:

• removing interference caused by local sources

• removing strong sources outside of the field of view that have leaked into the
image

• correcting for instrumental effects

• generating sky images, source catalogues, pulsar candidate lists and various other
science-ready data products
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• producing calibration data for the other components in the systems

• Searching for unknown pulsars

• Timing spin-rate of known pulsars

• Detection and analysis of transient events, such as fast radio bursts (FRBs)

• Store intermediate data products and distribute these to science processing

In Figure 1.7 we show the intermediate processing component in the Square Kilome-
tre Array. Here we illustrate the relative complexity of this component by first showing
the top level context, with inputs and outputs, and then drilling down into the processing
components required. More detail is shown for the calibration and imaging component
using a functional and data flow breakdown of both functions.

Contrary to the processing done in the instrument so far, intermediate processing is
iterative. While still data-intensive, processing has much higher computational inten-
sity. This means that intermediate processing is no longer suited to be run on custom
hardware, and requires general purpose computing hardware instead. Intermediate pro-
cessing is generally the last step done before the data is released to the astronomer for
further, possibly interactive, analysis in the science processing component.

At the end of the intermediate processing stage data rates dropped sufficiently to
be able to preserve all data products generated. Therefore, the intermediate processing
component may also be required to store, index and make available the data produced
by the instrument, either indirectly to the user via the science processing component
described below, or directly. Since intermediate processing is still part of the instru-
ment, user interaction is limited or impossible. While data may be preserved in by the
intermediate processing component, this is for backup purposes only. Data is generally
exported to science processing where it is made available to the astronomer.

Science processing

Science processing is where intermediate products, delivered by the instrument, are
analysed and further processed into science products. While we can argue about the ex-
act boundary of the instrument, science processing is generally not considered to be part
of the instrument, and the science processing facility is likely local to the astronomer, not
necessarily the telescope. Traditionally science processing is done on the astronomer’s
workstation or laptop, but modern data rates and volumes in modern instruments are
such that this is no longer feasible.

Contrary to the processing done so far, science processing is often in interactive and
iterative process, wherein the scientist manipulates the data and verifies the result. Data
volumes for modern instruments are significant, and processing is highly diverse.

Although the work in this thesis is applicable to the science processing facility ar-
chitecture and design, we will not explore this part of the system in detail.
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1.1.2 Compute- and data-transport systems in modern large-scale
distributed radio telescopes

In Figure 1.1 we have identified the area of interest for this thesis: instrument process-
ing. This is generally implemented on commodity general purpose hardware. While
the components differ per instrument, generally we can state that commodity compute
systems that are part of a modern distributed radio telescope are characterised by:

1. high-bandwidth, long-range data transport into the compute system

2. a boundary between custom designed and commodity hardware, generally com-
municating via high-performance Ethernet networks

3. applications include some that are soft real-time, some that are data-driven, but
all are highly data-intensive

4. a mix of performance profiles, from data-dominated low computational intensity,
to highly compute intensive iterative processing

5. automated, non-interactive processing of data streams, with none or limited user
codes running on the systems

In designing compute- and data-transport systems for modern radio telescopes, we
take inspiration from high-performance computing and big data systems. However,
the performance profiles seen in radio astronomy, in particular those with a low com-
putational intensity, are relatively unique. Furthermore, we are often heavily cost con-
strained. This drives a desire to design a cost-effective system, which is the main subject
of this thesis. Previous experience with LOFAR systems has shown that separate devel-
opment of data-transport system and compute system, in particular in combination with
the non-standard custom hardware often employed, can lead to problems [37].

1.2 Research driven by architecture and design experience

The research presented in this thesis is based in part on extensive architecture and design
activities. Lessons learned in architecture and design of compute- and data-transport
systems for radio astronomy have played a large part defining the direction of the re-
search presented in this manuscript. Apart from the usual peer-reviewed publications,
the Curriculum Vitae on page 183 of this work highlights a selection of the large number
of documents and design studies that have recently been produced for a number of radio
astronomical sub-systems and architectures authored and co-authored by the author of
this thesis. This not only shows the complementary nature of the research done in this
thesis, it is also an indication of the value of architecture and research work done side-
by-side. Experiences designing and architecting complex and specialised systems for
radio astronomy drive interesting research questions, while the results of that research
can significantly benefit future architecture work.
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1.3 Research question for this thesis

Computer science, in particular as practised at an institute like ASTRON (the Nether-
lands Institute for Radio Astronomy), can be considered a facilitating science. The
hardware and software systems that are architected, designed and built in this thesis are
all meant to facilitate and enable other sciences, in this case in radio astronomy and
astrophysics. In general science budgets are limited, and only a fraction of these can
be used for compute hardware. Consequently there is an obvious drive to maximise the
effectiveness of any investment in computational infrastructure, be it hardware or soft-
ware. This drive to architect and design compute systems that maximise the scientific
impact of such systems per invested Euro is the central premise of this thesis. Consid-
ering the reason of being of compute systems in radio astronomy and other physical
sciences, our main research question can therefore be summarised as follows:

RQ. What is the optimal way to design a commodity compute and data transport ar-
chitecture for modern distributed radio telescopes, and how do we define optimal in this
context?

In this thesis we will endeavour to answer this question and show, using a number
of propositions introduced in the next section, how our proposed solution addresses
this. We also show that our proposed approach offers optimisation opportunities that
would otherwise be difficult or impossible to achieve. Although these do not directly
address our main research question, the offered advantages are significant and they add
a significant in-depth component to our research.

1.4 Propositions summarising the research in this thesis

To address the high level research question introduced above, we propose a number
of design priorities and recommendations. These are heavily inspired by the architec-
ture and design experience mentioned above and should be taken into account during
all phases of the architecture and design process for an IT infrastructure supporting a
data-intensive science instrument. We have summarised these recommendations in four
propositions:

Proposition 1. Before embarking on an architecture or design, bound the problem in
terms of requirements, such as capacity and functionality, and available resources, such
as funds, facilities, manpower and interfaces.

When designing a compute or data-transport system, it is useful to first bound the
problem, both from a requirements and available resources perspective. This not only
places the project in context, it also requires all parties involved to carefully articulate
the requirements of the system under design. Furthermore, by defining requirements at
the start of the project, a clear definition when the project is finished is explicitly docu-
mented. If either is expected to change significantly at some point, scalability is also a
significant consideration. This is the bounding proposition.
Addressed in Chapters 2 (partially), 3, 4 and 5 of this thesis.
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Proposition 2. The compute- and data-transport systems supporting modern radio tele-
scopes must not be developed in isolation.

In traditional compute infrastructures and high-performance computing centres, the
compute- and data-transport systems are generally developed separately. This often ex-
tends to the administration of these systems, which is usually done by different, siloed
departments. In a data-intensive and often streaming instrument, like a radio telescope,
the synergy between compute- and data-transport makes a coherent design of these two
components essential. Otherwise, there is a considerable risk that a bottleneck in the one
will significantly impact the other. In this thesis we will refer to this as the co-design
proposition.
Addressed in Chapters 4, 5 and 8 of this thesis.

Proposition 3. A system’s architecture and design should not only optimise for cost,
but instead closely consider the optimal ratio between value and cost.

Scientific instruments generally have fairly limited budgets, and only a fraction of
these can be reserved for computing and data-transport. There is therefore a strong and
obvious desire to minimise the cost of these components. This is amplified by procure-
ment regulations, that often drive the choice towards the cheapest solution available that
meets the required specifications. However, the minimal viable solution is not necessar-
ily the optimal one. We argue that by considering both value and cost, more science can
be done using the same investment. In Chapter 2 we introduce a new conceptual model
that allows more effective and structured reasoning about value in eScience solutions.
We will refer to this as the value proposition.
Addressed in Chapters 2, 3(partially), 4, 5 and 8 of this thesis.

Proposition 4. When both the compute- and data-transport system are considered
jointly, optimisations can be conceived on the boundary between these two that greatly
benefit the whole.

Considering the two recommendations above, we can take advantage of the now inte-
grated architecture and design of the data-transport and compute systems. The boundary
between the two, in particular the interface between the high-bandwidth custom hard-
ware that generates instrument data, and the commodity compute system that produces
scientific data, offers many interesting and challenging optimisation opportunities. We
investigate both functional and operational (i.e. energy-saving) improvements. For the
purposes of this thesis, we will refer to this as the optimisation proposition.
Addressed in Chapters 6 and 7 of this thesis.

1.5 Support of our propositions per chapter

Since this thesis consists of a number of publications, it is useful to identify how each
of these contribute to the propositions that are central to this manuscript. For each of
the chapters we discuss how these support the various propositions. This is also shown
in a more visual manner in Table 1.1.
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bounding co-design value optimisation

Chapter 2, ’Cost and Value’
Chapter 3, ’Exascale computing in the SKA’
Chapter 4, ’SKA compute platform design’
Chapter 5, ’Cobalt’
Chapter 6, ’Software-defined networking’
Chapter 7, ’UDP RDMA’
Chapter 8, ’Future developments’

Table 1.1: Mapping of propositions to the chapters in this thesis. Light grey check marks
signify partial applicability.

1.5.1 Chapter 2
In Chapter 2 we take a step back from the actual design of compute- and data-transport
systems, and introduce a more formal and structured way to reason about the value and
cost of solutions. Here, we introduce some of the tools that are used to identify which of
any number of possible system designs is optimal for the applications in question. This
chapter supports the value proposition, and to some degree the bounding proposition.

1.5.2 Chapters 3
Chapters 3 and 4 offer an insight into the design process of a component of a large
radio telescope, the Square Kilometre Array (SKA). Chapter 3 was written in 2012,
just after the Conceptual Design Review (CoDR) for the software and computing com-
ponent of SKA. This paper summarised the computing challenges, which at that stage
were considered quite challenging, and summarises how the SKA processing challenge
is different from more conventional high-performance computing applications. An ex-
trapolation of existing HPC systems at the time showed that sufficient compute capacity
should become available by 2018-2019, but notes that this is only valid for the LIN-
PACK benchmark used in the Top500 list. The argument is made to avoid data transport
as much as possible to reduce energy consumption, since it was assumed, based on
available information, that data transport over larger distances would be prohibitively
expensive in terms of energy consumption. Even though this chapter significantly pre-
dates Chapter 2, some of its recommendations are already implicitly taken into account.
This chapter illustrates both the bounding and value propositions to some degree.

1.5.3 Chapter 4
Chapter 4 was written a couple of years later (2015), and clearly shows that the analysis
had progressed dramatically. The scale of the SKA was reduced slightly, considerably
reducing the required compute- and data-transport capacity, making the resulting sys-
tem far more affordable. Furthermore, a more detailed picture of the required processing
could be sketched, and as a result a highly scalable but feasible architecture was intro-
duced. A number of value measures, scalability, affordability, maintainability and sup-
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port for current state-of-the-art algorithms, were defined that could be used to evaluate
possible implementations. This chapter strongly supports the bounding, co-design and
value propositions. We refer to some possible optimisations that are under investigation,
supporting the optimisation proposition.

1.5.4 Chapter 5
In Chapter 5 we show a practical example of a relatively small system that is intensively
optimised for a specific task. Both cost and value, as defined in Chapter 2 are considered
in this project. Furthermore, a design methodology focused on data flow, rather than just
compute capacity, was introduced, as recommended in this thesis. This chapter strongly
supports the bounding, co-design and value propositions.

1.5.5 Chapters 6
A primary recommendation in this thesis is that compute- and data-transport infrastruc-
ture should be designed in close collaboration. Since the latter of these is more often
overlooked, we have concentrated on this particular component in some of our more de-
tailed experimental work. Chapter 6 explores a potentially revolutionary development in
networking: an affordable and highly flexible programmable network. Using a use-case
based on hard-won experience with the LOFAR radio telescope, the OpenFlow features
available in a number of commercial of-the-shelf network switches are analysed This
chapter primarily supports the optimisation proposition and to some degree the value
proposition.

1.5.6 Chapter 7
In Chapter 7 we take a closer look at the energy consumed by receiving large volumes
of data. Since radio telescopes are generally characterised high bandwidths of data
streamed into a centrally located facility, the energy consumption of the receive compo-
nent may be significant, and any reduction of this may well be highly desirable. This
chapter primarily supports the optimisation proposition and to a limited degree the value
proposition.

1.5.7 Chapter 8
Finally, in Chapter 8 we take a careful look at developments in compute and date trans-
port technology in the near to mid future. While we have been fortunate in the past to be
able to rely on continued Moore’s law scaling, either by ever increasing clock frequen-
cies, or, more recently, even increasing concurrency, this will shortly cease to be the
case. Instead, a whole slew of revolutionary new technologies are being developed to
satisfy the insatiable demand for more IT resources. In Chapter 8 we make an initial as-
sessment, using the value proposition as our guideline, if and how such technologies can
be used in radio astronomy. The assessments made rely heavily on the co-design propo-
sition. Furthermore, we can argue that many of the proposed technologies are in fact
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special purpose accelerators. This opens optimisation opportunities as recommended by
the optimisation proposition.

1.5.8 Chapter 9
Finally, in Chapter 9, we will end this thesis with a brief retrospective summary, con-
clusions and some future work. Here, we look back at the manner in which ech of the
propositions we have defined in this chapter are used throughout the thesis. Further-
more, we identify some of the major more detailed contributions each of the chapters
have made. A small selection of future work is identified that build upon the work
described in this thesis. Conclusions and some discussion end this thesis.
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Abstract

Large-scale science instruments, such as the distributed radio telescope LOFAR,
show that we are in an era of data-intensive scientific discovery. Such instruments
rely critically on significant computing resources, both hardware and software, to do
science. Considering limited science budgets, and the small fraction of these that can
be dedicated to compute hardware and software, there is a strong and obvious desire
for low-cost computing. However, optimising for cost is only part of the equation;
the value potential over the lifetime of the solution should also be taken into account.
Using a tangible example, compute hardware, we introduce a conceptual model to
approximate the lifetime relative science value of such a system. While the intro-
duced model is not intended to result in a numeric value for merit, it does enumerate
some components that define this metric. The intent of this chapter is to show how
compute system related design and procurement decisions in data-intensive science
projects should be weighed and valued. By using both total cost and science value as
a driver, the science output per invested Euro is maximised. With a number of case
studies, focused on computing applications in radio astronomy past, present and fu-
ture, we show that the hardware-based analysis can be, and has been, applied more
broadly.

2.1 Introduction

Modern large-scale science instruments critically rely on specialised data-intensive com-
puter technologies, to turn instrument data into useful science results. Considering lim-
ited science budgets, of which only a small fraction can be dedicated to computing, there
is a strong desire to use these expensive systems in an optimal way. The design of such
an optimised system is heavily influenced by experience from previous installations. For
instance, the design priorities of the GPU-based correlator and beamformer system for
the LOFAR radio telescope, in particular its focus on an I/O optimised design, borrowed
heavily from previous experiences with Blue Gene based systems [40].

In this chapter we discuss both the cost and value of computing technologies, and
how to optimise the combination of these two for maximum science impact. Since
these are difficult to measure for the complex combination of hardware, middleware
and software that are generally required, we focus our detailed analysis on hardware.
We enumerate some of the factors that impact the total cost of a system. However, we
propose that total cost over the lifetime of a system is only part of the equation: the
computational and scientific performance of different solutions may radically differ for
the applications in question, depending on system and application characteristics. A
more valuable metric would look at the useful output of a system per invested Euro.
For example, the Distributed ASCI Supercomputer (DAS) [18] consortium tracks the
effectiveness of its distributed cluster infrastructure via the number of awarded PhDs
per cluster generation, as shown in Table 2.17. Considering the nearly constant budget
for these systems, between 1.2 and 1.5 Me, discounting inflation, the cost per supported

7source: https://www.cs.vu.nl/das4/phd.shtm,
https://www.cs.vu.nl/das5/phd.shtml and historical data

https://www.cs.vu.nl/das4/phd.shtm
https://www.cs.vu.nl/das5/phd.shtml
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PhD has dropped considerably over the lifetime of the DAS consortium. Alternatively,
we can argue that the relative science value per invested Euro has dramatically increased.

Year PhDs e/ PhD Research agenda

DAS-1 1997 7 e 214.285 Wide-area computing
DAS-2 2002 22 e 68.181 Grid computing
DAS-3 2006 36 e 41.666 Optical grids
DAS-4 2010 33 e 45.454 Clouds, diversity, green IT
DAS-5 2015 40 e 37.500 Harnessing diversity & complexity

Table 2.1: Awarded PhDs per Distributed ASCI Supercomputer generation

In this chapter we study a number of cases in radio astronomy, a computationally-
and data-intensive science that has been using high-performance computing technolo-
gies since the very early days of computing to achieve scientific results. We show how
the methodology proposed in this chapter has informally been used in the past. The
main contributions in this chapter are:

• the introduction of the concepts relative science value and total value of owner-
ship, including two potential ways to estimate total value of ownership over the
lifetime of a system,

• the introduction of a way to reason about compute system technology beyond just
cost,

• a number of case studies that show practical trade-offs between cost and value in
radio astronomy.

Although we present a number of equations in this chapter, it is not our intention that
these are used to generate a numeric merit value for a particular system or technology.
Rather, they are intended to illustrate which components contribute to the cost and merit
of a system and as a starting point for a more detailed discussion on the relative value
of various compute systems. With these components, and some examples of cost and
value past and present in this chapter in mind, system designers and architects have the
tools needed to better balance their designs, and evaluate their design choices within this
framework.

The intent of this chapter is to show how compute system related design and pro-
curement decisions in data-intensive science projects should be weighed and valued.
By using both total cost and science value as a driver, the science output per invested
Euro is maximised. While the general concepts discussed in this chapter are known
in systems engineering, we hope to introduce them to a broader audience of scientific
decision makers, principal investigators, and system architects and designers.
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2.2 Compute systems for large-scale science

The study of Physics, in particular Astrophysics, has relied on state-of-the-art com-
puter science and high-performance computing. Modern aperture synthesis radio astron-
omy in particular was made possible by the development of the Fast Fourier Transform
(FFT) [48]8 and computers fast and cheap enough to use them at scale. For example, the
One-Mile Telescope, built at the Mullard Radio Astronomy Observatory, Cambridge, in
1964, relied on the computing advances of the EDSAC II and TITAN computers, as
is illustrated in our Case Studies in Section 2.7.1. This telescope, and others, like the
Half-Mile Telescope at Cambridge and the Westerbork Synthesis Radio Telescope in the
Netherlands, depended on the abundant and increasingly cheap computation available to
develop the new scientific technique of aperture synthesis, which unlocked new science
and ultimately won a Nobel Prize.

More recently, the range of applications that benefit from large-scale computing has
increased dramatically with the rise of Data Science, and the ease with which high-
performance (if not world-leading) compute infrastructures have become available via
Cloud Computing. This chapter is thus presented at a timely moment, to provide deci-
sion makers, principal investigators and designers of new compute systems and applica-
tions with a framework to help evaluate and guide their design choices.

2.3 On relative science value

In the previous section we have argued that modern data-intensive science relies heavily
on computing. Given the high cost of such resources, there is an obvious desire to
maximise their usefulness, or minimise their cost. We introduce a system’s Relative
science value, defined as its value per invested Euro over its lifetime, as a measure for
the merit of a system over its lifetime. The definition of value will be discussed in
Section 2.4.

The computational systems supporting modern data-intensive science are often a
complex collection of hardware, middleware and software. Quantifying the cost and
relative value of such a complex integrated system is nearly impossible. To start our
exploration we will focus on one of the more tangible components: hardware.

By first exploring ways to quantify hardware cost and value, we reduce the com-
plexity of the system under investigation without impacting the value of the analysis. In
section 2.7 we show that the methodical hardware-based analysis can be applied more
broadly, as similar considerations can be used to evaluate other system costs, such as
software development, maintenance and power consumption.

The relative usefulness of a hardware system, its relative science value (MS), de-
pends on its total aggregate value accrued over time (total value of ownership, TV O)
and aggregate cost over the lifetime of the system (total cost of ownership, TCO):

MS =
TV O

TCO
(2.1)

8Ryle in his Nobel lecture credits Dr. David Wheeler with the invention of the FFT in 1959 [133]



2.4. Total Value of Ownership 23

Total Cost of Ownership is a well known concept, both as a tool to inform purchasing
decisions in general [62], and in computer science. In this chapter we give our own
definition of the Total Cost of Ownership of a system. We introduce the generic concept
of Total Value of Ownership in this chapter.

From Equation 2.1 it is obvious that there are two ways to maximise the relative
science merit of a compute system: reduce Total Cost of Ownership, or increase Total
Value of Ownership of a system. In practice, a carefully considered combination of the
two is likely to produce the optimal result. Obviously, total cumulative value TV O is
not easy to quantify, and we note that the time over which value is accumulated may
extend well beyond the lifetime of the system. In the next sections we will explore the
components that make up TV O and TCO.

2.4 Total Value of Ownership

Whereas the concept of Total Cost of Ownership is well known and established, the
same can not be said for its value counterpart; we shall therefore introduce this first. In
economic terms, we are interested in the return on investment, which we’ll refer to as
Total Value of Ownership (TVO) in this chapter, to contrast to Total Cost of Ownership.
While this is an essential question to ask during the definition phase of a project, the an-
swer is seldom easy to quantify. The success of science projects is generally measured
in the importance of its scientific results, often expressed in the number of published
peer-reviewed papers produced. However, from a system design perspective, it is attrac-
tive to use a more easily measured metric, such as compute power, throughput or storage
capacity, to describe the value of a system. While such metrics are convenient and may
be useful in their own right, we argue that these do not necessarily provide an accurate
reflection of how the system will be used. Furthermore, these do not necessarily take
computational efficiency, scientific impact, or average required capacity per accepted
paper into account. In this section we propose two measures for a system’s TVO that
are designed to more accurately reflect the actual scientific usefulness of a system: to-
tal lifetime computational value (Vc), and total lifetime scientific value (Vs). While we
provide equations, these are not designed to be used to model TVO; but rather to capture
the relationship between some of the various elements that define system value.

Total performance, computational or otherwise, of a system can be a useful measure
for the value of a (hardware) system. However, even this can be difficult to quantify
beforehand. Whereas peak computational performance is relatively easy to determine,
often only a small fraction of this can be achieved in practice. The same can be said
for other metrics like peak network and storage performance. The fraction of the com-
putational resources that can effectively be used by an application is determined by its
computational efficiency. A discussion on the factors that impact computational effi-
ciency is beyond the scope of this chapter, but we note that these factors should be fore-
most in the mind of a hardware system architect. To illustrate this point, we look at the
yearly Top500 list of the fastest supercomputer in the world for the HPL benchmark 9.
Computational efficiencies of these systems, shown in Figure 2.1, range from 15.6% to

9www.top500.org

www.top500.org
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Figure 2.1: HPL computational efficiency in the Top500 (November 2017)

97.6%, which shows that the impact of unexpectedly low computational efficiency may
be catastrophic.

By taking into account the target applications for a specific system, we introduce an
estimate for its total lifetime computational value (Vc, in FLOP), as shown in Equation
2.2.

Vc = Tl Ao

P∑
p=0

(
fp Rmax,p

)
, with

P∑
p=0

fp ≤ 1 (2.2)

Here, we take the total lifetime of the system, Tl, and its availability as a fraction of total
lifetime, operational availability (Ao), to get the effective time the system is usefully
available over its lifetime. For each application p, its maximum achieved performance
on the target system (Rmax,p), and the fraction of operational time it is expected to be
run (fp) are taken to get a value for the average maximum achieved performance over
all applications to be run on the system. Combined, these two components make up the
system’s total lifetime computational value.

Equation 2.2 thus takes computational efficiency into account over all target applica-
tions, and considers both system lifetime and operational availability. Similar analyses
could be done for other performance metrics, such as network bandwidth and storage
system performance. We do not measure average performance of applications, rather
we determine the total effective performance over the lifetime of the system. However,
the eventual goal of a compute system is not the delivery of capacity per se, but rather to
facilitate science. A discussion on appropriate metrics for scientific output is well out of
scope for this chapter, for the purpose of the discussion in this chapter we use scientific
publication as a placeholder. This is most easily measured in peer-reviewed journal or
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conference publications; however, one may also consider monographs and PhD theses,
or even awards (see section 2.7.1).

To illustrate these points, we introduce a system’s Total lifetime scientific value,
which in our example is based on its previously introduced total lifetime computational
value. Since not all science requires the same amount of resources, processing power
or other, per scientific publication, we add the average computational resource required
per scientific publication. An appropriate impact factor10, which is not necessarily the
same as a journal impact factor, may be added to differentiate potential Nobel prize
winning research from more generic projects. Notably, this impact factor may be highly
time sensitive, in the sense that ground-breaking projects generally have very high im-
pact factors (see section 2.7.2 for an example). We note that these two factors may be
subjective, highly sensitive, and may have significant political implications.

Vs = Tl Ao

P∑
p=0

(
fp

Rmax,p

Ccpp,p
Ip
)

, with
P∑

p=0

fp ≤ 1 (2.3)

Total lifetime scientific value Vs is defined in Equation 2.3 by the maximum achieved
performance of the application associated with science case p on the system under in-
vestigation Rmax,p, divided by the average amount of resources required per scientific
publication for that science case Ccpp,p. This results in the number of scientific pub-
lications per unit of time for that science case and system. Multiplied by some impact
factor per science case, Ip, and summed over all science cases targeted by the system P
and normalised using the fraction of time each application is expected to consume (fp),
gives us a measure for scientific impact per measure of time for that system. Multiply-
ing that by the total lifetime of the system Tl and the fraction of that time the system
is actually available (operational availability Ao) gives us the total scientific value of a
system, in a unitless scientific impact. For convenience we use computational resources,
in floating point operations (FLOP), as a measure for resources required per scientific
publication in this model, but other metrics (such as bandwidth, storage capacity, etc),
or a combination of such metrics, may be used instead.

The two value measures introduced in this section are by no means the only ones
that can be defined. They are intended to start the discussion and offer an initial in-
dication of the processes and thinking involved. Characterising the performance of a
compute system in a single number is notoriously difficult, which has been studied in
some detail. Previous work suggested the use of harmonic means of runtime of a num-
ber representative benchmarks to express the useful performance of a computer [145],
which expresses performance in terms of the total runtime of a set of benchmarks. While
benchmarks certainly have their place, and runtime is an appropriate measure for per-
formance of a system, this is not necessarily equivalent to value. However, we note that
the Vc is equivalent to the weighted harmonic mean suggested by Smith et al. multiplied
by Tl Ao. Essentially, instead of computing average performance, we focus on aggre-
gate performance over the effective lifetime of the system, taking system lifetime and
operational availability into account.

10We are aware that constructing a useful impact factor has many pitfalls. See [87] for a discussion about
journal impact factors as an example.
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2.5 Total Cost of Ownership

Having looked at various ways to define the value potential of a system, we now turn to
more familiar ground: cost. The aggregate cost of a system over its lifetime is usually
referred to as its Total Cost of Ownership. While the definition of TCO is relatively easy
to give, calculating it a priori may not be as simple, in particular in large-scale science
installations. The lifetime of a particular system may be unpredictable, and the often
non-conventional use of such systems may lead to unexpectedly large operational costs.
Furthermore, complex and highly integrated systems make for difficult deployment and
integration, which is hard to plan and budget for. Having said that, TCO can be defined
as a combination of capital investment (Ccap), engineering cost (Ceng , often called
non-recurring expense, or NRE), installation, deployment and integration cost (Cint),
development cost (Cdev), recurring operational cost (Cops) over the lifetime of the sys-
tem (Tl) and miscellaneous costs not covered elsewhere Cmisc, as shown in Equation
2.4.

TCO = Ccap + Ceng + Cint + Cdev +

Tl∑
t=0

Cops + Cmisc (2.4)

The one time investment to acquire a system is referred to as its capital cost, Ccap.
This includes all readily available hardware required to install and commission the sys-
tem. Capital cost is usually either capped, or relatively easy to estimate. We note,
however, that even capital cost becomes highly uncertain when predicted several years
in advance, due to fast moving markets and uncertain performance characteristics and
pricing of newly developed components. Models often resort to extrapolation from
existing systems using some form of Moore’s law scaling to estimate future cost and
performance (see for instance the SDP costing for the SKA telescope [12]). While this
has historically been somewhat accurate, the demise of Dennard scaling [57] around
2005 has made modelling much more complicated. This uncertainty is exacerbated by
an erratic market that is increasingly dominated by single players without significant
competition.

When a system requires engineering investment in order to be usefully employed,
this is engineering cost, Ceng . This may involve custom cooling solutions, or other
non-standard equipment specific to the system (see for an example the LOFAR GPU-
based correlator and beamformer [40]). Costs associated with certification of a custom
solution may also be considered engineering cost. General purpose systems generally
have no or very little engineering cost, but in more specialised systems this may be a
significant cost driver.

Any investment needed to integrate and commission the system into an existing in-
frastructure is captured in integration and commissioning cost, Cint. Note that in soft-
ware systems, especially if the source code of this software is available, integration,
commissioning and development may be closely related.

It is unlikely that the application software of a science instrument or experiment re-
mains static over the lifetime of the instrument. Part of the software evolution will be
to add additional functionality or implement advances in algorithmic or scientific un-
derstanding of the problem. Another part of this development will be to adapt existing
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code to run (efficiently) on a newly installed platform. The cost of this particular devel-
opment effort is the development costs of that system (Cdev). Such costs may be small
(e.g., porting code to a newer system with the same or a similar architecture), or very
large, for example, porting functionality from a CPU cluster to a GPU-based system,
as was done for LOFAR correlator [40]. These costs may be difficult to predict during
the design phase of a long-lived instrument, which, in the LOFAR case, was a decade
earlier. It is likely that not all development effort is expended before the system is de-
ployed, and Cdev may extend significantly into the lifetime of the system. Furthermore,
added development effort may have a significant impact on computational efficiency,
with a corresponding effect on Total Value of Ownership. There is a direct coupling
between the development costs, and thus Total Cost of Ownership, and Total Value of
Ownership. Conversely, if a system performs well enough, there is no need to expend
more development effort to improve performance, unless this opens opportunities for,
for instance, additional science cases.

Whereas all previously mentioned costs, with the exception of Development costs,
are expended before the system becomes operational, Operational cost (Cops) is a re-
curring line-item during the lifetime of the system. This includes costs associated with
energy consumed, infrastructure cost (i.e. rack space, network connectivity, both physi-
cal links and bandwidth, heat dissipation, etc), maintenance and system administration.
We have simplified our model by using a single operational cost component; reality is
often more complex, especially in a hosted environment where the components men-
tioned above are provided by different entities or organisations. While we have opted
to keep operational cost in our model flat over the lifetime of the system, this is again
a simplification. Operational cost in the initial phase of the system may be higher both
due to early failure of hardware and staff unfamiliarity and training. Near the end of
the operational lifespan of the system, often after four or five years in general purpose
computing, an increase in hardware failures may be observed, which may increase op-
erational cost, depending on the chosen service model. Furthermore, operational cost
may depend on inherently volatile pricing of, for instance, electricity. Energy costs are
often estimated using the previously mentioned extrapolation using Moore’s law scal-
ing, while staffing levels and costs may be based on industry standard fractions of FTE
per rack or PetaByte [69].

Finally, staff costs not included in the components above, such as those required to
secure funding, acquire the system (e.g. writing tender documentation and evaluating
responses) and to decommission the system after its useful lifetime, as well project man-
agement and support other than system administration, are included in miscellaneous
cost (Cmisc).

The remainder of this chapter takes the concepts introduced, and shows, using artifi-
cial and real-world case studies taken from radio astronomy past and present, the value
of this structured approach to compute system design.

2.6 A synthetic instructive example

In the previous sections we identified a metric that we can optimise for: total relative
science value as defined in Equation 2.1, Ms, but its definition is (deliberately) ambigu-
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ous. While it is not our intention to advocate numeric values for the total relative science
values for eScience technologies, we can use the equations introduced above to identify
ways to optimise their usefulness.

In this section we illustrate the value of the proposed methodology using a thought
experiment. We have constructed an example that is obviously manipulated to show
the desired results. However, using this example we show that, depending on the value
measure selected, any of the offered solutions can be judged superior to the others.

Table 2.2 describes hypothetical responses to a hypothetical request for tender for the
replacement of key computer hardware. A set of ten key applications was identified that
cover the lifetime of this system, and performance of each system for these applications
was measured, as shown in Table 2.3.

Cheap Inefficient Ops Custom Specialized

Ccap (e) 250.000 350.000 350.000 300.000 400.000
Ceng (e) - - 25.000 - 25.000
Cint (e) 25.000 - 25.000 - 25.000
Cdev (e) 750.000 600.000 1.250.000 1.250.000 1.000.000
Cops/yr (e) 50.000 25.000 75.000 25.000 25.000
Cmisc (e) 25.000 25.000 25.000 25.000 25.000
Tl (yr) 5 5 5 5 5
Ao 0,9 0,95 0,85 0,95 0,95

TCO (e) 1.300.000 1.100.000 2.050.000 1.700.000 1.600.000

Table 2.2: The offered solutions, with detailed cost, lifetime and availability information

Each of these offers were evaluated using the model introduced in this chapter, the
results of which are shown in Figure 2.2. For each value measure, the superior solu-

fp Ccpp Ip Cheap Inefficient Ops Custom Specialised

A 0,04 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

B 0,08 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

C 0,02 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

D 0,02 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

E 0,40 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

F 0,11 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

G 0,07 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

H 0,08 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

I 0,02 1 · 104 100 2 · 108 1 · 108 5 · 108 4 · 108 10 · 108

J 0,16 1 · 104 5 2 · 108 1 · 108 5 · 108 4 · 108 2, 5 · 108

Table 2.3: Application characteristics and performance per offered solution
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Figure 2.2: The offers evaluated against six cost and value measures. The superior offers
for each measure are shown in green.

tion is shown in green11. While the offers are fictional and the use-case is obviously
constructed, it is clear that, depending on the chosen selection criterion, a different so-
lution wins, highlighting both the power and importance of the concept introduced in
this chapter. More importantly, this example shows the dangers of selecting the wrong
value measure for convenience or not carefully considering all possible components that
make up the selected value measure.

In section 2.1 we postulate that the useful (scientific) output of the system per in-
vested Euro is the most useful value metric of a system. Not using such a metric, and
instead focusing solely on total cost of ownership, would, in this example, lead to the
selection of the far inferior Inefficient solution.

11All underlying data and analysis used in this chapter are available here: https://doi.org/10.
5281/zenodo.2270842.

https://doi.org/10.5281/zenodo.2270842
https://doi.org/10.5281/zenodo.2270842
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2.7 Case studies

To further illustrate the value of the conceptual model introduced in this chapter, three
radio astronomy use cases will be discussed: the use of the TITAN computer for one
of the first operational radio interferometers, the LOFAR array and the SKA Science
Data Processor. We also highlight the variability of value over the lifetime of a compute
system using the performance impact of a recent hardware vulnerability as an example.

2.7.1 The TITAN Computer and the Mullard Radio Astronomy
Observatory

The One-Mile Telescope, sited at the Mullard Radio Astronomy Observatory (MRAO)
near Cambridge, was an early aperture synthesis telescope, and was the first designed to
use the Earth rotation aperture synthesis technique. It was conceived when the EDSAC
II computer at Cambridge University was in operation, and was completed in 1964,
as the TITAN computer came online. TITAN was then used by the One-Mile, the
Half-Mile and Interplanetary Scintillation Array (IPSA) telescopes, until TITAN was
decommissioned in 1973. The One-Mile was explicitly designed to used the improved
computing resources provided by TITAN, first to provide the control tapes for the tele-
scope and then using the Fast Fourier Transform (FFT) to power the data analysis [63],
[131]. As Wilkes recalls:

One day, Ryle came to me to say that he was planning the erection of
a much larger telescope and to ask whether the Mathematical Laboratory
could undertake to provide the computing support required.[166], p.193

TITAN was a ground-breaking computer itself, with hardware procured from the Fer-
ranti company, and software developed by staff at the University of Cambridge, mostly
from the Mathematical Laboratory. The Mathematical Laboratory was, unusually for
the time, already running as an effective computing service, where users applied for
time with their projects (as is common with HPC resources today)[101], [166]. This
differed from companies such as Ferranti and IBM, which were producing computers
for the commercial market, and other universities, which were producing computers pri-
marily as a way of investigating computers themselves (the purpose of instruments such
as the Manchester Baby and CSIRAC), without explicit support for scientific research
[50].

Although the University wished to buy a new computer to replace EDSAC II, it
did not have a large capital budget available. Thus they bought a heavily-discounted
Ferranti Atlas (usual cost £ 2 million; price actually paid: £ 350,000 (approximately £ 6-
7 million today [102]) with an additional £ 75,000 for a large disk store [8]). However,
the University now had to spend a lot of money on salaries to develop the software, but
this cost was not explicitly tracked by the University, and their decisions were made
purely on the Ccap.

The performance of TITAN, combined with David Wheeler’s FFT algorithm [133],
allowed TITAN to do the calculations necessary for the first Earth-rotation aperture
synthesis observations with the One-Mile telescope, and then to produce the first maps
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of the radio sky [131]. It was also used to support IPSA, which was used by Dame
Jocelyn Bell Burnell to discover the first pulsar.

These scientific breakthroughs, backed by TITAN, won Tony Hewish and Sir Martin
Ryle their joint Nobel prize for their innovative telescope design work [132]. Further-
more, at least 30 PhD theses using the One-Mile, and the subsequent Half-Mile and
IPSA, used TITAN-processed data, or used TITAN for theoretical modelling.12 It is un-
fortunately not possible to track all the papers that were produced with TITAN, as it was
not comprehensively tracked at the time and not all authors note their use of TITAN.
Therefore there are aspects of TITAN’s value that are not captured.

Nevertheless, TITAN delivered exceptional TVO extending well beyond its lifetime.
It was not only used in radio astronomy, although radio astronomy made unique use
of its capabilities, but also in computer science (applications included one-way func-
tions for storing passwords, timesharing systems, computer language research, early
version control systems [8]), crystallography (another field that used the FFT), statis-
tics, Computer Aided Design, agronomy, and quantitative economic methods (for which
one TITAN user, Sir Richard Stone, won the Nobel Prize for Economics) [146]13) [103].

Many of the people who designed, programmed for, and used, TITAN were or be-
came leaders of their fields, bringing rewards (both financial and reputational) to their
institutions in the subsequent decades; thus TITAN provided a TVO that far outweighed
cost of purchasing, developing, and running the system. There is a significant “long tail”
to TITAN’s value, exemplified by Dame Jocelyn Bell Burnell’s receipt of the Royal So-
ciety Royal Medal in 2015, and the Special Breakthrough Prize in Physics (2018), both
of which specifically cite her work on pulsars. To illustrate the disparity between the
lifetime of the TITAN system and its value, we have plotted major prizes won by TITAN
users in radio astronomy, as compared to TITAN’s lifespan, in Figure 2.3.

Awards were not confined to the radio astronomy community. Eleven TITAN users
have been elected Members of the Royal Society.14 TITAN users have won many other
major awards in their fields, including: the Royal Statistical Society Guy Medal in Sil-
ver 15, the Gold Medal of the Royal Astronomical Society16, the London Mathematical
Society De Morgan Medal 17, the Faraday Medal 18, the IEEE John von Neumann medal
19 and the Karl G. Jansky Lectureship, which ”is an honor established by the trustees
of Associated Universities, Inc., to recognize outstanding contributions to the advance-

12One of us (VA) checked the archived PhD theses of the Astrophysics Group, Cavendish Laboratory, Uni-
versity of Cambridge. TITAN may have been used for PhD theses in other groups; however, it is difficult to
locate all of these 40 years later.

13A copy of this work is held in the Library of the Department of Computer Science and Technology, Uni-
versity of Cambridge, classmark V75-14.

14Frank Yates, Donald Lynden-Bell, David George Kendall, Maurice Wilkes, Sir Martin Ryle, Peter
Swinnerton-Dyer, Malcolm Longair, Brian Pippard, Roger Needham, John Baldwin and Dame Jocelyn Bell
Burnell [129]. “The Royal Society is a Fellowship of many of the world’s most eminent scientists and is the old-
est scientific academy in continuous existence”, and members must have made “a substantial contribution to the
improvement of natural knowledge, including mathematics, engineering science and medical science” [127, 128].

15Won by Georgle Kendall and MJR Healy
16Won by Donald Lynden-Bell, Sir Martin Ryle, and Jeremiah P. Ostriker
17Won by D. G. Kendall
18Won by Ryle, Maurice Wilkes, and Roger Needham
19Won by Wilkes
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Figure 2.3: Awards given to TITAN radio astronomy users over time. The blue bar
indicates when TITAN was active.

ment of radio astronomy” 20. The precise role of TITAN in these awards is difficult
to quantify; however, having TITAN available clearly provided important support and
enablement for people at all stages of their careers — precisely the purpose of a scien-
tific computing resource. Moreover, this lists only the very highest achievers amongst
TITAN users; there are shallower network effects from the existence of TITAN, which
are even harder to account for, but which indicate that resources such as TITAN are vital
for the scientific community. Although a significant investment, both capital, as well as
engineering and development, was required, TITAN’s ten-year lifespan and high-impact
and long-lasting contributions make its relative science value exceptional. Even if the
full list price of the hardware had been paid, the capital outlay would still have been
justified by its scientific success, which far outshone other contemporaneous systems.

2.7.2 LOFAR
LOFAR, the LOw Frequency ARray [158], is a modern low-frequency large-scale dis-
tributed radio telescope in the Netherlands, with international stations in various Euro-
pean countries. The concept and design of the LOFAR telescope, which started in the
late 1990s, is a study in trading off value and cost. A number of early papers discussing
the telescope concept and initial design [29, 30], as well as some retrospective analy-
sis of the design considerations [32], make this a particularly interesting instrument to
study.

As discussed above, modern radio interferometry was made possible by the avail-
ability of abundant and affordable compute resources. In LOFAR, this concept is taken
even further by replacing a small number of large parabolic reflectors with many simple,
cheap and omni-directional dipole antennas and software-based digital beamforming.
Essentially, many simple antennas are combined, by coherent addition, into a single vir-
tual receiver. Early design concepts for this low-frequency array that could act both as a
technology demonstrator for the future Square Kilometre Array, as well as scientifically
open a relatively unexplored frequency range, identify a “processing window of oppor-
tunity”. This early concept predicted that, while computational cost for the processing
required for this low-frequency array was at the time infeasibly large, it would become
affordable, assuming Moore’s law continued to apply, after 2003.

20Awarded to Bernie Fanaroff and Dame Jocelyn Bell Burnell, both of whom used TITAN during their PhDs.
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In further work, instrument sensitivity was defined as the key value parameter (and
thus a measure for the TVO of the instrument) for the design trade-offs in this instru-
ment [31], although other value measures such as survey speed and resolution were
also taken into account. In order to achieve optimal performance over cost, all main
constituents of the complete LOFAR system were designed to have a similar marginal
performance over cost ratio.

This analysis shows that both TVO and TCO for the LOFAR telescope in general,
and the digital processing systems in particular, were carefully considered early on in
the conceptual design phase of the instrument. A clear choice was made to use sensi-
tivity over other technical or scientific metrics, such as survey speed or resolution, as a
measure for the total value of the instrument. We note that this implicitly assumes this
technical measure translates to scientific value. Regardless of this technical measure,
suitability for a small number of key science projects was also a key design consid-
eration in the development of LOFAR. Furthermore, the cost of the digital processing
system was analysed, and, more importantly, judged to become affordable at some point
in the mid future. This realisation allowed development of the instrument, and its as-
sociated software infrastructure, to start before the required compute capacity became
financially feasible.

Since its opening in June 2010, one measure of LOFAR’s science value, the number
of peer-reviewed scientific publications using LOFAR produced data, has been moni-
tored 21. A different way to express the value, or in this case more accurately the return
on investment of a science instrument, is to evaluate how much of the invested money is
reinvested in the local (national) economy. A Dutch research institute that specialises in
research on the impact of science, Rathenau, recently studied the LOFAR telescope and
the Dutch contribution to three other major science instruments: CERN 22, ESRF 23 and
ITER 24. They defined a return coefficient (R) as the capital reinvested in the national
economy, divided by the Dutch contribution in that instrument. The results, published
in Dutch [148], are summarised in table 2.4. While it is difficult to compare four com-
pletely different instruments, this work shows that the financial return of the LOFAR
telescope for the Dutch economy has been excellent. This is due to the fact that most,
if not all, of the IP was developed in the Netherlands, and therefore production of those
components, even for international stations, is likely to occur there as well.

The hierarchical and modular nature of the LOFAR system has allowed several ded-
icated systems to be added to the telescope to increase its scientific value at modest
cost. While some, like Dragnet (described in section 2.7.2), were just plug-in systems
that required little to no additional engineering to add to LOFAR, others, like AART-
FAAC (see section 2.7.2), require raw antenna data not available in standard LOFAR
observation modes. We will explore the cost and value considerations of some of these
components in the following sections.

21https://old.astron.nl/radio-observatory/lofar-science/lofar-papers/
lofar-papers

22https://home.cern/
23https://www.esrf.eu/
24https://www.iter.org/

https://old.astron.nl/radio-observatory/lofar-science/lofar-papers/lofar-papers
https://old.astron.nl/radio-observatory/lofar-science/lofar-papers/lofar-papers
https://home.cern/
https://www.esrf.eu/
https://www.iter.org/


34 On optimising cost and value in compute systems for radio astronomy

CERN ESRF ITER LOFAR
average average 2008-2017 2008-2015 2004-2013 2014-2017
per year per year construction construction construction operations

incl. grants grants only per year

Total investment 1,104M CHF 90M e 6,120M e 4,581M e 92M e 4.3M e
Total Dutch investment 50,9M CHF 2.7M e 161M e 120M e 81.2M e 3.4M e
Dutch contribution 4.61% 2.97% 2.63% 2.63% 88.3% 77.8%

Total expenditure 343M CHF 57M e 4,330M e 101M e 92 e 4.3M e
To the Netherlands 8.7M CHF 0.58M e 7.9M e 4.3M e 89.2 e 4.1M e
Dutch ROI 2.54% 1.01% 0.07% 4.18% 97% 96.5%

Return coefficient 0.55 0.34 0.07 1.59 1.10 1.24

Table 2.4: Return coefficients for the Dutch economy for four large scale science infras-
tructure projects (source, Rathenau institute [148])

LOFAR correlator and beamformer systems

A key signal processing component of the instrument, the LOFAR correlator and beam-
former, and specifically its hardware evolution, is relatively well described. This part of
the instrument is algorithmically simple and the required functionality is fairly constant.
Therefore, for this specific example, cost (with all its different components), opera-
tional availability, and lifespan mostly determine the relative science value of the corre-
lator and beamformer. Early concepts for the LOFAR central processor show a 1600
node hybrid cluster compute system that uses conventional processors and dataflow
co-processors to process the data [53, 156]. While feasible, the considerable size of
this compute concept meant that a bespoke supercomputer was a viable and, more im-
portantly, cost-effective alternative. In 2003, an IBM Blue Gene/L, briefly the fastest
supercomputer in Europe, was installed as the central correlator and beamformer for
LOFAR [122]. This was upgraded to a much smaller, IBM Blue Gene/P in 2008 [123],
that was not only more powerful, but also considerably more energy efficient. Whereas
the total lifetime computational and scientific value of this new system was similar,
its reduced operational costs, as well as improved software environment made its rel-
ative science value considerably higher than the previous Blue Gene/L. However, su-
percomputers are inherently expensive, so research into more cost-effective solutions
continued [157, 160]. This eventually resulted in the procurement and commissioning
of a much smaller and more affordable GPU-based correlator and beamformer platform,
Cobalt [40]. A more capable second generation of this system, Cobalt 2.0, started oper-
ations in 2019 25.

The timeline of the LOFAR correlator and the construction of the instrument as a
whole is interesting to study. As mentioned above, the telescope was opened in 2010
and at that time the initial Blue Gene/L correlator and beamformer has already been re-
placed. While it is not accurate to say Blue Gene/L was never used in production as the
LOFAR correlator and beamformer, it is clear that it was procured and installed early.
Arguably, its cost was considerable (although the actual investment was never made
public), and its value limited. However, the strategic alliance and collaboration agree-

25https://old.astron.nl/cobalt20-sets-stage-fully-multitasking-lofar

https://old.astron.nl/cobalt20-sets-stage-fully-multitasking-lofar
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ment between ASTRON and IBM was an important consideration in securing sufficient
construction funding for LOFAR. Furthermore, spare computational capacity was made
available to other scientific users. Therefore, while the total lifetime scientific value
of the Blue Gene/L correlator for the LOFAR telescope was low, its general value for
the LOFAR telescope was extremely high and its total lifetime scientific value for the
wider community was comparable to other high-performance computing systems. Nev-
ertheless, the Blue Gene/L system was never used to its full potential in the LOFAR
telescope, and even the Blue Gene/P system was significantly under-utilised for most of
its lifetime. These systems did however provide extremely valuable experience that was
essential to the success of Cobalt and was used to great effect in the hardware design of
the SKA Science Data Processor. Whether this was worth the significant initial capital
investment is beyond the scope of this chapter.

When the LOFAR Blue Gene/P was nearing the end of its service life, a feasibility
study into possible upgrades was undertaken [76]. Four drop-in replacement options
(Blue Gene/Q, an FPGA-based Uniboard system, a CPU-based cluster with GPU ac-
celerators, and a CPU-based cluster) were evaluated for risk, development effort, cost,
power consumption and scalability. It is clear from these selected criteria that various
cost components were carefully considered, while value was expected to be equal among
the contenders considering any new system was expected to replicated the functional-
ity of the existing Blue Gene/P based correlator and beamformer. A cluster with GPU
accelerators was judged to be the most cost-effective solution, based on low cost and
power consumption, good scalability, and relatively little development effort required.
By extension this was therefore also the option with the highest relative science value,
and selected for implementation as the Cobalt correlator and beamformer [40].

AARTFAAC

While the LOFAR correlator and beamformer described above are integral parts of the
original LOFAR design, AARTFAAC is an add-on system that was added to increase
functionality and enable additional science cases. The Amsterdam–ASTRON Radio
Transients Facility and Analysis Center (AARTFAAC) system [114] is a real-time all-
sky transient detection system. Data from a subset of LOFAR antennas is duplicated
during normal LOFAR operations and processed independently into all-sky images of
the low-frequency radio sky that can subsequently be monitored for bright transient
events. This is a significant advance over the capabilities of the original LOFAR sys-
tem, which was only possible due to investments made early in the LOFAR project to
over-provision both the bandwidth of the LOFAR station ring network and the LOFAR
Wide Area Network. For this specific addition, a custom shim was added the station data
transport ring: Uniboard-RSP Interface boards. These duplicate raw antenna data, nor-
mally beamformed in RSP boards, to AARTFAAC Uniboards. Furthermore, the FPGA
firmware on the LOFAR core stations that take part in the AARTFAAC system had to be
modified to generate the additional AARTFAAC packets. Data from the AARTFAAC
system is transported to dedicated processing nodes located in the same central process-
ing facility as the LOFAR correlator and beamformer, sharing spare network capacity.

While AARTFAAC adds undoubtable value to the LOFAR telescope, its addition re-
quired significant additional engineering and manufacturing. In particular the additional
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firmware programming requires the use of scarce resources that are generally overcom-
mitted. We will not discuss the relative merits of this addition over others, or whether
the investment was valuable or not. However, we do note that additional investment in
the development of data spigots at the LOFAR station during construction would have
made the development of AARTFAAC much cheaper and easier. This was considered
during design, but technology had not progressed sufficiently; the additional cost would
have been significant and the idea was shelved.

DRAGNET

Whereas AARTFAAC is a real-time transient monitor that operates in UV-space, the
DRAGNET cluster [19] is a non-real-time pulsar and transient search system that oper-
ates in the time domain. It takes beamformed data from the Cobalt correlator and beam-
former and uses blind coherent de-despersion to identify fast transients and millisecond
pulsars. This system has demonstrated its value by the discovery of the second fastest-
spinning pulsar to date, and one of the first at such low observing frequencies [20].

The DRAGNET system consists of 23 nodes, each of which has 4 NVIDIA Titan X
GPUs that provide the bulk of the processing capacity. Its source data is produced by
the LOFAR Correlator and Beamformer, Cobalt. Data is stored locally and processed
non-real-time, resulting in a pulsar and/or transient candidate list for further analysis.

Since DRAGNET uses a standard LOFAR data product as input, only limited modifi-
cations were necessary to integrate the system into the LOFAR telescope. The only ma-
jor investment, apart from the cluster and dedicated software for DRAGNET itself, was
the integration of the system into the LOFAR monitoring and control system. DRAG-
NET has added significant capability to the LOFAR telescope: the ability to search for
extremely fast-spinning pulsars, and a way to detect fast transient events that would be
missed by the original LOFAR telescope. This adds significant additional value to the
instrument, since it allows new science cases to be explored. The majority of the ad-
ditional investment was in the actual cluster and the software development needed to
process the data, with limited investment needed to modify the existing system.

International LOFAR stations

International LOFAR stations are not just valuable parts of the International LOFAR
Telescope (ILT), these can also operate in local or standalone mode. In this mode,
station data is not sent to the central LOFAR correlator and beamformer, but instead
redirected to a local system and can thus act as a fully functional telescope in its own
right. The comparatively small size of these stations, and the low observation frequency,
make them relatively unsuited for imaging observations, so most effort has gone into
local transient and pulsar search. The ARTEMIS backend [16] was developed as a real-
time GPU accelerated suite of software to search for these events in data from modern
radio telescopes. Four international stations are equipped with such systems [141].

Changing an international LOFAR station to stand-alone mode is, from a high level,
as easy as changing destination IP number and MAC address of the receiving nodes.
The ability to use these international stations in this mode can be partly attributed to
the extensive use of standardised protocols and interfaces, as well as the modular nature
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of the LOFAR telescope. This means that LOFAR is potentially a large collection of
independent instruments.

One international station, the French station near Nançay, differs significantly from
any other antenna field in the LOFAR instrument. Apart from the low- and high-band
antennas as in every international station, an unused third analog data path in the LO-
FAR station hardware is used to add a cluster of 96 mini-arrays, each of which consists
of 19 antennas sensitive from 10 to 87 MHz [170]. The resulting giant extension of LO-
FAR, NenuFAR, while not as large as the LOFAR telescope, adds a similar number of
low-band antennas to the instrument as all other stations combined (1938 vs ∼2700).
In stand-alone mode, NenuFAR, currently under construction and accepting early sci-
ence proposals26, intends to support a wide range of data products, very similar to those
produced by the LOFAR telescope. This shows that NenuFAR is a powerful instru-
ment itself, especially for pulsar and radio transient science. A dedicated correlator and
beamformer, based on the newly commissioned Cobalt 2.0 correlator and beamformer,
is currently being installed.

This extension to the French international station was made possible by the avail-
ability of an unused analog data path in the LOFAR station hardware. This data path
was intended for a third receiver type, eliminated early in the design process for cost
reasons. In Dutch LOFAR stations this data path is used to connect half of the low-band
antennas.

Finally, a LOFAR station was constructed in Lapland, Finland, near Kilpisjärvi, well
above the arctic circle [95]. This station, KAIRA, is not part of the International LOFAR
Telescope (ILT) and not connected to the rest of the LOFAR network. Instead it is
used exclusively in stand-alone mode, primarily for atmospheric imaging using reflected
transmissions from a number of remote radar sites. Experiments have shown fringes on
recorded data between it and the international LOFAR station at Effelsberg in Germany,
proving that for exceptional experiments it is possible to add the station to the LOFAR
array, albeit not in real-time.

Retrospective

The LOFAR concept design identified a period in time where the relatively high impact
of ground-breaking radio astronomical research in a relatively unexplored frequency
range, combined with dropping costs for computing, would result in an instrument with
optimal relative science value. During its design and operational lifetime, the LOFAR
correlator and beamformer in particular has benefited from continued development of
cost-optimised solutions to improve the relative science value of an already successful
and cost-effective instrument. The modular nature of the LOFAR telescope enabled the
addition of additional systems to the instrument, further increasing its science value.

We note that the cost and value analysis of these additional systems was not as rig-
orous as that done for the original LOFAR system. While the engineering challenges of
such add-on system were generally considered, the operational impact was often under-
estimated and (un)availability of critical development resources lead to significant slip-
page in project schedules. Within ASTRON this has led to a more formal and structured

26https://nenufar.obs-nancay.fr/en/astronomer/

https://nenufar.obs-nancay.fr/en/astronomer/
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application process for funding and the adoption of more rigorous systems engineering
practices. For the second phase of LOFAR we are considering the establishment of a
LOFAR architecture team to centralise and formalise the responsibility for the consid-
erations on cost and value for the instrument. Modern distributed radio telescopes are,
due to their inherent modular nature, exceptionally adaptable and extendable. Taking
possible extensions into account during the design of a new instrument will make the
addition of such extensions easier and thus cheaper.

When looking at radio telescope systems as a whole, instead of just the compute
systems they rely on, scientific value is the better understood factor while the sum of all
costs is often not fully appreciated. This is, at least to some degree, a result of the fund-
ing model for scientific instruments. Funding proposals are evaluated on scientific merit
first, and cost second. Furthermore, costing an addition to a complex distributed sen-
sor system, like the LOFAR telescope, is exceedingly complex and prone to overseeing
non-trivial component costs.

2.7.3 Spectre and Meltdown: how value of an existing system may
change unexpectedly

We argue in this chapter that we can try to estimate the total lifetime computational
value of a hardware system beforehand. However, value is not constant over time and
may be impacted by external factors beyond the control of the user. In January 2018 a
number of critical and widespread flaws in the hardware design of current generation
processors were published [89, 84]. These unparalleled hardware vulnerabilities hit vir-
tually every installed compute system currently in operation. While many software bugs
may cause temporary performance issues, or cause delays in achieving top performance,
the mitigations implemented to address these unprecedented flaws in processor design
caused a completely unexpected and major reduction in performance of current systems,
including otherwise well-performing systems. Due to the nature of these flaws, critical
separation failures in performance-critical speculative execution, mitigation efforts in
processor microcode and operating system kernel, have resulted in significant perfor-
mance impacts, thus reducing the value of existing compute systems. In particular I/O
heavy workloads, such as those encountered in the LOFAR correlator and beamformer,
that cause large numbers of context switches are expected to see performance reduced by
very significant amounts [33]. For the Linux kernel, the dominant operating system in
both high-performance computing, as well as distributed computing applications, these
are known as Kernel Page Table Isolation (KPTI). These are kernel level fixes, that can
be activated or deactivated at boot-time with a kernel boot parameter.

We illustrate the performance impact of these mitigating efforts in Figure 2.4. We
test three Linux kernels, one released just before the announcements mentioned above
(4.13.16), one that includes the initial mitigating patches (4.14.14) and one more recent
kernel (4.19.1) in which the mitigations have been in place for some months. Since a
key task in the correlator and beamformer systems in LOFAR involves receiving large
numbers of UDP/IP streams, we measure performance impact, and therefore the hit on
value, by trying to receive as many UDP/IP packets as possible on a CPU-bound system
with a 40 GbE device. Results are normalised to the performance of the oldest kernel,
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Figure 2.4: Maximum UDP/IP packet receive performance for three kernels, normalised
to the oldest kernel. Blue shows the default configuration, green when Spectre and
Meltdown v2 mitigations are turned off.

which, for reference, achieved around 1,65 million packets per second.
This measurement shows that the value of a system has the potential to change

over time (here between 5% and 10%), and may be affected by factors and risks out-
side its operators’ and designers’ control. In this particular case, most of the perfor-
mance impact may be avoided by turning off page table isolation (nopti) and retpo-
line (nospectre_v2) at boot time, at the cost of accepting that the system is trivially
exploitable (which may be acceptable for a dedicated cluster behind a firewall).

2.7.4 SKA SDP
The Square Kilometre Array (SKA) is a next-generation radio telescope, currently in the
design phase. It will consist of two telescopes, a low-frequency telescope (50-350MHz)
consisting of 130,000 antennas in over 500 stations in Western Australia, and 133 mid-
frequency dishes (4350MHz-14GHz) in South Africa, which latter will be joined to
the existing MeerKAT telescope. These telescopes will be constructed and deployed in
phases across a 5-year period. The SKA is designed to achieve exceptional scientific
value, and to enable potential Nobel Prize-winning research [144].

A key component of this instrument is the Science Data Processor (SDP), where
instrument data, produced by specialised correlator hardware, is turned into science-
ready data products, such as radio astronomy images, using high performance general-
purpose compute systems [10]. There will be data centres in Perth and Cape Town,
which will host an SDP for each country, where the data will be received, processed,
and transmitted for use by astronomers. The data rates from SKA will be extremely
large: each telescope will output up to 3.1Tb/s from the correlator. The main function
of the SDP is thus to perform a data reduction, outputting data products that are able
to be used by scientists, but which are also somewhat easier (and cheaper) to store and
transmit. The (in)ability of the SDP to perform this function may impact the science
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that can be performed by the SKA as a whole: if it takes too long to reduce the data,
or the SDP cannot reduce the data by a sufficient factor, less data- or compute-intensive
observations will have to be scheduled [10]. Thus the design of the SDP is critical to
the scientific value of the telescope.

In order to maximise its relative science value, the SDP will use a mix of custom-
designed software components and off-the-shelf software. In order to reduce TCO, the
SDP will make extensive use of existing technologies. A platform management system
is envisioned to provision and organise its compute resources. Such a system allows for
the automation of compute deployment, at the cost of a mild computational overhead.
This saves on operator time, and allows for reliable and reproducible deployment of
operating systems and other support services. The reduced operator time needed and
increased reliability drive down operational costs (Cops); reproducibility renders it eas-
ier and quicker (hence cheaper) to detect bugs. OpenStack, an open source platform
management product in use by HPCs and data centres, is a candidate solution for this,
in part because SKA is already working with CERN on improving OpenStack technolo-
gies. The SKA will save cost of development (Cdev) and ongoing maintenance costs
by using this off-the-shelf open source software, rather than writing their own suite of
complicated software for the same purpose. The viability of this approach has already
been prototyped [150].

In addition, in order to improve TVO, a new suite of astronomy data processing
software will be developed, focusing on a highly reusable modularised architecture.
The principal idea is to create low-level software modules that can be reused by many
data processing pipelines [9]. However, rather than using existing code from existing
telescopes, these modules will be newly implemented for two reasons: scalability in
parallel environments and maintainability over the expected 50-year telescope lifetime.

Providing modules that can easily be connected for use in large clusters is key for
the SDP, as, without taking advantage of the inherent parallelism available in a lot of
astronomy data processing, it will be difficult to achieve the data throughput necessary.
This modularisation not only allows designing for an embarrassingly parallel processing
environment, it also permits programmers to quickly and easily provide new modules
for optimised use with new hardware, and implement new algorithms for new science
without rewriting other parts of the software infrastructure. This is explicitly to reduce
Cdev , by anticipating the need to port code to new, potentially very different, architec-
tures, in contrast to the issues LOFAR experienced, as noted in 2.7.2. This also allows
the SDP to run on generic COTS hardware, while also allowing for future software-
hardware co-design for key algorithmic components. Similarly, modularisation of code
handling hardware interfaces allows for pivoting to new technology — an inevitability
in a long-lived project.

Maintainability is also a key driver for writing new code: technical debt accrues
in software projects over time, as programmers can end up prioritising writing code
quickly, rather than writing it well, or with an eye to help reduce maintenance costs.
Some of the commonly-used radio astronomy code, such as CASA, has parts that are
nearly 40 years old, and which were not designed to be used in highly parallel compute
systems. Thus the SKA has the opportunity to reduce its total lifetime costs by investing
in new code that is designed to be more easily maintainable, especially around providing
new algorithms and pipelines for its highly parallel environment. Proofs of concept
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of this approach have similarly been prototyped, to verify ease-of-use and explore the
scalability required for SKA [13, 49].

This requires a significant up-front investment for rewriting code – SKA SDP soft-
ware accounts for approximately 8.2% of the SKA construction budget, compared to
7.1% for the VLT, 5.7% for ALMA and 4.3% for ASKAP [83, 74]. We note that for
SKA SDP this is processing software only, excluding telescope manager – functionality
that is included in the figures for VLT, ALMA and ASKAP. However, this will improve
TVO, by making it easier to make efficient use of the data processing hardware, by
making it easy to implement new algorithms, and by isolating where code changes to
support those algorithms are needed. This should thus reduce some of the maintenance
cost of the SDP, and improve its ability to unlock new science across the lifespan of
the telescope, albeit at an increase in upfront development cost (Cdev). The SDP will
also undertake a phased hardware deployment, to provide compute when it is needed to
support the increasing number of antennas and dishes on the ground, which will both
keep capital costs lower, and reduce overall operational costs (Cops). Furthermore, the
deployment of hardware later on in the project allows hardware to be tailored to the
software and vice versa, similar to the Cobalt correlator and beamformer in LOFAR,
improving total relative science value of the resulting system. The SDP is for the SKA
thus deliberately considering and trading off in different areas, the TCO and TVO of the
system, with some decisions made to manage cost, and others to maximise total lifetime
scientific value.

2.8 Related work

This work is a form of hardware-software co-design, as practised in the design of
compute systems for large-scale science instruments. However, up to now, hardware-
software co-design has focused mostly on more easily measured metrics, such as cost,
power consumption and peak performance. Furthermore, while the literature often
speaks of the importance of application co-design, the metrics used are agnostic and
described mostly in terms of cost functions and constraints in energy and capital. In this
chapter we explore what these systems are really built for, and what a suitable measure
for their performance would be.

This work can be considered a specialisation of general cost-benefit analysis in eco-
nomics. Whereas cost-benefit analysis normally evaluates the social or financial benefit
of a certain investment, this chapter focuses on the scientific benefit in particular. There
is research that introduces the concept of total value of ownership [167] in accounting,
but this is introduced as potential future research as an extension to TCO based deci-
sion making and not expanded upon. In that paper it is claimed that TVO builds on the
concept of value as described in marketing literature.

Total value of ownership, also referred to as total value of opportunity, is also a
metrics-based methodology for measuring and analysing the business value of enterprise
IT investments [15]. This is an extension of TCO analysis, where both cost and any
benefits of the proposed investment, tangible or intangible, are considered.

Value Engineering, Value Management and Value Analysis in Systems Engineer-
ing describe processes to achieve an optimal solution [164]. This optimal solution is
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based on stakeholder value metrics; the processes are agnostic to these. In this chapter
we take the stakeholder view, describing and enumerating the value metric, while not
considering the detailed processes required to optimise these.

Some work was done to analyse the societal impact of the High-Luminosity Large
Hadron Collider (HL-LHC) upgrade of the LHC [66, 21], predicting a larger than 90%
chance of positive net economic benefit to society based on Monte Carlo simulations.
These simulations estimate the economic returns from diverse benefits such as value of
training for students, technological and industrial spillover, cultural effects for the pub-
lic and academic publications. A comparison of the impact of the upgrade to the LHC
with the non-upgraded instrument was also presented. An impressive effort is made
to estimate the total cost of the current LHC, a difficult task even though all CERN
expenses are well documented, due to the many in-kind contributions by member and
non-member states. Societal impact analysis are very useful for funding agencies to
gauge the value of an instrument to society using scientific and objective criteria. How-
ever, analysis of the methodology found many ambiguities and the scientific benefits of
the LHC is given as less than 2% of the total impact of the instrument using this method:
a drastic underestimation [137]. Furthermore, it was found that the societal impact of
CERN’s mission, “promote science and bring nations together”, was impossible to mea-
sure, since no way has been developed to measure in economic terms the success of the
second objective. In comparison , the concepts introduced in this chapter look at more
immediate impact, computational or scientific, and attempt to be more directly useful
when making design choices.

Recent work on design optimisation of low-frequency telescopes using cost con-
straints [26] takes a slightly different and more domain specific approach. Here, an
attempt is made to model both cost and scientific performance of a radio telescope us-
ing Lagrange multipliers. Scientific performance, defined by two instrumental figures
of merit – sensitivity and survey speed, is optimised using both models and an assumed
fixed capital budget. The LOFAR architecture as built, and the SKA phase 1 baseline
design are analysed using the introduced model and variants optimised for survey speed
and sensitivity are proposed. This methodology focuses on receiver and front-end opti-
misation and mostly ignores the cost required for compute capacity or how this scales
with the number of stations and length of baselines. While the cost model does in-
clude a central correlator and beamformer, its model is exceedingly simple. Calibration,
imaging and other post-processing costs, as well as long-term storage of data products,
monitoring and control and operational costs are not modelled. Furthermore, we note
that the chosen degrees of freedom in this paper, number of stations and number of
antennas, have an enormous impact on required compute capacity for calibration and
imaging. In this chapter we take a more generic approach that is not limited to radio
astronomy and that focuses on the cost and value of the compute systems that are not
considered by Boonstra et al.

2.9 Summary and conclusions

In this chapter we introduced a more formal way to reason about cost and value of com-
pute resources, both hardware and software. We suggested that a focus on minimising
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cost alone is not sufficient to design an optimal solution. The introduction of several
new concepts, total value of ownership, total lifetime computational value, total lifetime
scientific value and relative science value, gives us the vocabulary to effectively dis-
cuss routes towards more optimal solutions. Although both total lifetime computational
value and especially total lifetime scientific value are difficult to quantify, and we do not
expect anyone to do so using the formulas given in this chapter, we do show a number
of components that allow us to reason effectively about this metric.

We provided a number of case studies in which we demonstrate the concepts in-
troduced in this chapter. We can see the utility of explicitly considering a metric of
total lifetime scientific value, as the TITAN computer sought only to minimise capital
cost (which happily led it to deliver truly exceptional value), whereas the SKA designers
are explicitly allowing for relatively high costs in some areas to maximise total scientific
value. In the LOFAR use case we noted the explicit trade-off made between high-impact
science and dropping cost for computing, which led to an identified “processing window
of opportunity” some years in the future where relative science value was perceived to
be optimal. Some of the later additions to LOFAR were discussed, each adding their
own value to the complex machinery that is the LOFAR telescope. Finally we showed,
using a recent highly publicised processor flaw and its mitigating patches, that the to-
tal computational value of a system may potentially change over a system’s lifetime.
Together, these concepts and case studies provide a framework for decision makers,
principal investigators, designers, and engineers of computing solutions to reason about
the optimal solutions, in hardware or software, for their applications.

2.10 Our propositions in this chapter

2.10.1 The bounding proposition
In this chapter we mainly focused on ways to measure cost and value. Even though
these are important bounds to consider, this chapter does not materially contribute to
the bounding proposition. However, the case-studies in section 2.7, in particular the
LOFAR case-study, give a clear example of this proposition in active use. Initially
the computational requirements of LOFAR were judged too expensive, but to become
affordable in the mid-future. This shows a number of bounds considered: compute
requirements, capital investment and time.

2.10.2 The value proposition
This chapter lays the theoretical foundation for the value proposition. We define the
concepts of Total Value of Ownership to express the value a compute and data transport
system accrues over its lifetime, and total relative science value to define the value
per invested Euro of such systems. While quantifying these measures is still difficult,
we give a number of possible ways to estimate relative value. A synthetic example
shows that choosing an appropriate measure for value is exceptionally important, and
that choosing poorly may lead to sub-optimal implementation choices. Several use-



44 On optimising cost and value in compute systems for radio astronomy

cases are analysed, suggesting that the concepts suggested are in use, but informally
and would benefit from more structured analysis, as suggested by in this thesis.

Acknowledgements

The authors would like to thank Yan Grange, Ágnes Mika, Bram Veenboer and Cees
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Abstract

Next generation radio telescopes will require tremendous amounts of compute
power. With the current state of the art, the Square Kilometre Array (SKA), cur-
rently entering its pre-construction phase, will require in excess of one ExaFlop/s in
order to process and reduce the massive amount of data generated by the sensors.
The nature of the processing involved means that conventional high performance
computing (HPC) platforms are not ideally suited. Consequently, the SKA project
requires active and intensive involvement from both the high performance comput-
ing research community, as well as industry, in order to make sure a suitable system
is available when the telescope is built. In this chapter, we present a first analysis
of the processing required, and a tool that will facilitate future analysis and external
involvement.

3.1 Introduction

The Square Kilometre Array (SKA) is a next-generation radio telescope currently enter-
ing its pre-construction phase. The central processor for the SKA will require computa-
tional resources well in excess of what even current top-of-the-line supercomputers can
offer. Additionally, the processing done is quite different from conventional high per-
formance computing applications, in computational intensity1, in its streaming nature,
and in its relative robustness against hardware failures.

In this chapter, we present an analysis of SKA central processing on future super-
computer hardware, for as far as possible considering the limited information available.
We also present an analysis tool that will allow the accurate and detailed analysis of
SKA processing on a system level. This is intended to show not only architectural
shortcomings of current or near-future high performance computing platforms, but also
to identify design points that would make future systems particularly suited for radio
astronomy.

This chapter is structured as follows. First, we will briefly describe the Square
Kilometre Array. In Section 3.3, the computational requirements of the first phase of
the SKA are identified, followed by an analysis of radio-astronomical algorithms, as
compared to conventional HPC applications. We then present an analysis of the HPC
roadmaps and identify where these fall short of our requirements. In Section 3.6, we
present a SKA analysis tool, followed by our conclusions. We end by briefly discussing
future work.

3.2 The Square Kilometre Array2

The Square Kilometre Array is a next-generation radio telescope, with a total collecting
area of approximately one square Kilometre. It will operate over a very wide frequency

1Computational intensity is defined as the number of floating point operations per byte of I/O. Normally I/O
is considered to be a memory access, but for the SKA this is often a network read.

2While this section is outdated, it is kept in tact to illustrate project progression. See Section 3.8 for more
recent information.
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range, from 70 MHz to 10 GHz, which will require several different receiver types. It
will be built in the southern hemisphere, either in South Africa or Western Australia.
The SKA will be capable of extremely high sensitivity and angular resolution.

The extremely high sensitivity and angular resolution requires an array with a very
large number of receivers, covering a very large area. SKA sites are projected to extend
up to 3000 km from the central core and will contain millions of receivers.

The SKA will cover a frequency range from 70 MHz to 10 GHz. This can’t be
covered with a single antenna type, so arrays consisting of two, possibly three, different
receptors will be built.

• The low end of the frequency range, from 70 to 450 MHz, will be covered by low-
frequency sparse aperture arrays of simple dipole antennas (AA-low). Clusters of
around 11,200 of these dipole antennas will be grouped into stations of about 180
meters in diameter. It is expected that 250 of these stations will be built. Each
AA-low station will eventually produce between 10 and 30 Tb/s of data, to be
transported to the central processor, depending on the number of simultaneous
beams required. In phase 1 this will be limited to ∼1 Tb/s per station. In total
these stations will generate up to 7.5 Pb/s.

• The mid-frequency range may be covered by a dense aperture array design, using
tiles grouped in stations of about 60 meters in diameter (AA-mid). Up to 250 of
these stations may be built. AA-mid stations produce the same amount of data as
AA-low stations, totalling∼2.5 Pb/s for 250 stations. The AA-mid concept is part
of the Advanced Instrumentation Program (AIP). Technologies in this program
will be assessed in terms of science impact, cost, and technical readiness, and
deployed in SKA phase 2 if shown to be feasible and cost-effective.

• The high end of the frequency range, upward from 500 MHz, will be covered by
relatively small dishes, with a Single Pixel Feed (SPF). These will be around 15
meters in diameter. A subset of the dishes may be equipped with a Phased Array
Feed (PAF), or a Wide Band Single Pixel Feed (WBSPF). These advanced feeds
are also part of the Advanced Instrumentation Program. Around 3000 dishes will
be built. Each dish produces ∼120 Gb/s, assuming single pixel feeds. PAFs will
produce up 10 times more data, WBSPFs around twice the amount of a SPF. All
dishes together produce ∼360 Tb/s, if fitted with single pixel feeds.

The SKA stations will be divided into four regions. Figure 3.1 shows the four regions
of the SKA and the distribution of the collecting area.

• The core will have a diameter of around 1 km, for each of the receiver types. The
dish core and the AA core will be spatially separated from each other.

• The inner region has a diameter of around 5 km. The core and inner regions
together will contain more that half of the total collecting area of the SKA.

• A mid region, extending out to 100 km for phase 1, and up to 180 km for phase 2,
will contain dishes and pairs of AA-low and, possibly, AA-mid stations. In each
case, they will be randomly placed within the area, with the density of dishes and
stations falling off towards the outer part of the region.
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Remote

D: 20% AA: 0%

Figure 3.1: The distribution of collecting area for SKA phase 2 (D = Dishes, AA =
Aperture Array stations)

• The remote region extends from 180 km to 3000 km from the central core. This
will comprise five spiral arms, along which dishes, grouped into stations of around
20, will be placed. The separation of the stations increases towards the outer ends
of the spiral arms.

The data from the receivers are transported, using long haul optical links, to a central
processor facility. The aggregate data rate into the central processor will be in the order
of 10 Pb/s, fittingly described as a data deluge. There is no known way around this cen-
tral processing; the correlator requires data from all stations in an observation. Figure
3.2 shows a high level overview of the SKA system.

The central processor can conceptually be divided into the central signal processor,
handling correlation and beamforming, visibility processors, responsible for gridding,
and image formation, generating images and calibration solutions. The central proces-
sor, located at the Science Computing Facility shown in Figure 3.2, takes data from the
SKA stations as input, and delivers calibrated science data as output. The scientific data
are stored in the science data archive at the Regional Science Centre(s), intermediate



3.2. The Square Kilometre Array 49

Figure 3.2: A high level overview of the Square Kilometre Array

data are, in principle, not stored. The data rate out of the SKA central processor is
several orders of magnitude smaller than that coming in.

The feature that sets the SKA central processor apart from conventional high per-
formance computing applications, is its very high input data rate. Since it is unlikely
that enough high performance storage will be available, or affordable, to allow batch
processing, and the system needs to keep up with the input data stream or risk dropping
data, the SKA central processor can be described as a pseudo real-time streaming pro-
cessor. Note that there is no hard real-time deadline, apart from the requirement to keep
up with the input data stream, making the real-time requirements less strict than in a
classic real-time application.

An important consequence of the streaming nature of the SKA central processor, is
the need to dimension the system to be able to comfortably handle the most demanding
application. Since there is no intermediate storage available, insufficient resources will
inevitably and immediately lead to data loss if the central processor is under dimen-
sioned.
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3.3 SKA phase one requirements3

As a risk- and cost-reduction measure, the SKA will be built in two phases. Phase 1
(often identified as SKA1), scheduled to start construction in 2016, will consist of two
receiver types, low-frequency sparse aperture arrays and high-frequency dishes, and
have a maximum baseline of around 200 kilometers. The preliminary specification of
phase 1 defines 50 sparse aperture array stations and 250 dishes, although the science
analysis may require more, but smaller, aperture array stations be built. It is likely that
instead up to 250 smaller aperture array stations will be built. The cumulative data
rate of these smaller stations will be similar to the original 50 bigger stations, but post-
processing requirements will increase considerably.

Figure 3.3: A schematic overview of the SKA phase 1 central processor

Although the exact computational requirements of the SKA phase 1 are not well de-
fined yet, it is clear from the preliminary requirements[59] that these are well beyond
the capabilities of current HPC systems. A full analysis of the science requirements
will be done in the pre-construction phase, starting in 2012. An early analysis of the
current science requirements, based on the SKA phase 1 Design Reference Mission
(DRM)[72], showed considerable differences with the preliminary requirements men-
tioned earlier[11].

It is of course unrealistic to expect the complete requirements for the software and
computing component for a complex system like the SKA to be known at such an early
stage. In fact, both software engineering experience[93, 130], and experience from the
only operational radio telescope comparable to the phase 1 SKA, LOFAR[43], show

3This section is again outdated, but kept to illustrate project progression.
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that requirements are likely to be subject to change. Having said this, the preliminary
requirements currently available, give us a good first order estimate of the compute
power needed for phase 1 of the SKA.

Figure 3.3 shows a schematic overview of the SKA phase 1 central processor, based
on these preliminary requirements. Note that the compute requirements shown in this
figure are an absolute minimum. They assume a computational efficiency of 100%. Fur-
thermore, recent experience has shown that the assumption that it takes 104 operations
to completely process an input sample, may be a serious underestimate. If we assume a
computational efficiency of 10%, quite reasonable in HPC, and 105 operations per input
sample, we would need to scale the central processor to a peak performance of approx-
imately 800 PFlop/s. This only covers the visibility processor and image generation
parts of the central processor, it does not include the correlator and beamformer.

Output from the correlator for SKA phase 1 will be in the order of several terabytes
per second. This extremely high data rate makes the SKA central processor quite unique
among high performance computers. Most supercomputers in the Top500 are designed
to handle complex simulations, which typically have a very high computational inten-
sity. If we consider a software based correlator and beamformer, the input data rate in-
creases to around 100 terabytes per second. Although the concept of a highly integrated
software based central processor, including the correlator and beamformer, is intriguing
and we will argue in section 3.7 that this may offer significant advantages, in the rest of
this chapter we will mostly ignore the beamformer and correlator, and concentrate on
what Figure 3.3 calls the visibility processors and image formation.

3.4 Radio-astronomical HPC

When analysing the computational feasibility of an instrument, like the SKA, the natural
performance figure to look at centres around the floating point arithmetic performance,
usually expressed as a LINPACK[88] performance figure. These figures form the basis
for the Top500 list of the fastest supercomputers in the world[152].

The LINPACK benchmark is characterised by a large number of parameters, like
matrix sizes, that can be freely chosen to allow the user to tailor or optimise the bench-
mark to the hardware being tested. On the one hand this allows an extensive exploration
of the efficiency space, but it also makes LINPACK a highly unrealistic benchmark.

The computational performance of the LINPACK benchmark depends strongly on
the double precision floating point performance of matrix-matrix operations, and inter-
connect latency. Compared to LINPACK, algorithms in radio astronomy are charac-
terised by a very low computational intensity, expected to be in the order of 1 floating
point operation per byte of I/O, often even less[77]. Data are mostly independent in
frequency, which means that low latency in an interconnect is far less important than
high bandwidth.

Figure 3.4 shows a flow diagram of the calibration and imaging steps in the SKA.
This shows the current state of the art, which may obviously change. It is beyond the
scope of this chapter to go into the details, but it is important to note that, unlike current
radio telescopes, data must be calibrated and imaged online, the data rates involved
don’t allow temporarily storing intermediate data products.
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Figure 3.4: Flow diagram of SKA calibration and imaging

This exposes an interesting challenge. The very high input data rate demands a
streaming processing model, without intermediate storage of data products. Unfortu-
nately there is no known single-pass calibration method. Therefore, a very high per-
formance buffer is required to store intermediate data, while the multi-pass calibration
algorithm converges.

Nearly all computations are done on complex numbers. Fourier transforms, vector
and matrix operations, and complex multiply-adds play an important role. In contrast to
most conventional HPC applications, we can probably get away with single-precision
floating point operations for a lot of our processing. This may significantly reduce data
rates and, assuming appropriate hardware support, the size of the central processor. The
exact ratio of single- and double-precision processing, as well as an accurate decom-
position of the exact operations required and the exact computational intensity of the
various processing steps, will be part of a detailed investigation in the upcoming pre-
construction phase.

While the LINPACK benchmark gives us a reasonable idea of the performance char-
acteristics of current state of the art supercomputers, it is of limited use for the evaluation
of a system for the SKA. For a more detailed discussion on this subject, we refer back
to Chapter 2, specifically Section 2.4.
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3.5 HPC roadmap analysis

The most powerful supercomputers in the world, according to their performance in the
LINPACK benchmark, are ranked in the Top500 list. This list is updated twice per year
and goes back to 1993. Plotting the aggregate performance of the Top500 machines
shows a steady increase in available compute power over the last two decades, mostly
consistent with Moore’s law.

A straightforward extrapolation of the past lists shows that a machine capable of
handling the phase 1 central processor requirements, should be available by 2018 - 2019.
This is illustrated in Figure 3.5. This only shows the development in compute power, as
measured using the LINPACK benchmark.

Figure 3.5: Top 500 extrapolation shows ExaScale systems available by 2018 - 2019.
From top to bottom the lines represent the the performance of last entry in the Top 500,
number 1 entry in the Top 500, and the sum of the performance of all supercomputers
in the Top 500 combined.

In 2008 the ExaScale panel published a report on the expected developments in high
performance computing in the coming decade[111]. By looking at current, and expected
developments in the different components of a high performance computer, a projection
was made of a feasible ExaScale system. Although one should carefully weigh the value
of long term predictions like the ones in this study, they did highlight some disturbing
trends.

One of the most obvious developments in HPC is the increase in overall concurrency.
Moore’s law, as interpreted as the doubling of the number of components per unit of
area on a chip every 18-24 months, is expected to continue to hold for the next decade
or so, which means that feature sizes in future processor will continue to decrease for
the foreseeable future. Due to increased leakage power at small feature sizes, processor
clock frequency has levelled off. Future systems are expected to continue to run at a
clock frequency in the order of one to several Gigahertz.

The power budget available for a single processor socket has also levelled off. The
practical limit for commodity cooling solutions is around 150W per socket. Water-
cooling may raise this limit slightly. In the future we will see aggressive and fine grained
power gating shutting down unused parts of a CPU, allowing the remaining components
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to dynamically scale in performance to fill the available thermal budget. It is likely that
the available thermal budget per socket will be insufficient to allow all components in a
processor to run at full power simultaneously.

The trend going forward is that individual cores tend to not increase in performance
very much, certainly not sufficiently to follow Moore’s law. Shrinking feature sizes,
however, allow us to add ever-increasing numbers of cores on a CPU. Additionally,
many-core architectures, like GPUs and special purpose accelerators, can now be in-
tegrated onto the CPU. These developments lead to a massive increase in required ap-
plication concurrency to efficiently use the available resources. Nevertheless, these de-
velopments are, by themselves, not enough to reach the performance levels shown in
Figure 3.5. In order to bridge that gap, an increase in the total number of processors is
also required, possibly with additional accelerator hardware. Both relative memory size
and bandwidth are unlikely to keep up.

So ExaScale systems will be characterised by massive parallelism on many levels.
Huge numbers of nodes, possibly of various types, will be connected to a cohesive but
highly complex system. Within a node, and even within a processor, we will see various
levels of parallelism. It is probable that processors will be heterogeneous, consisting
of both a smaller number of general purpose, complex, super-scalar, out-of-order cores,
and many, much simpler, cores optimised for floating point operations. It is possible
that these will be augmented by a number of special purpose accelerators. The het-
erogeneous nature of such processors makes them relatively hard to program, but the
potential performance and efficiency of such a system is tremendous.

Conventional HPC applications are often relatively compute intensive; the number
of Flops per bit of I/O is very large. SKA processing, in contrast, contains a significant
portion of operations with very low computational intensity. The streaming nature of the
SKA central processor emphasises this. Although most HPC applications will notice the
significantly reduced memory bandwidth per Flop available in future systems, the I/O
bound and streaming nature of SKA processing makes this a particularly significant
problem for us.

In Table 3.1 two recent top-of-the-line supercomputers are compared to the projected
ExaScale machine as predicted by the ExaScale panel. A number of interesting features
have been selected for comparison. Particular pain points are highlighted in bold face,
the decrease in available memory bandwidth per Flop is especially worrying. In the next
few sections we will investigate the impact of the various trends shown in this study.

Energy consumption
The ExaScale study used a total power consumption of 20MW as a design target for an
ExaScale machine. They argued that this allowed some growth beyond that of today’s
largest systems, but still not be so high as to preclude it from deployment in anything
other than specialised strategic national defence applications. The same study also con-
cluded that even the most optimistic projections with respect to improvements in energy
consumption per Flop, still fall short of this target by several factors.

4Mean Time To Interrupt
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2009 2011 2018 2009 vs 2018
Jaguar ’K’ computer (projected) 2018 Summit

System Rpeak 2 PF 10 PF 1 EF O(1000) 201 PF
Node Rpeak 125 GF 128 GF 1 - 15 TF O(10 - 100) 42 TF
Energy 6 MW 10 MW 20 MW O(10) 13 MW
Energy/Flop 3 nJ/F 1 nJ/F 20 pJ/F -O(100) 65 pJ/F
System memory 0.3 PB 1 PB 32-64 PB O(100) 2.8 PB
Memory/Flop 0.6 B/F 0.1 B/F 0.03 B/F -O(10) 0.01 B/F
Memory bw/node 25 GB/s 64 GB/s 2 - 4 TB/s O(100) 900 GB/s
Memory bw/Flop 0.2 B/s/F 0.5 B/s/F 0.002 B/s/F -O(100) 0.0000045 B/s/F
Total concurrency 225,000 548,352 O(109) O(105) 167 106

MTTI4 days days hours -O(10) N/A

Table 3.1: A projected 2018 supercomputer compared to two current ones. This table
was updated with information from the fastest supercomputer available in June 2019,
Summit, to show actual progression compared to the estimate. Summit was installed
and commissioned in 2018, so that year is used for our comparison.

The scale of the problem becomes clear when we look at the current state of the
art. IBM’s Blue Gene/Q prototypes are currently the most energy efficient machines
in the Top500, by a significant margin[70]. These machines offer an efficiency of 2
GFlop/s/W. The design goal of an ExaScale machine within a 20 MW power envelope
requires an efficiency of at least 50 GFlop/s/W.

Figure 3.6: Energy distribution in an ExaScale system

Figure 3.6 shows the energy distribution in the most optimistic projection of a 2018
ExaScale supercomputer. Even in this very optimistic projection, more than half of the
energy consumed is needed for I/O. It is worrying to note, though, that external I/O, i.e.
data coming into or going out of the machine, is not taken into account at all. The ExaS-
cale panel mainly considered conventional HPC applications, which are characterised
by very little external I/O. The SKA central processor, in contrast, is characterised by a
massive data stream into the system and a much smaller, but in comparison to conven-
tional HPC applications still significant, stream of data out to the science data archive.
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Input/output
The problem of input/output is closely related to that of energy consumption. As was
shown in the previous section, a world-class supercomputer in the SKA time frame
will consume the bulk of its energy moving bits around. Unfortunately, most HPC
roadmaps limit I/O predictions to memory and interconnect bandwidth, and they often
ignore external data transport.

Figure 3.7: Energy required for I/O (Source: [86])

Figure 3.7 shows the energy required to transport a word of data over a given dis-
tance [86]. As distance to the CPU increases, the energy required increases super-
linearly. The streaming nature and the massive input data rate of the SKA central pro-
cessor mean that the energy consumed for I/O in the SKA central processor will account
for much more than the 58% shown in figure 3.6.

Experience with the LOFAR radio telescope has shown that, although a real-time
streaming central processor is a feasible and very flexible proposition[98, 123], signif-
icant work is often needed to modify the system software designed and optimised for
conventional HPC applications[79, 119, 169].

Programmability
In the next decade or so we’ll see disruptive changes in the way compute hardware is
designed and built. Massive parallelism, combined with heterogeneous and bandwidth
starved architectures, will have to be handled by all HPC developers, but for the SKA
the problem is amplified.
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The streaming nature of the SKA central processor, as well as the tremendous in-
put data rate, make it unique in high performance computing. This may mean that the
programming models that will be developed to handle the features of future supercom-
puters are not suitable for our application. To make sure we can efficiently use future
hardware, we may need to develop these programming models ourselves.

Current radio telescopes use a significant number of legacy codes unsuitable for
deployment on an ExaScale system. Some of these handle relatively simple things, like
coordinate transformations and so on. These, casacore[44] and wcslib[65] are some
examples, will have to be rewritten for future systems. This is time consuming, but
the algorithms are well known and this should not be a significant risk. Others deal
with processing the massive data stream from the correlator and beamformer. For these
codes, merely porting existing codes used by the pathfinder and precursor instruments
is not enough. Significant algorithm development is needed as well, to make sure it can
handle the data volumes, achieve the science requirements, and efficiently use future
ExaScale systems. This must be considered a significant risk.

Reliability
In the next few years we’ll also see a tremendous increase in the number of compo-
nents in a supercomputer, as illustrated by the total concurrency row in table 3.1. Since
reliability per component is not expected to increase significantly, it is inevitable that
total reliability of the system will decrease. In fact, one can say that the system must be
considered somewhat broken all of the time.

In contrast to conventional HPC applications, SKA processing is relatively robust
against failures. Within reason, the data are embarrassingly parallel, and loss of a small
portion of data is often quite acceptable. As long as the system software is capable of
detecting and reporting failed nodes, this reduced system reliability should not present
a serious problem.

3.6 HPC involvement

The SKA community has been remarkably successful in attracting interest in the project,
both from industry, and from the HPC research community. Since the SKA community
itself lacks much of the experience and, frankly, critical mass required to handle the
disruptive technology changes expected to occur in the next couple of years, it is essen-
tial to leverage this generated interest and get an increased involvement of industry and
academia in the project.

One way of doing this is demonstrated by Lawrence Livermore National Lab. For
their new supercomputer, Sequoia, they’ve published a set of sixteen representative
benchmark codes[140]. These codes give a useful insight into the scalability and ef-
ficiency problems these applications face, but the obvious goal is of course to enable
industry to optimise their architectures, software, and programming models to perform
optimally for these applications.
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3.7 Conclusions

It is clear that the central processor of the SKA is quite different from conventional
HPC applications. Even though the LINPACK benchmark is already of limited value for
normal HPC applications, its emphasis on low-latency interconnects and high computa-
tional intensity matrix-matrix operations means LINPACK figures are often misleading
for our application.

This highlights the underlying problem: due to the markedly different properties
of normal HPC applications versus radio-astronomical reductions, conventional future
HPC installations are ill suited for SKA processing. How this can be improved should
be part of a detailed study in the oncoming SKA pre-construction phase.

The very high data rates involved in the central processor are a major concern, es-
pecially considering the fact that moving bits around is going to account for the bulk of
the energy consumed in a future supercomputer. Any design or technique that limits the
amount of data movement should be seriously considered. This also means that opti-
misation of code should no longer focus on maximum utilisation of the computational
resources, but instead try to minimise energy consumption. In practice this will often
mean minimising I/O.

A highly integrated central processor, combining correlator, beamformer and science
data processing in a single integrated solution that avoids highly inefficient switches
in favour of integrated backplane communication, may well be more energy efficient
than separate components. It is also important to realise that, although the efficiency in
Joules/Op of custom hardware, FPGAs for instance, is still, and will probably continue
to be, unbeatable for simple operations, like the correlator or beamformer, this is offset
by power hungry data transport between the dedicated hardware solution and the general
purpose science data processor. In other words, Joules/Op is really not a suitable metric
to evaluate the efficiency of a system, since this ignores data transport. Instead a measure
for the energy consumed by the entire central processor for a unit of scientific data,
Joules per generated image pixel for instance, should be adopted.

Streaming processing support, both in hardware, and in software, is, and will con-
tinue to be, limited. Unfortunately, the SKA is quite unique in HPC in its requirement for
very high input data rate and streaming processing of data. This means that we cannot
expect any off the shelf solution to be immediately suited for SKA central processing.
LOFAR experience has shown that significant work, especially streaming I/O related, is
often needed to optimise an otherwise excellent HPC platform for radio astronomy.

The unique nature of our problem should be leveraged as an interesting case study
for industry and research alike. Getting a challenging streaming application to work
efficiently on a platform requires all components involved, hardware, operating system,
communication middleware, and software, to work together in the most optimal way
possible. In other words, if a streaming pseudo real-time application, like the SKA
central processor, works efficiently on a platform, most other more conventional appli-
cations will also benefit from the optimisations required to get to that point.
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3.8 Retrospective

This chapter was written before the detailed design process for the SKA kicked off. It is
therefore instructive to retrospectively see how the high level design has changed since,
and how this chapter has generally fared in terms of long-term accuracy. Chapter 4 is a
more recent description of the SKA and its Science Data Processor.

This chapter was written before the site of the SKA was selected. In Section 3.2
we state that the SKA will be built in South Africa or Western Australia. In January
2013, the decision was made to build the mid-frequency array in South Africa, and the
low-frequency array and survey instrument in Western Australia.

Furthermore, the high level design of the Square Kilometre Array introduced in this
chapter underwent a major rebaselining in March 2015. This was intended to control
cost and limit the excessive compute requirements for the original high-level design.
This exercise, as well as various other delays both technical and organisational, have sig-
nificantly shifted the schedule introduced in this chapter. At the time of writing (April
2019), pre-construction has mostly finished. System Critical Design Review prepara-
tions are well underway, and the SKA treaty, forming the basis for the construction and
exploitation of the SKA instrument, was signed recently. While pre-construction did
start in 2012, as mentioned in Section 3.3, construction is now expected to start in 2020.

As a final note we highlight that the projected and extrapolated increase in available
computational and other resources resources has not materialised. The latest release of
the top500 list at the time of writing shows a machine with 200 PFlop/s peak perfor-
mance (Summit, a Power9 + GPU machine) as the fastest supercomputer in the world,
whereas we expected to have reached ExaFlop/s by this time. This marked difference
makes that the original timeline discussed in this chapter would have made the SKA
SDP much more expensive, at least partially justifying the suffered delays. Table 3.1
was updated to include the characteristics of Summit, which shows that the identified
trends have continued. Memory and memory bandwidth are increasingly scarce, and
the advent of GPU processing means a massive increase in concurrency.

3.9 Our propositions in this chapter

3.9.1 The bounding proposition
The paper that this chapter is based on, was written very early in the design process of
the SKA Science Data Processor. In fact, this chapter precedes the name Science Data
Processor. As such, even though this is more of a feasibility study than an architecture
or design, the bounding proposition is in clear evidence here. First and foremost, the
SDP is defined in context of the instrument, and an initial estimate is presented of the
required computational capacity, with the provision that this is a very rough and initial
estimate. Furthermore, we analysed the development of hardware over time, inspired
mainly by the exascale developments in high-performance computing at the time, to
see if and when the required capacity would become feasible. The initial estimates of
the required capacity, both computationally and in the form of I/O and storage, and
feasibility of these requirements over time are bounds explored in this chapter.
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3.9.2 The value proposition
Although this chapter represents the very start of the design process for the SKA Sci-
ence Data Processor, we can already identify the value proposition in limited use. We
note that, in the design and architecture of the system we draw inspiration from high-
performance computing and in particular the ExaScale developments therein. However,
we also immediately identify that the computational profile of most high-performance
computing applications are quite different from those in a radio telescope, and con-
sequently that systems optimised for high-performance computing are not necessarily
suitable for the SKA Science Data Processor. Data flow is identified as a key distin-
guishing factor, which is confirmed in later work, the lack of which would impact the
value potential of conventional HPC systems. Operational cost of I/O is also highlighted
as an issue, a possible solution of which is addressed in Chapter 7 of this thesis.
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There is a clear progression visible from this chapter and the previous one. The
bounds of the problem are now much more defined, clear evidence of the bounding
proposition in active use. Furthermore, the design of the compute platform includes both
compute- and data-transport components, following the co-design recommendation. A
key component of this work is introduced in Section 4.3. Here, the SDP design priorities
and principles are explained, of which cost is only one. This is a clear example where
the value proposition is used, even though it was not defined in so many words yet.

Abstract

The Square Kilometre Array is a next-generation radio-telescope, to be built in
South Africa and Western Australia. It is currently in its detailed design phase, with
procurement and construction scheduled to start in 2017. The SKA Science Data
Processor is the high-performance computing element of the instrument, responsible
for producing science-ready data. This is a major IT project, with the Science Data
Processor expected to challenge the computing state-of-the art even in 2020. In
this chapter we introduce the preliminary Science Data Processor design and the
principles that guide the design process, as well as the constraints to the design. We
introduce a highly scalable and flexible system architecture capable of handling the
SDP workload.

4.1 Introduction

Handling the data flow from the future Square Kilometre Array (SKA) radio telescope
is one of the iconic IT challenges of the next decade. Phase one of this instrument
will challenge the state of the art in high-performance computing (HPC) even in 2020,
while the far more ambitious second phase is likely to be at the forefront of computing
in the decades to come. The Science Data Processor (SDP) for the SKA is generally
described as a large HPC system, but the requirements on the SDP are quite different
from those on a general-purpose supercomputer. While some of these requirements are
more stringent and require careful attention, the very targeted nature of the SDP system
allows us to be much less generic in our design, potentially saving money and reducing
energy consumption.

This chapter starts with an analysis of the requirements and constraints that bound
the SDP design space. Based on these constraints, we define four SDP-wide priorities
that guide our design work, and discuss some of the underlying principles for our de-
tailed design. In this chapter we introduce a flexible but workload-driven system design
philosophy that allows us to tune the SDP hardware to its specific set of tasks. The
concept of SDP Compute Islands, independent and self-sufficient units that represent
the basic building blocks of the Science Data Processor, is introduced next. Finally, we
introduce a software-defined network to improve the flexibility and robustness of the
data flow system. To explain the workload-optimised system design strategy, we first
introduce and analyse the required workload.
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4.1.1 The Square Kilometre Array
The SKA is a next-generation radio telescope, phase one of which is to be built in
South Africa and Western Australia starting in 2017. This global project is currently in
its detailed design phase. When completed, the instrument will consist of two distinct
telescopes, optimised for low-frequency and mid-frequency observations. For a detailed
description of the SKA1 system, we refer to the SKA1 baseline design [60] and the
corrections thereof [94]. Here we suffice with a summary of the characteristics of the
SKA phase one telescopes as shown in Table 4.1. In March 2015, the SKA underwent a
major rebaselining [4], the consequences of which are still being evaluated. We provide
an initial estimate of the computational requirements for this redesigned SKA, but these
numbers are still being refined by the SDP consortium 1 .

SKA1 mid SKA1 low

Location South Africa Western Australia
Number of receivers 197 (133 SKA + 64 MeerKAT) 131,072 (512 stations x 256 elements)
Receiver diameter 15 m (13.5 m MeerKAT) 35 m (station)
Maximum baseline 150 km 80 km
Frequency channels 65,536 65,536
SDP input bandwidth 5.2 Tbps 4.7 Tbps
Req’d Compute capacity [2] 24 PFLOPS 5.7 PFLOPS

Table 4.1: SKA1 system characteristics. Input bandwidth includes protocol overhead
and meta data. Required computational capacity is a work in progress estimate and
does not take computational efficiency into account.

The SKA, in addition to being one of the premier science instruments of this century,
is considered a major IT challenge. Table 4.1 shows the input bandwidth expected into
the SDP facilities and the compute capacity required as indicated by our initial para-
metric modelling efforts [107, 2]. Computational efficiency is not taken into account,
therefore in reality the installed system (peak) capacity needs to be several times larger.
We expand on this in section 4.2.1.

Figure 4.1 gives a high-level overview of the SKA1 system, showing the two (dis-
tributed) telescope receivers, the Central Signal Processor (CSP, see Section 4.1.2) sys-
tems and the Science Data Processors. This chapter will concentrate on the Science
Data Processor.

4.1.2 The SKA Science Data Processor
The Square Kilometre Array is an astronomical radio interferometer. Data from the
antennas are transported to the Central Signal Processor, where the correlator produces
cross-products for each antenna or station pair. These so-called visibilities are trans-
ported to the Science Data Processor, where they are calibrated and turned into sky

1See section 4.9 for a short overview of the work done since.
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Figure 4.1: The Square Kilometre Array top-level system overview for phase one of the
project. This figure is based on similar images by the SKA Office.

images. In the SKA Science Data Processor, bulk data is ingested from the Central Sig-
nal Processor, located at the telescope sites in the South African and Western Australian
deserts several hundred kilometres away. Meta data is provided by the Telescope Man-
ager, and merged into the bulk data stream at this stage, making the SDP internal data
products self-describing.

Each visibility represents a point in the Fourier plane of the observed sky. Making
sky images, and calibrating these, involves Fourier transforming these back into the im-
age plane using a two-dimensional FFT, making sure the visibilities line up on the FFT
grid (gridding) and applying corrections to these (convolution). A detailed discussion on
the required processing is well outside the scope of this chapter. The interested reader is
referred to the wealth of information available on the subject, in particular [107, 134].

The SKA SDP is responsible for receiving SKA data products from the CSP and for
processing these into science-ready data products. Furthermore, the SDP is responsible
for the safekeeping of these data products for the lifetime of the telescope and delivery
of these to external entities. Finally SDP needs to compute calibration parameters and
feed these back into the system.

One SDP instance will be built for each SKA telescope system, one in Perth, Western
Australia, and one in Cape Town, South Africa. While the compute requirements and
input bandwidths are similar for both telescopes, as shown in Table 4.1, compute charac-
teristics such as required memory footprint and bandwidth may be different. However,
to simplify design and operations, we aim to provide a single unified SDP design, which
is shared between the SKA telescopes.
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4.2 Requirements and constraints

The design of the Science Data Processor is bound by three main constraints: science,
power and capital. First and foremost, the Science Data Processor is required to pro-
vide the systems and tools needed to meet the science requirements. The high-priority
SKA science cases have been identified [163], but these are only described in limited de-
tail [162]. Although much of the detailed information is missing, especially with respect
to the implications of these science priorities, we can begin to sketch a requirements out-
line. The primary requirement on the Science Data Processor is that the system must
be capable of efficiently running the processing pipelines required to reduce astronom-
ical data. Models of the processing required to produce science-ready data have been
developed, using current state-of-the-art algorithms, to estimate the required compute
power [107, 2].

The locations of the SDPs are likely to impose a hard limit on the power that can be
consumed without incurring very significant additional cost. Although no exact num-
bers are available yet, the SKA Office has indicated that these limits are not likely to
exceed 5 MW per site. Furthermore, the operational budget for the SKA is bound to
impose a limit on the amount of money that can be spent on electricity consumed by the
SDP, which may translate into a lower soft limit on power consumption, which may be
averaged over time.

Finally, as with any major science instrument, capital constraints are a major issue.
The SKA board has approved a cost cap for the construction of the SKA1 of 650 million
Euros. It is expected that the Science Data Processor will be allocated approximately
20% of this budget. This includes both SDP facilities, one for each telescope, and all
software procurement and development needed, but excludes the building, cooling and
power delivery. Software from existing precursor and pathfinder telescopes is not ex-
pected to scale to SKA requirements, which means that the SKA software will have to
be rewritten almost entirely from scratch. This software development is likely to domi-
nate the SDP budget, which means that it is expected that less than half the SDP budget
will be available for hardware. To ensure optimal use of the hardware, and considering
the software will need to be developed in parallel with the evolving hardware design,
we will spend significant effort designing a system that provides maximum useful com-
putational performance for minimal cost. The Science Data processor design needs to
fit within at least these three constraints.

4.2.1 Defining the required SDP capacity
The required aggregate compute capacity of the SDP (RSDP), assumed to be in double
precision2 floating point operations per second (FLOPS), is defined by:

RSDP =
Ibw q

E
, (4.1)

2This assumption, and the possibility of using mixed precision during some of the processing steps, is
subject to further investigation.
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where Ibw is the input bandwidth which is given in the baseline design [60]. q is the
computational intensity3 of the processing required in FLOP/byte, an estimate of which
for each pipeline component is given in our parametric models [107]. Finally, E is
the computational efficiency of those same algorithms in fraction of available peak per-
formance (Rpeak). Of these, computational efficiency is arguably the most difficult to
estimate since it depends on many factors, such as chosen implementation, programmer
talent, target platform and data access pattern. There is an element of hardware depen-
dency in computational efficiency. This makes it almost impossible to give an accurate
estimate for the SDP efficiency, the hardware of which will only be procured after 2020.
There are currently no roadmaps, public or under NDA, that look that far into the future.
Consequently we cannot say with any degree of certainty what hardware will be used
for the SDP. We can investigate computational efficiency of the most costly algorithmic
components, an estimate based on our current understanding of the required processing,
on current day best-of-breed hardware. This shows very poor efficiency of at most 20%
of Rpeak [118, 3]4.

4.2.2 Preliminary timeline
While the SKA phase one project starts its construction phase immediately after final-
ising the detailed design, an analysis of the required compute capacity over time shows
that building the SDPs for both telescopes can be postponed. Considering the blistering
pace of developments in computing hardware, buying as late as possible has obvious
advantages. In addition, this avoids having massive amounts of expensive operational
hardware being idle. To support commissioning of the receivers and early science, we
introduce the concepts of milli- and centi-SDPs. These are quite literally 1

1000
and 1

100
the size of a full SDP and will be designed and built not for efficiency but for conve-
nience. It is important to note that the size of these initial SDP installations does not
allow testing of our software at scale. Figure 4.2 shows the preliminary timeline for the
SDP roll-out for the three systems.5

4.3 SDP design priorities and principles

The scale of the SDP surpasses that of all existing major science instruments. We take
a pragmatic approach to ensure the feasibility of the SDP. In order, the Science Data
Processor as a whole prioritises the following characteristics:

1. Scalability

2. Affordability

3. Maintainability

3Computational intensity is defined as the number of floating point operations per byte of data moved.
4This percentage has been the subject of much debate. We will discuss some of the more recent results in

section 4.9
5Since publication this timeline has slipped considerably. Whereas construction was expected to start in

2017, this is now scheduled for 2021.
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Figure 4.2: Preliminary roll-out schedule for both SDP systems, based on the prelimi-
nary roll-out schedule of the antennas.

4. Support current state-of-the art algorithms

To ensure the feasibility of the SDP, we will first and foremost focus on designing a
scalable system. We will prioritise this even over an affordable system, since there is no
use in having an affordable system if it cannot scale to the required size. Maintainability
is a key challenge in this system, since it will be orders of magnitude larger than anything
done before in radio astronomy. There are examples of similar sized systems, in terms
of numbers of nodes, in HPC and cloud environments, but these have radically different
requirements to SDP, which we will explore in more detail in the next section. Finally,
we need to support, and more importantly size our system based on, current state-of-the-
art algorithms. In other words, we cannot count on future developments in algorithm
design to solve our problems, even though efforts in that area will obviously continue.
Note that these priorities are not limited to the hardware design, but span the entirety of
the SDP design.

4.3.1 SDP top-level design considerations
Taking into account the design principles introduced above, we make some key ob-
servations. The SKA SDP will be an integral part of an operational instrument, not
a general-purpose HPC system, handling massive amounts of signal processing tasks.
Some of these tasks will work on streaming high bandwidth data, some on buffered
data. There is a near real-time component, handling the streaming data, and in general
the instrumental nature of the system brings with it different reliability requirements
compared to either HPC or cloud environments.

This fact can also be leveraged. Since we don’t need to support all workloads, the
SDP can be designed to exactly match the limited set of applications that it is required
to run most effectively. Furthermore, experience with pathfinder and precursor instru-
ments, LOFAR in particular [159], has taught us that the vast bulk of SDP-like process-
ing is embarrassingly parallel in frequency and communication between tasks can be
limited by parallelising in that dimension. In our system design we exploit this charac-
teristic by designing a workload-optimised system.

We also observe that the scale of the SDP will greatly exceed that of existing large
science instruments, such as the Large Hadron Collider [24]. Since the SDP is an inte-
gral part of an operational system, hardware failures, and the associated loss of scientific
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data, may have an impact on science quality. A flexible data flow system that allows data
to be easily redirected from failed SDP components is therefore essential to avoid having
these disrupt operations.

4.4 Data flow model

The defining characteristic of the SKA Science Data Processor is the data flowing
through the system. The streaming nature of data into the system from the CSP cor-
relator, and indeed the bandwidth involved, is unprecedented. While the computational
challenges faced by the Science Data Processor are significant, the data flow and rel-
atively low computational intensity of the processing involved, make the problem par-
ticularly hard to solve. Since the data flow defines the SDP, it is logical to use the data
flow, and in particular minimising this, as a key design priority. Data transport systems,
in contrast to compute capacity, have the tendency to scale super-linearly in cost and
energy consumption, which supports this decision.

Moving large volumes of data is expensive, in time, energy and required hardware.
We therefore make use of the embarrassingly parallel nature of the SDP data flow and
design the SDP system to minimise the (inherently large) flow of data. Data flow is
directed such that all subsequent processing requires little or no additional (long-range)
communication. The SDP is divided into numerous independent components, the Com-
pute Islands described in section 4.6, that are sized to support end-to-end processing of
the data directed to them. Figure 4.3 shows a high-level overview of the SKA SDP data
flow.
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Figure 4.3: The SDP top-level data flow. Data flows into the SDP switches from CSP,
where it is directed to the subscribed SDP component(s). After ingest and optional re-
ordering of data through the Compute Island switch, identified by an X, data are buffered
for iterative batch processing. Science ready outputs are stored in the science archive
and exported to the world outside of SKA SDP.

The scale of the SDP means hardware failures will be a regular occurence. A flexible
data flow system is essential to redistribute and redirect data flows around failed com-
ponents in the Science Data Processor. On a high level, SDP components can be seen
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as subscribing to data flows from CSP correlator entities. Every CSP entity produces a
number of data streams, each representing a fixed chunk of visibility space. Each SDP
component is responsible for a subset of visibility space by subscribing to these CSP
streams, directed by the SDP local monitoring and control system.

4.5 Top-level network design

The top-level SDP network architecture is shown in Figure 4.4. Three distinct networks
are shown:

• the bulk data network, handling data ingress from CSP

• low-latency network, handling potential data reordering and intra-island commu-
nication

• science archive network, handling data egress to the world outside of SKA SDP

While these are shown as distinct entities, they may share hardware resources. However,
this must not impact performance of in particular the bulk data network, since the data
stream from CSP is an unreliable UDP/IP based stream that does not support retrans-
mission of lost packets. On the other hand, the ingress and egress networks are both
used almost exclusively in one direction each, making sharing of hardware resources an
obvious and attractive cost-saving option. A small-scale prototype will determine if this
is indeed a feasible design option.

4.5.1 Software-defined networking in the SKA SDP
Experience with Ethernet-based precursor instruments, such as LOFAR, has shown that
such infrastructures are static and fairly difficult to maintain [37]. The classic split
between network and compute systems, in design, procurement, and maintenance, does
not fit well in our data flow driven design philosophy. Since the data flow is the defining
characteristic of the SKA Science Data Processor, network and compute systems must
both be considered integral parts of one and the same system.

In addition to this, a classic Ethernet-based network imposes a very strong coupling
between sending and receiving peers, in this case the CSP-based correlator, and SDP
ingest. Any change in the data flow needs to be carefully negotiated between sender and
receiver, which may be hundreds of kilometres apart. This contrasts with our desire for
a flexible data flow environment to effectively handle failures in the SDP.

We therefore propose to build a software-defined network (SDN) infrastructure,
which will become an integral part of the SDP dataflow, and will fall under the di-
rect control of the SDP monitoring and control system. This means that the network is
no longer a static piece of infrastructure, but may dynamically change configurations to
suit the work flow requirements. Such a software-defined network also allows an effec-
tive decoupling of sending and receiving nodes. In this model, the sending peers, the
CSP correlator nodes, effectively send to a virtual receiving node, which may or may
not physically exist. Receiving nodes subscribe to data flows from the CSP, as directed
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Figure 4.4: The SDP top-level network design

by the data flow manager. A software network controller directs physical data flows by
having switches modify Ethernet headers in transit to match receiving peers: a classic
publish-subscribe model, implemented in a network. Support for these technologies is
currently available in many newer Ethernet switches from a variety of vendors. How-
ever, this is a novel approach to building a sensor network, that needs to be prototyped.
A more in-depth discussion on the relative merits of this approach is given in a recent
SDP memo [37]. In Chapter 6 we discuss this in detail.

4.6 Compute Islands

In this chapter we introduce the concept of a Compute Island, a self-contained, indepen-
dent collection of compute nodes, as the basic replicable unit in the SKA SDP. Compute
Islands are sized such that they need mostly to process data that is contained in the is-
land itself and intercommunication between islands is limited. Some applications, such
as multi-frequency synthesis, require a number of gathers to be performed before end-
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products can be combined. However, at this stage data volumes are greatly reduced and
a limited intra-island interconnect is sufficient to support this.

Figure 4.5 shows an overview of the Compute Island concept. Note that although
a Compute Island is represented by a single rack of hardware in this figure, this is
only illustrative. The actual size of the Compute Island may span multiple racks, or
be limited to a fraction of a rack, depending on various parameters discussed in more
detail in section 4.7.

A Compute Island consists of a number of interconnected Compute Nodes and asso-
ciated infrastructure and facilities, such as master and management nodes, networks and
filesystems. This makes each Compute Island self-sufficient and largely independent of
the rest of the system. The characteristics of the Compute Nodes, in terms of com-
pute resources, memory and storage resources, are defined by the application pipelines
expected to run on them. In Figure 4.5 we show a current state-of-the-art host and ac-
celerator system as a candidate Compute Node design, in which the CPUs handle the
near real-time ingest processing and the accelerators the non real-time batch processing.
Note that all components in the Compute Island are currently expected to be commercial
of-the-shelf (COTS), both to reduce cost and to avoid lock-in. Most of the infrastructure
will be similar between the two SDPs, but it is conceivable that the size of an island
(e.g. the number of compute nodes within an island) or the compute node design itself
differs between SDPs.

Within a Compute Island, a fully non-blocking interconnect, with a per node band-
width far in excess of the per node ingest rate, is provided. This is primarily used for
reordering data between processing steps, ideally within a single island. The same inter-
connect facilitates communication between islands for inter-island reordering or global
processing, but in this case bandwidth will be much more limited and end-to-end trans-
fers may require several hops.

4.7 SDP scaling

While the total useful capacity of the Science Data Processor depends on many compo-
nents, we identify three defining characteristics that we will use to scale the system:

• Total computational capacity

• Computational capacity per Compute Island

• Characteristics per compute node.

The total computational capacity of a SDP, the aggregate peak performance (Rpeak)
expressed in PFLOPS, is defined by the number of Compute Islands that make up the
Science Data Processor, a parameter that is freely scalable due to the Compute Islands’
independent nature, and the capacity per Compute Island. While this number is a useful
way to express the size of the system, its usefulness is limited since it does not take
computational efficiency into account. Ideally, the total capacity of the system would
be defined by the science or system requirements, but considering the constraints dis-
cussed above, it is more likely that total capacity will be defined by the available budgets
(energy, capital or operational).
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Capacity per Compute Island is defined by the number of compute nodes per Island,
and the performance characteristics of these nodes. This capacity is expressed in terms
of peak computational capacity, i.e. TFLOPS, but it is likely that computational capacity
will not drive the sizing of the Compute Islands. Island capacity is defined by the most
demanding application, in terms of required memory (capacity or bandwidth), network
bandwidth, or compute capacity that requires a high-capacity interconnect.

The basic building block of a Compute Island is the Compute Node. The charac-
teristics of these nodes are defined by the design equations in [107] but within these
bounds a vast number of valid node designs can be identified. Considering the time-
frame of the SDP roll-out, which extends well beyond the available industry roadmaps,
the node definition is perhaps the least well-understood component of the SDP design.
The SDP parametric model defines a number of ratio rules that describe suitable node
designs. Within the bounds of these rules, cost, energy efficiency and maintainability
are considerations that may be used to select optimal node implementations.

There is one key requirement that a compute node needs to satisfy: if used to ingest
data, only a very small percentage of that data may be lost. In other words, these nodes
need to be scaled such that they comfortably satisfy the ingest real-time requirements
and a sufficient number of these nodes need to be available to receive all data from the
CSP.

One interesting consideration is whether or not both SDPs will be standardised on
a single node design. Answering this question requires a trade-off between the stan-
dardisation of components on the one hand, and workload optimisation of those same
components on the other hand. Operational costs, in particular energy versus deploy-
ment and maintenance cost, will also play a key role in this decision. It is clear that this
decision cannot be made until more information is available on the likely technology
options available for nodes.

4.8 Conclusion and discussion

In this chapter we present an overview of the design considerations and constraints for
the SKA Science Data Processor. This chapter analyses the design constraints put on
the SDP hardware and identifies a number of key design priorities that guide the design
process. We present an initial, highly scalable, preliminary design for the SDP which
should both be suitable and scalable while minimising procurement and operational
costs.

The preliminary design, presented in this chapter, satisfies all of these constraints.
The independent and self-sufficient nature of the Compute Islands make the design ex-
tremely scalable. This modular approach also aids maintainability, since it allows for
easy replacement of failed components. Our flexible data flow model, thanks to the
software-defined network, is also tailored specifically to account for failures. The focus
on hardware/software co-design and COTS components make for a system that is as
affordable as possible.

Although we are confident in the suitability of our design, the detailed design is still
in flux. Our timeline for construction of the full systems in 2021 is well beyond any
industry roadmap at the time of writing, which makes technology selection difficult.
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This also makes the scale of the SDP very difficult to estimate, since computational
efficiency is very hardware dependent. However, the preliminary design presented in
this chapter is scalable to such a degree that we feel confident that it can act as a good
basis for the detailed design during the next couple of years.

4.9 Current status

Since this chapter was published, the SKA Science Data Processsor consortium has
progressed considerably. In January 2019 it passed its Critical Design Review based on
a large body of work addressing some of the issues mentioned in this chapter.

As part of this review process an updated system sizing estimate was produced.
This revealed an updated requirement for 13.6 PFLOPS for the SKA1-Low instrument
and 11.5 PFLOPS for SKA1-Mid [17], based on continued and extensive modeling of
the pipelines involved [2]. While the computational requirements were significantly
changed compared to the initial numbers shown in this chapter, the scalable architecture
introduced was sufficiently flexible to accomodate these changes [35].

Computational efficiency that can be achieved in the Science Data Processor was
a controversial and heavily debated subject. This is in part due to the complex work
flows that will be run on the system, but also due to uncertainty about the hardware
platform that will be procured during contruction. A summary of the prototyping efforts
concludes that the lower bound of the achievable computational efficiency is around
10% of Rpeak, with the upper bound, for some algorithms, being around 40% [41]. This
conclusion was reached based both on roofline analysis and hardware benchmarking of
various state-of-the-art algorithms on different hardware platforms.

4.10 Our propositions in this chapter

Having looked at developments since the publication of the paper this chapter is based
on, we can now direct our attention to our propositions. In the next sections we show
how the three applicable propositions are supported by this chapter.

4.10.1 Bounding proposition
This chapter shows a clear progression compared to the previous one. The bounds to the
system are much more clearly defined, and these are clearly articulated in this chapter.
Section 4.2 identifies required compute capacity, the likely hard limit on the available
energy on the site, the budget on the first phase SKA and an initial timeline. Further-
more, Section 4.3 defines a number of design principles and priorities that can also be
considered bounds on the architecture. These priorities and principles, summarised as
scalability, affordability, maintainability and support of current state-of-the-art algo-
rithms drive the further initial design of the SKA SDP, as described in this chapter.
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4.10.2 Co-design proposition
This chapter also shows the initial SKA Science Data Processor design. In this chapter
we go to some lengths to not only quantify the required compute capacity, but also define
how data flows through the system. Section 4.4 defines both the external interfaces of
the Science Data Processor, and ways data flows internally. This analysis results in a top
level design, shown in Figure 4.4, that focuses on data flow, with the required compute
capacity being delivered by basic building blocks known as Compute Islands, as shown
in Figure 4.5. Clearly the co-design proposition is used in the entire design process.

4.10.3 Value proposition
The initial SKA Science Data Processor architecture that is discussed in this chapter is
designed to maximise the value potential in several ways. First and foremost we should
point out that the design principles and priorities adopted from the very start are a bal-
anced mix of cost and value, as recommended in this thesis. The priorities mentioned,
in particular scalability and maintainability, were driven by value considerations. Fur-
thermore, while the design is mostly limited to high-level concepts due to the limited
amount of information, both with respect to requirements and available components at
the time of procurement, the data flow structure is well established. This is indended
to minimise the risk of data flow bottlenecks, maximising the value potential of the
eventual system, and can be used as a solid basis for a scalable compute system design.
Finally, we point out that, while the architecture is fairly generic, the node character-
istics have to be defined by the performance profiles of the applications. These result
in design equations, which define ratios between compute, memory capacity and band-
width and external I/O, among other things. Based on these, a value potential of a node
can be determined.
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CHAPTER 5
COBALT: a GPU-based correlator

and beamformer for LOFAR
P. Chris Broekema 1, J. Jan David Mol 1, R. Nijboer 1, A.S. van Amesfoort 1,
M.A. Brentjens 1, G. Marcel Loose 1, W.F.A. Klijn 1, J.W. Romein 1

Context and contribution

This chapter is slightly modified from a paper that was published in Astronomy and
Computing in 2018. While it documents work done by all authors, the focus of the paper
is on the hardware design aspects of the project, which was led by Broekema. Broekema
is the first author, defined the focus and structure of the paper and has written the ma-
jority of the paper. Sections 5.7.1 to 5.9 were were written by Mol, with significant
input from Broekema and van Amesfoort (Section 5.7.1). Mol was also instrumental in
gathering and verifying the information used in section 5.12 This work documents the
COBALT project, in which Broekema acted as the lead hardware engineer.

The design process documented in this chapter clearly follows the recommendations
introduced in this thesis. Bounds of the system are defined and articulated as recom-
mended by the bounding proposition, and an explicit choice is made to very carefully
consider data-flow as well as required computational resources in the design (co-design
proposition). Furthermore, the architecture of the COBALT system and the selection of
its components clearly focuses of a number of value metrics, in particular optimal data
flow, other than just cost, as recommended by the value proposition.

1ASTRON, the Netherlands Institute for Radio Astronomy
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Abstract

For low-frequency radio astronomy, software correlation and beamforming on
general purpose hardware is a viable alternative to custom designed hardware. LO-
FAR, a new-generation radio telescope centred in the Netherlands with international
stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully
used software real-time processors based on IBM Blue Gene technology since 2004.
Since then, developments in technology have allowed us to build a system based
on commercial off-the-shelf components that combines the same capabilities with
lower operational cost. In this chapter we describe the design and implementation of
a GPU-based correlator and beamformer with the same capabilities as the Blue Gene
based systems. We focus on the design approach taken, and show the challenges
faced in selecting an appropriate system. The design, implementation and verifica-
tion of the software system shows the value of a modern test-driven development
approach. Operational experience, based on three years of operations, demonstrates
that a general purpose system is a good alternative to the previous supercomputer-
based system or custom-designed hardware.

5.1 Introduction

The LOw Frequency ARray (LOFAR) [159] radio telescope is often described as one
of the first of a new generation of software telescopes. LOFAR has pioneered the use
of a combined software correlator and beamformer in an operational radio telescope
since 2004 [122, 123, 98]. One key characteristic of a software telescope is the abil-
ity to ride the technology wave to increase functionality and/or reduce operational cost
by leveraging new developments. In this chapter we discuss the hardware design of
the third generation Graphics Processing Unit (GPU) based LOFAR software correla-
tor and beamformer: Cobalt (COrrelator and Beamformer Application for the LOFAR
Telescope), as well as the design and development of the associated software.

Since the tasks of this real-time central processor are well known and clearly defined,
this application is an excellent candidate for a focused hardware/software co-design
approach.

In this chapter we describe the following concepts that in combination led to the
success of Cobalt:

• A data flow-driven design philosophy;

• Hardware/software co-design;

• Data flow analysis and task mapping to identify potential weaknesses in available
HPC solutions for our streaming application;

• Close public-private collaboration in the hardware design, which showed the clear
advantages of such a partnership in this kind of project;

• A simplified system engineering approach in the design and implementation of
the project;
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• An agile software engineering methodology to ensure timely delivery within bud-
get;

• A Test-driven software development process to improve the robustness of our
system.

5.2 Related work

The Cobalt project built on previous experience with combined software correlator and
beamformer systems in the LOFAR telescope [122, 123, 98]. We discuss some aspects
of these in more detail in Section 5.3.1. Cobalt shared common ancestry with the AART-
FAAC correlator [113], although the radically different I/O ratio led to different design
decisions.

There are several other software correlators in use in radio astronomy. Here we
briefly discuss some of these in relation to the Cobalt system. We limit ourselves to FX-
correlators, that combine a filter- and Fourier transform (F) stage with a cross-correlation
(X) stage

The correlators used by the Murchison Widefield Array (MWA) [109], the Large
Aperture Experiment to Detect the Dark Ages (LEDA) [85], and PAPER [110] all share
the same general architecture. Whereas Cobalt implements both the filter (F-stage) and
the correlator (X-stage) in GPUs, the above mentioned instruments employ a hybrid
FPGA-GPU approach. The F-stage is implemented in FPGA, the X-stage is imple-
mented in GPUs using the xGPU library [46]. A high bandwidth switch connects the F-
and X-stages.

The Giant Metrewave Radio Telescope (GMRT) real-time software backend [126]
uses a structure similar to the MWA correlator, with nodes dedicated to three specific
tasks. In this case the software backend relies on conventional CPUs only, with heavy
use of off-the-shelf performance optimised libraries.

For Very Long Baseline Interferometry (VLBI) a number of software correlators
have been developed. Examples of these are SFXC, developed by JIVE [82], and
DiFX [55, 54]. These perform tasks similar to Cobalt, although DiFX doesn’t include
a beamformer. However, data rates are usually modest compared to those generated by
the LOFAR stations.

A real-time software correlator has been developed and deployed for the Canadian
Hydrogen Intensity Mapping Experiment (CHIME) pathfinder [56]. The correlator
stage of this system is very similar in concept and size to Cobalt, but implements the
F-stage in FPGAs, requiring additional communication from the F to the X stage. In
Cobalt the F and X stage use the same hardware.

5.3 LOFAR: the Low Frequency Array

LOFAR, the LOw Frequency ARay, is a new-generation radio telescope, built in the
northern part of the Netherlands, with international stations distributed across Europe.
As the name suggests, it is designed to observe in the relatively low and unexplored
frequency range of 10 to 250 MHz. The array consists of 40 stations: 24 core and 16
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remote, in the Netherlands, with an additional 13 international stations, 6 in Germany,
3 in Poland and one each in France, Ireland, Sweden, and the UK.

Each station consists of two receiver types, low band dipole antennas and high band
antenna tiles, covering either side of the commercial FM band. A LOFAR station con-
sists of 96 Low Band Antennas (LBAs), operating from 10 to 90 MHz. In addition,
Dutch core stations have 48 High Band Antenna (HBA) tiles in two clusters that cover
the frequency range from 110 to 250 MHz. Remote stations in the Netherlands have the
same number of HBA tiles, in a single cluster. International stations provide a single
cluster of 96 HBA tiles.

At each LOFAR station dedicated processing equipment samples, digitises and dig-
itally filters data using a polyphase filter bank. This filterbank produces 512 frequency
bands with a spectral bandwidth of 195 kHz. By coherently adding the same frequency
bands of individual antennas or tiles, station beams are created. Such a beamformed
frequency block is referred to as a subband, 488 of which may be selected per obser-
vation, giving a total spectral bandwidth of 95 MHz (in the most common 8-bit mode).
Spectral bandwidth may be exchanged for beams, essentially allowing up to 488 inde-
pendent (narrow-band) pointings to be made. Core stations may be split, allowing the
two HBA clusters to be treated as smaller, but fully independent, stations. To distinguish
them from physical stations, these are called antenna fields, 77 of which currently make
up the LOFAR array. Subbands produced by these antenna fields are transported to the
central processing facility, hosted by the University of Groningen, about 50 kilometres
from the LOFAR core area, using UDP/IP over many 10 Gigabit Ethernet links.

The central processor can be divided into three distinct components: the real-time
processor, the post-processing cluster, and the archive. The real-time processor (Cobalt),
which implements a correlator and beamformer, is a soft real-time system that collects
data from the antenna fields, conditions this data, applies a second polyphase filter, and
subsequently combines all antenna fields (beamformer mode) or all antenna field pairs
(correlator mode) to produce intermediate results. Although there is no hard deadline
in the sub-second range as in a classic real-time system, it is required that the central
processor keeps up with the antenna field data streams, otherwise data is irretrievably
lost. In Section 5.3.2 we discuss the processing steps that make up the real-time system.

Output from the real-time processor is stored on the post-processing cluster. This is a
conventional Linux cluster, with significant disk capacity to store intermediate products
and facilitate further processing. Here, instrument calibration is performed, possible
interference is identified and removed, and final products (images, pulse profiles, source
lists) are created.

Final products are exported to the LOFAR long-term archive, which is currently dis-
tributed over three sites: Amsterdam hosted by SURFsara in the Netherlands, Jülich
hosted by Forschungszentrum Jülich in Germany, and Poznań hosted by the Poznań Su-
percomputing and Networking Center in Poland. Astronomers retrieve their data from
one of these archive sites, no end-user interaction with the LOFAR system is required.
Figure 5.1 shows a top-level overview of the LOFAR system.

The remainder of this chapter will focus on the LOFAR real-time processor.
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Figure 5.1: Top-level overview of the LOFAR system.

5.3.1 The LOFAR real-time processor
The LOFAR project decided early on to employ general purpose computing for the
real-time processor, both to exploit the fact continued developments in general pur-
pose processor technology had made this feasible, and to save precious FPGA devel-
opment resources for the station processing boards. Initially, the requirements for the
LOFAR real-time processor were quite challenging for a general purpose compute sys-
tem. The only feasible option available was to use a supercomputer. In 2004, an IBM
Blue Gene/L was installed at the LOFAR central processor. At the time, the LOFAR
real-time processor was the fastest supercomputer in the Netherlands, and the second
fastest in Europe [153]. Although compute performance of the Blue Gene/L was suf-
ficient, significant research and development was required to achieve the required I/O
performance [122, 79].

In 2008 the six rack Blue Gene/L system was upgraded to a slightly more powerful,
but much smaller and more energy-efficient three rack Blue Gene/P system. While a
significant improvement over its predecessor in terms of programming environment and
general hardware features, considerable research was again required to achieve the I/O
performance required [119, 168, 169].

While the Blue Gene real-time processors were operational, research continued into
various other software alternatives [123, 106]. The advent of many-core architectures
for high performance computing, in particular Graphics Processing Units (GPUs), al-
lowed us to move away from supercomputers, and instead build the third-generation
correlator and beamformer based on general-purpose server hardware and accelerators.
In this chapter we discuss the design approach taken, we show some of the problems
encountered and how these were tackled, and we conclude with the successful com-
missioning into operational service of a new, GPU-based, LOFAR correlator and beam-
former. Several years of operational statistics are presented in Section 5.9.

5.3.2 Processing steps
The LOFAR real-time processor receives data from LOFAR antenna fields as continu-
ous UDP/IP data streams. Missing and out-of-order packets are identified and, where
possible, corrected. Data that has not arrived after a short deadline is considered lost.
Each incoming data stream contains all frequency data from a single antenna field, while
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each processing node for a given frequency range requires data from all antenna fields.
Therefore, a transpose is required on the incoming data, before further processing.

The processing component is complex and involves a number of optional sub-com-
ponents, as shown in Figure 5.2. Data is converted from fixed to floating point to better
match the hardware available in a general purpose computer. The current LOFAR real-
time processor uses single precision complex floating point throughout, with one excep-
tion: calculating delays for delay compensation. Two main pipelines are implemented
that can run in parallel. The correlator pipeline implements an FX-style correlator, the
components of which were described in more detail in earlier work [123]. The beam-
former pipeline consist of coherent and incoherent components, as well as a complex
voltage pipeline, details of which were previously published as well [98]. In Section
5.7.5 we describe how these processing steps are implemented in Cobalt.
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Figure 5.2: Signal processing steps in the correlator and beamformer pipelines.

5.4 Development process

The relatively modest scale of the project allowed us to use a slightly simplified sys-
tem engineering approach in the design of this system. First, the system requirements,
both functional and non-functional, were identified (see Section 5.5). From these, a
high-level architecture was derived. This, combined with a detailed analysis of the var-
ious aspects of the application performance profile, such as network data flow (Section
5.6.2), memory footprint (Section 5.6.3) and computational load (Section 5.6.1 and Sec-
tion 5.6.4) led to a detailed design of the system hardware (Section 5.6.8). During the
hardware implementation phase, a single prototype node was used to verify that the
selected hardware implementation met the performance requirements (Section 5.6.5).
Finally, the fully deployed system was verified against the system requirements (Sec-
tion 5.8). This process closely mirrors a traditional systems engineering approach, but
the relatively small project size meant we could simplify the process by eliminating
most of the formal documentation.
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Before the start of the Cobalt project the feasibility of a GPU-based solution was
researched and optimised GPU kernels had been developed. Moreover, a highly opti-
mised and proven Blue Gene implementation of all required functionality was available.
However, a different hardware architecture and steep performance, maintenance and re-
liability requirements, necessitated redesign of our on-line processing software, except
for wrapper and support libraries. The beamformer pipeline was redesigned, so several
GPU kernels had to be adapted or rewritten.

The development process was paramount to obtain correct output and adequate per-
formance within a limited time frame. We used the Agile/Scrum development pro-
cess [138, 139] to focus a small software team on a common goal, divide and plan
remaining work, and periodically tried to improve our practices.

5.5 System requirements

The following hard and soft requirements were put on the Cobalt system. In terms of
functional requirements, the Cobalt system must:

• be able to correlate 64 antenna fields in 16 bit mode and in 8 bit mode at full
bandwidth (for a single beam), i.e. with 244 resp. 488 subbands, down to 1 sec
time resolution and at maximum 256 channels per subband frequency resolution.
In this mode up to 8 independent beams can be made, in which case the number
of beams, the total bandwidth and the number of bits have to be traded against
each other.

• be able to create 127 time domain data streams using all 48 core antenna fields
in 16-bit mode at full bandwidth. These can be recorded in one of three modes:
1) coherent addition (Stokes I only or Stokes IQUV, referred to as a coherent
tied-array beam), 2) incoherent addition (Stokes I only or Stokes IQUV, referred
to as an incoherent tied-array beam), or 3) coherent complex voltage (XX, XY,
YX, YY). Time resolution can be traded against frequency resolution, within the
resolution of a subband.

In addition, there were the following non-functional requirements. The system must
be delivered in time and within budget. It must have hardware, software, and data
input/output connections installed, tested, and debugged in a staged approach. The
system must have a design that allows to scale up and be prepared for future planned
modes and functionality. Furthermore, the system must have an operational availability
greater than 95% (excluding planned service), while having a system maintenance staff
effort of less than 0.25 FTE, delivered during business hours only. The total operating
costs per year must be lower than 50% of the (one-time) capital investment costs.

The non-functional requirements on Scalability, Operational Availability (i.e. robust-
ness) and Maintenance Effort (i.e. maintainability) translated into software quality, pro-
gramming environment, software support, test environment, non-monolithic design, etc.

In addition to the hard requirements there were the following soft requirements, i.e.
nice-to-haves. The Cobalt system should be able to handle more LOFAR data, such
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as e.g. doing parallel LBA and HBA observing (doubling the number of available sub-
bands, and doubles the required Cobalt capacity for a given observation), correlating
more antenna fields (up to 80), correlating longer baselines (up to 3500 km), creating
more beams (up to 200), or operating in 4-bit mode (which would double the number of
available subbands, at the cost of some dynamic range, again doubling required Cobalt
capacity for a given observation).

It should have the capacity to handle additional online tasks, e.g. Fly’s-eye mode in
which we store antenna field data without central beamforming, handling of more than 8
independent beams in correlator mode, online flagging, and beamforming the six central
stations (”superterp”) before correlation. Cobalt should also have the capacity to handle
additional offline processing tasks including automatic flagging, (self-) calibration and
averaging, coherent de-dispersion of pulsar data and production of dynamic spectra and
additional parts of the pulsar pipeline: online folding and online searching.

Finally, Cobalt should prepare for future extensions, such as commensal observing,
parallel observing with sub-arrays, responsiveness to triggers and interrupts, and addi-
tional observing modes.

5.6 Hardware design and implementation

In the design process we focused on data flow rather than compute requirements. One
of the key characteristics of the LOFAR real-time processor is a relatively high data
rate. While making sufficient compute capacity available was a key requirement, ef-
ficient use of this capacity critically depends on efficient data flow through the sys-
tem. Furthermore, previous many-core correlator research meant that the computational
requirements and challenges were relatively well understood. We therefore made the
conscious, if somewhat counter-intuitive, decision to focus our hardware design for the
Cobalt system on data flow, with computational capacity a crucial but secondary design
goal.

5.6.1 Hardware requirements and design priorities
Cobalt was intended to be a drop-in replacement for the existing Blue Gene based cor-
relator and beamformer for LOFAR. As such, the primary requirement for Cobalt was
to provide performance equal to the previous system. In addition, the desire to increase
the number of antenna fields that can be correlated from 64 to 80 was expressed. Table
5.1 summarises the top-level hardware requirements for Cobalt.

Component Requirement Design target

Input bandwidth ∼192 Gbps (64 antenna fields) ∼240 Gbps (80 antenna fields)
Output bandwidth 80 Gbps ≥80 Gbps
Interconnect input + output bandwidth >2 * (input + output bandwidth)
Correlator 64 antenna fields, 244 (16-bit) - 488 (8-bit) subbands 80 antenna fields, 244 (16-bit) - 488 (8-bit) subbands
Beamformer 127 beams, 48 antenna fields, 244 (16-bit) subbands 200 beams, 48 antenna fields, 244 (16-bit) subbands

Table 5.1: Top-level hardware requirements for Cobalt
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In order to translate these requirements into a system design, we estimated the re-
quired compute capacity. The main contributors were expected to be:

• correlator

• polyphase filter bank (essentially many Finite Impulse Response (FIR) filters,
feeding into a Fast Fourier Transform (FFT))

• bandpass and clock corrections

Figure 5.3(a) shows how we expected the compute load to scale with the number
of LOFAR antenna fields. This figure takes the theoretical compute load of each of
the contributors, and takes into account a rough estimate of the achievable computa-
tional efficiency1. Extensive prototyping, as well as experience with previous software
correlators, showed that the correlator itself can be highly optimised [122, 123, 106].
Computational efficiencies well above 90% of theoretical peak performance have been
observed. The FFT on the other hand is notoriously inefficient. So while the computa-
tional complexity of the correlator is O(N2), compared to O(N logN) for the FFT2,
the effective contribution to the computational load of both is much closer than these
theoretical computational complexities suggest. For the purposes of this estimate, we
assumed a computational efficiency of 90% for the correlator and 15% for the FFT,
based on the published performance of the CuFFT library. The other components were
not expected to contribute much to the required compute resources, therefore a compu-
tational efficiency of 50% for all other contributors was used.

The efficiencies quoted here are much higher than the ones mentioned in the previous
chapters, due to different application profiles run. The Cobalt system is a correlator and
beamformer, as described in 1.1, whereas the SKA Science Data Processor described in
chapters 3 and 4 are examples of intermediate processing systems.

In Figure 5.3(b) we show measured performance scaling of the operational Cobalt
system. While the total consumed resources are very close to the estimate in Fig-
ure 5.3(a), there are some marked differences. The cost of the FFT was significantly
overestimated, due a the conservatively chosen complexity. Both correlation and FIR
filters are close to the estimate, but bandpass correction consumes much more compute
resources than estimated. This is due to the addition of delay compensation, compen-
sating earth rotation, but more importantly due to a performance regression discussed
in more detail in Section 5.8. However, Figure 5.3(b) shows that the current implemen-
tation fits within the available system resources, and therefore further optimisation is
not necessary. We also note the value of conservative scaling estimates, to account for
unexpected regressions during the implementation phase.

5.6.2 Design and data flow
Having identified the top-level requirements of the system, we derived detailed require-
ments and identified possible suitable implementations. While several options were

1Computational efficiency is defined as the percentage of the theoretically peak performance that is obtained
in practice.

2To complicate matters further, note that in these complexity measures N may not necessarily refer to the
same parameter.
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(a) Predicted compute scaling (assumed computa-
tional efficiency in parentheses).

(b) Measured compute performance (November
2017).

Figure 5.3: Predicted and measured scaling of required compute capacity against num-
ber of processed LOFAR antenna fields.

considered, analysis showed that a highly integrated system where a single node type
will handle all tasks, was the most attractive solution. Each node will therefore need to

• receive data from LOFAR antenna fields

• transpose this data

• run a GPU correlator and/or beamformer

• send the resulting data to the post-processing cluster

A much simplified representation of the data flowing through the Cobalt system is
presented in Figure 5.4. Station data streams into the system at up to 240 Gbps, using
UDP/IP over Ethernet. Output data is sent to the storage cluster, also using Ethernet, but
here we are free to choose a reliable protocol such as TCP/IP instead.

Within the Cobalt system we need to fully reorder the data. The data from antenna
fields contains all frequency bands for a single antenna field, while the correlator re-
quires data from all antenna fields for a single frequency band.

The LOFAR core network is based on 10 Gigabit Ethernet (GbE) technology. Data
from up to three LOFAR antenna fields is sent through each 10 GbE link. Combined
with the required number of supported antenna fields, this gives a lower bound on the
number of 10 GbE ports we require in Cobalt (a minimum of 22, we designed for at
least 27). At this stage of the design process we considered 40 Gigabit Ethernet a viable
and more dense alternative to four 10 GbE ports.

The reordering of large volumes of data was considered a risk. The efficiency of
such a transpose, and the achievable bandwidth of the required low-latency intercon-
nect, are difficult to estimate. To mitigate this risk, we considerably over-dimensioned
the network intended for this operation. The transpose bandwidth is the same as the
input bandwidth. Our design target was to provide double the input Ethernet bandwidth
specifically for the transpose. Each Fourteen Data Rate (FDR) Infiniband Host Channel
Adapter (HCA) provides a theoretical maximum achievable bandwidth of 54.54 Gbps.
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Figure 5.4: Data flow from and to external systems, as well as within Cobalt.

We therefore designed our system to provide one FDR Infiniband port for every two
10 GbE ports, noting that this ratio needs to apply for every node.

5.6.3 Memory bandwidth
The Cobalt system is characterised by a sustained and high rate of data streaming into
the system. This data stream needs to be received, conditioned and processed without
loss. Modern general-purpose operating systems are inherently inefficient at receiving
data, due to the need to copy data several times before an application can access it3.
This puts a considerable load on the memory subsystem, in particular on the available
memory bandwidth. Figure 5.5 shows the way the various tasks described in Section
5.6.2 were expected to be mapped on hardware. We noted that the main memory bus
was a potential bottleneck.

An analysis of the memory bandwidth requirements was undertaken to estimate the
system requirements in this respect, based on the input bandwidth and the number of
times data is expected to be copied. Handling of input was expected to drive this re-
quirement, all other tasks combined were estimated to take less memory bandwidth.
The impact of hitting a memory bandwidth bottleneck was estimated to be high, we
therefore took a conservative approach and limited maximum memory bandwidth use
to 50%. Caching effects may positively affect used memory bandwidth, but are ex-
ceptionally unpredictable and were therefore not considered. This, combined with the
available memory bandwidth in the most recent Intel Xeon generation available at the
time, gave us a lower bound on the minimum number of processors, and thus nodes,
needed in the system. Cobalt would require a minimum of six dual socket nodes in
order to provide the required memory bandwidth, and our design target required eight
dual socket nodes.

3While this is an essential security feature, avoiding this potential bottleneck, for instance by the use of
Remote Direct Memory Access (RDMA), is an active area of research.
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Figure 5.5: Mapping of the various Cobalt tasks onto node hardware. This shows that
node main memory, and in particular the memory bus, is used for each task, highlighting
a possible bottleneck.

5.6.4 Selecting the accelerator
In selecting a suitable accelerator, we evaluated device specifications, performance of
prototype code (per Watt and per Euro), software quality and programming environ-
ment. Three vendors were evaluated: NVIDIA, AMD and Intel, with a total of four
devices investigated in more detail.

Although Intel’s Xeon Phi was commercially available at the time, prototype code
on this accelerator performed poorly due to the early state of the software stack. It was
therefore not considered further. Both NVIDIA and AMD had two devices available
that would suit our applications. The AMD FirePro S9000 and S10000, as well as the
NVIDIA Tesla K10 and K20X were evaluated in more detail, shown in Table 5.2.

NVIDIA Tesla K10 NVIDIA Tesla K20X AMD FirePro S9000 AMD FirePro S10000

Architecture Kepler Kepler Tahiti PRO Tahiti PRO
GPU 2x GK104 1x GK110 Tahiti PRO GL 2x Zaphod
Single Precision (GFLOPS) 4577 3935 3225.6 5913.6
Double Precision (GFLOPS) 190.7 1312 806.4 1478.4
Memory (MB) 2x 4096 6144 6144 2x 3072
PCIe PCIe 3.0 x16 PCIe 2.0 x16 PCIe 3.0 x16 PCIe 3.0 x16
Programming Cuda Cuda OpenCL OpenCL

Table 5.2: Considered GPU options.
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Minimum Design target Proposed Cobalt

Nodes 6 8 8
10 GbE ports 22 27 32
FDR HCAs 11 14 16
NVIDIA Tesla K10s 10 14 16

Table 5.3: Detailed lower bounds for the Cobalt system.

Experience with prototype code showed that AMD devices generally performed bet-
ter, but software and drivers stability for these devices was a potential problem. This
was considered unacceptable for a system that is an integral part of an operational in-
strument. The NVIDIA devices, although providing less computational performance,
were superior in terms of stability, software quality and programming environment. The
Cobalt system does not require extensive double precision floating point support. The
data-driven nature of the processing made support for PCIe v3 a secondary requirement,
which K20X does not support. Coupled with the superior single precision performance
and lower energy consumption, NVIDIA’s Tesla K10 was selected as the accelerator of
choice. Cuda was selected over OpenCL as a programming model to take advantage of
the superior debugging and profiling tools available, at the cost of having to rewrite the
OpenCL based prototype code. This selection, combined with the analysis in Section
5.6.1, gives a lower bound on the number of accelerators required for Cobalt. A mini-
mum of 10 K10s (42.8 TFLOPS / 4.577 TFLOPS = 9.6) were needed. Our design target
required at least 14 K10s (61.3 TFLOPS / 4.577 TFLOPS = 13.4).

5.6.5 Prototyping
In Table 5.3 we show a summary of the detailed lower bounds on the Cobalt system.
Based on the lower bounds discussed in the previous Sections, and a first order approx-
imation of what may be a suitable node design, a list of components for Cobalt was
proposed.

Based on the lower bounds identified above, we proposed a baseline Cobalt system
that consisted of at least 8 nodes. Each of these nodes would have four 10 GbE ports
(or equivalent), two FDR Infiniband ports and two accelerators. We noted that dual-port
FDR Infiniband HCAs are inherently bottlenecked by their limited PCI-express band-
width, so two single-port HCAs were required. Our task next task was to find a suitable
commercially available node, and evaluate a representative sample for performance. The
entire product line of all major vendors was evaluated, based on suitability, availability
and maintainability. Having surveyed a large number of nodes from a variety of ven-
dors, we selected our initial prototype based on a Dell R720 chassis. This node had a
single 40 GbE port instead of the four 10 GbE ports, but matches all other requirements.
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5.6.6 PCI-express balancing
The primary data transport interfaces in Cobalt nodes is PCI-express (PCIe). Our sys-
tem consists of many inter-communicating components, so a well balanced PCI-express
infrastructure is vital to an efficiently operating correlator and beamformer. We investi-
gated the configuration of a prototype Cobalt node, the standard Dell HPC node at the
time, a Dell R720 (shown in Figure 5.6(a)). In this figure, a clear inbalance can be seen,
as the vast majority of PCIe connectivity is provided by a single CPU. All data for the
other CPU, or the accelerator attached to that CPU, had to cross the Quick Path Inter-
face (QPI) boundary between CPUs at least twice. Based on experimental data, it was
considered highly likely that this would be a significant bottleneck.
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Figure 5.6: PCIe configurations encountered in the two prototype systems.

Finding a system that exposes next to all the available PCIe lanes in a more balanced
manner, turned out to be quite difficult. Figure 5.6(b) shows the configuration of a
Dell T620 workstation node. Even though these nodes were not specifically designed
for HPC use, the balanced PCIe configuration shown led to this being selected as our
base node type. These nodes also allowed for the installation of two dual-port 10 GbE
Network Interface Controllers (NICs), in place of the single port 40 GbE NIC in the
R720 that was found to be unsuitable in the existing 10 GbE network. In Section 5.7.1
we leverage the symmetrical architecture of these nodes by essentially using them as two
mostly independent nodes, one for each CPU socket, both for clarity and performance.

5.6.7 Cooling the GPUs
The Dell T620 chassis was designed as a workstation, rather than a HPC node. The
NVIDIA Tesla K10 was only available as a passively cooled unit, which relies on the
chassis to provide sufficient cooling. These two facts combined meant that we ran into
serious cooling issues for the selected GPUs. Early tests showed that the K10s ran at
approximately 70◦C while idle, with an optional fan-bar installed. No load tests could
be performed, since the GPUs would overheat and switch off before any meaningful test
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results could be obtained. Improvised cardboard and duct tape airflow baffles showed
that sufficient cooling could be provided to the GPUs. Better fitting baffles were de-
signed and 3D printed in-house at ASTRON. By directing the airflow generated by the
fan bar through the NVIDIA Tesla K10 GPUs, we successfully reduce the operating
temperature of the GPUs to acceptable levels. Using these custom baffles, shown in
Figure 5.7, the Dell T620 and NVIDIA Tesla K10 combination ran about 10◦C cooler
than a comparable Dell R720 system, probably due to the additional space in the (large)
Dell T620 chassis. We outsourced the production of twenty of these baffles by injection
moulding rather than 3D printing, sufficient for ten Cobalt nodes.

5.6.8 The Cobalt system
Apart from the issues described above, no other performance limitations were identi-
fied with the Dell T620 nodes. The fully deployed Cobalt system consists of ten of
these nodes, eight production and two hot spare and development nodes, fitted with two
NVIDIA Tesla K10 GPUs each. Each node contains two dual-port Intel X520 10 GbE
NICs and two single-port Mellanox ConnectX-3 FDR HCAs.

5.7 Software design

The software part of Cobalt consists of two applications that manage the data flow
through networks and GPUs, and store correlated and/or beamformed data products
on persistent storage as shown in Figure 5.4. Cobalt also interfaces with several other
subsystems for control, monitoring, logging, and metadata. No data is fed back from
post-processing into Cobalt.

The following Sections describe the Cobalt software architecture and considerations
for parallelism at different layers.

5.7.1 Software architecture
The component diagram in Figure 5.8 shows high-level LOFAR Cobalt components
(here named in typewriter font), dependencies and data flow.

Observation control starts Output processes on all allocated nodes in the storage
cluster. It then uses MPI (Message Passing Interface) to start two processing applica-
tions (MPI ranks) per GPU cluster node, one per CPU socket. Each data processing
instance connects to Output processes it needs to send data to, and opens sockets for
its two 10 GbE interfaces to receive antenna field data. Just after the observation start
time, data flows through Cobalt producing data products on the storage cluster. On late
establishment or failure of network connections, Cobalt retries until the observation stop
time. Then, observation meta data such as LOFAR system health statistics are gathered
from databases and written into the data products. Before shutting down, Cobalt gives
its vote for the observation end status to LOFAR control.

All software components along the data flow path forward data blocks of about 1 sec-
ond using MPI, thread-safe bounded FIFO queues or TCP/IP. We allocate block space
once during initialisation and keep pools of free blocks. The block size is a trade-off:



92 COBALT: a GPU-based correlator and beamformer for LOFAR

(a)
3D

renderofthe
production

C
obaltairflow

baffle
(b)

C
obaltnode

w
ith

custom
baffle

installed

Figure
5.7:

C
ustom

cooling
solution

in
a

C
obaltnode.

N
ote

the
fan

atthe
top

of
the

im
age,providing

forced
air

cooling
to

the
N

V
ID

IA
Tesla

K
10

via
the

installed
custom

duct.



5.7. Software design 93

Figure 5.8: High-level component diagram of the LOFAR Cobalt software with data
flow and dependencies.

efficient network transfers and processing favour larger blocks, but the size is limited
by GPU memory (4 GiB), and affects how many beams the beamformer can form, as
well as main memory footprint and overall latency. The exact block size is a multiple
of all work unit sizes in each signal processing step to limit the number of edge cases to
implement, test and debug.

Each AntennaFieldInput receives UDP datagrams on two 10 GbE network in-
terfaces and forwards valid data to the TransposeSender. Transpose uses a
circular buffer to perform coarse delay compensation by shifting the sample streams by
an integer number of samples (∼5.12 µs). These delays are computed in a separate CPU
thread by GeometricalDelays, and are used to compensate for different signal ar-
rival times at different antenna fields and to form beams. The remaining (sub-sample)
delay is compensated for later using phase rotation on the GPU.

TransposeSender also deals with (rare) out-of-order UDP datagrams and drops
data that arrives after a deadline. TransposeReceiver in the GPUPipeline com-
ponent transposes data per antenna field to data per subband using MPI over InfiniBand.
The GPUPipeline component pushes subband data through the signal processing
pipeline on GPUs, producing correlated and/or beam data, as explained later. Each
correlated subband is sent to an Output component on a single host using TCP/IP, but
beam data needs to be transposed over the network to collect all subbands for each beam,
produced at different GPUs, to be combined in a single storage host. The Output com-
ponent stores correlated data in the MeasurementSet format using casacore4 and beam
data in the LOFAR HDF5 format5.

4https://github.com/casacore/casacore
5https://www.hdfgroup.org/HDF5/

https://github.com/casacore/casacore
https://www.hdfgroup.org/HDF5/
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5.7.2 Dealing with jitter and hardware failure
Cobalt is part of a large, operational system and as such uses the LOFAR Common li-
brary to communicate with several monitoring and control systems, and to reuse other
common functionality. Antenna fields send data at a fixed rate, but contention on com-
puting and especially on network and storage resources may vary. As a complex system
with different sites, jitter, hardware failures and misconfigurations do sometimes oc-
cur. We therefore designed Cobalt to conceivably drop data rather than fail or wait in
several key places. The network or operating system may drop incoming UDP data,
the TransposeSender’s circular buffer may drop data if not read out in time. Both
CorrelatedSubbandSender and BeamPartsSupplier have bounded queues
that drop when full. Any overload or failure in the pipeline will fill the previous com-
ponent’s queue, propagating until such a dropping point is reached. Cobalt encodes
lost or dropped data in metadata that is aggregated and written into the data product for
post-Cobalt processing to interpret.

We routinely correlate 488 subbands (about 96 MHz wide) from up to 78 antenna
fields (230 Gbps input) or produce 222 beams (37 Gbps) from 12 antenna fields (or a
compromise of both) using 80 storage and 8 GPU nodes. Correlation is GPU compute-
bound, but for beamforming output bandwidth to the storage cluster is the limiting fac-
tor, which is not bound by Cobalt. Most beamforming science needs high time resolu-
tion and as many beams as we can form, up to the available capacity. Measurements
show that up we can form up to 146 beams for 288 16-bit subbands, which is well in
excess of our original requirement, even if we cannot store the resulting beams at the
desired time resolution.

5.7.3 Workload distribution
The Cobalt hardware is fundamentally different from its predecessor, the IBM Blue
Gene/P supercomputer. In Blue Gene/P we needed several cores to process a single
subband, but in Cobalt a single GPU is powerful enough to process several subbands.
In Blue Gene we designed a complex round-robin work-distribution scheme to avoid
contention on the internal torus network [123]. In Cobalt a static assignment of subbands
to GPUs is sufficient. Table 5.4 shows the levels of hardware parallelism in Cobalt.

Table 5.5 indicates application data dimensions that we must map to hardware paral-
lelism. The independence within dimensions (e.g. process two antenna fields indepen-
dently) is not available throughout the complete processing pipeline: at several points
data has to be combined or forwarded jointly (i.e. synchronised). In terms of scaling
direction, most dimensions scale out. When adding more antenna fields, beamforming
and correlation output also scale up, the latter quadratically.

Apart from data parallelism, processing and I/O task parallelism are also possible:
receive input data, geometrical delay computation, input data transposition, control of
GPU data transfers and kernels, data transfer to storage, and data product write-back all
run in parallel on the same hardware. We leverage all levels of parallelism mentioned
in Tables 5.4 and 5.5 to ensure we can keep up with the most demanding observation
setups.
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Layer Type (Qty.) API

Cluster Multi-node (8), multi-CPU (16) MPI
Half-node Multi-core (16 SMT), multi-GPU (2) OpenMP, pthreads
GPU SMs (16), cores (1536) CUDA

Table 5.4: Hardware available for parallel execution.

Data dimension Size (typical)

UDP datagrams 48828 per antenna field per second
Antenna fields 38–78 (correlator), 12–48 (beamformer)
Freq. subbands 200–488
Freq. channels 64–256 (correlator), 1–16 (beamformer)
Samples (time) 768–196608 per freq. channel per second
Beams 1–222

Table 5.5: Dimensions to map to (data parallel) hardware.

We partition the antenna field streams over all 10 GbE interfaces and the subbands
over all MPI ranks and their GPUs. Work partitioning and mapping to GPU resources is
compute kernel specific. To utilise all compute resources, a GPU needs to be supplied
with many blocks each with many (semi-)independent work units. I/O and memory
access need to be carefully considered too, as many of our compute kernels are bound by
GPU memory bandwidth. Exact partitioning and mapping differs between observation
setups, especially for dimensions that are traded off against each other. For example,
fewer frequency channels implies more samples in time, providing a different dimension
for parallelism. We compile our CUDA kernels at runtime to turn observation-specific
constants into compile-time constants. Run-time compilation increases performance by
removing branches and by lowering the register pressure, and allows more freedom with
respect to workload distribution within the GPU. To control and process on GPUs we
use CUDA [105] and the CUFFT library. In contrast, the Blue Gene/P PowerPC CPUs
required handcrafted assembly to fully exploit their processing power.

5.7.4 Parallelisation libraries
Cobalt uses OpenMP, OpenMPI, CUDA, fork/wait (for runtime kernel compilation),
pthreads, and signals (to initiate shutdown) in the same processing application. Some
of these were not designed to work together and require careful programming.

To exploit task parallelism we need to determine task granularity and mapping,
such that tasks both run and forward data blocks in time. The OpenMP pragma omp
parallel for is an easy way to iterate over the subbands in parallel. Around that we
placed omp parallel sections to divide pipeline work into parallel tasks. Tasks
forward blocks through thread-safe bounded queues that use pthreads condition vari-
ables, not available in OpenMP, to avoid busy waiting. Although OpenMP and pthreads
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are not intended to be used together, this results in excellent readability of the multi-
threaded code, while allowing the use of powerful primitives like thread-safe bounded
queues. Multi-threading remains in a local scope and both data flow and control flow re-
main very clear. Another upside is that our OpenMP pipeline allows us to trivially adjust
task granularity and count, without requiring a direct mapping to CPU cores. Downsides
include the non-portability of our combined use of OpenMP and pthreads and that this
use favours to have as many threads as tasks, as otherwise some tasks have no dedicated
thread and thus may not empty their input queue, causing deadlock. As a result, some
observation setups end up with an order of magnitude more threads than (logical) CPU
cores. While there is room for CPU task management, the current OpenMP code is well
readable and further optimisations will not improve system capability, since CPU power
has never turned out to be a bottleneck in our system.

The InfiniBand and GPU cards need the same CPU memory used for DMA (Direct
Memory Access) to be pinned and registered with their driver. Pinning and registering
come with an overhead, which we have mitigated by allocating all of these buffer during
initialisation. Both the MPI and GPU library offer interfaces to explicitly allocate mem-
ory for DMA, but only CUDA can mark an existing allocation as such, so we allocate
shared buffers via MPI and then register them with CUDA.

Cobalt deals with a lot of mostly independent data streams that are handled in paral-
lel without inter-dependencies. To optimally utilise the available hardware, every level
of available parallelism needs to be exploited. However, none of the MPI libraries we
looked into offered good multi-threading support, they were either not thread-safe, used
a global lock, or failed to compile or run with fine grained thread synchronisation.
We therefore wrap our MPI calls with a global lock, which turns out to be efficient
enough in combination with non-blocking sends and receives using MPI Isend and
MPI Irecv. We do need a separate polling thread to frequently check for completion
of pending transfers using MPI Testsome, otherwise MPI throughput suffers.

On the storage cluster, we distribute all subbands and beams over the nodes. Some
beamforming observations need full resolution, both spectral as well as temporal, which
limits the number of beams that can be sent to storage due to limited network bandwidth.
In such setups, we have to store each beam across multiple storage nodes. This split is
less convenient for post-Cobalt processing, to be executed on the same cluster.

5.7.5 Signal processing with GPU kernels
This section focuses on the digital signal processing GPU kernels shown in Figure 5.2
as executed within the GPUKernels component.

The correlator pipeline first channelises subbands in a polyphase filter using FIR
filters and FFT kernels. We carry FIR filter history samples across to the next block.
The pipeline then applies fine delay compensation and bandpass correction. This marks
the end of processing per antenna field. To efficiently operate across antenna fields, the
delay and bandpass kernel transposes data on write-back to GPU device memory. The
last kernel computes the correlations of all pairs of antenna fields and averages in time
to approximately 1 s.

The beamformer pipeline forms many coherent and/or incoherent beam(s). Both
beam types have the first four kernels in common. Cobalt performs delay compensation,
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bandpass correction and beamforming at 256 channels per subband as a good compro-
mise between time and frequency resolution, and then transforms to the requested output
resolution, often 1 or 16 channels per subband. After bandpass correction, the coherent
and/or incoherent specific steps of the beamforming pipeline execute. Coherent beam-
forming first adjusts the beam direction with a phase shift and sums over antenna fields,
then optionally computes Stokes parameters, while incoherent beamforming first com-
putes Stokes parameters and then sums over antenna fields. Coherently formed beams
are more sensitive but cover a much smaller sky area. During an observation many
adjacent beams can be formed to mosaic a somewhat larger sky area, although some
projects also add an incoherent beam to quickly search for bright signals [47]. If we
do not convert to coherent Stokes I (intensity only) or IQUV (full polarisation), we re-
tain complex voltage data with phase information allowing coherent dedispersion (after
Cobalt). However, complex voltages cannot be time averaged.

Due to differences in required frequency/time resolution and averaging, the beam-
former and correlator pipelines diverge quickly in how they transform the incoming
signal. This means that our beamformer cannot share initial steps with the correlator
and needs to reorder data often as shown in Figure 5.2.

All kernels operate on single-precision complex floating-point data, except for delay
compensation, which uses mixed precision. Fine delay compensation (i.e. subsample)
uses the residual delay from coarse delay compensation by the TransposeSender.
From the residual delays at the start and end of a block, we compute the channel-
dependent phase angles in double precision. Within a 1 s block these angles can be
interpolated linearly to obtain the angle for each sample. Then back in single precision,
we determine the phase shift factor (sin/cos) and rotate back the phase of each sample
(complex multiplication). The beamforming kernel operates in a similar way to form
beams with an offset from the centre. The Tesla K10 GPU has low double precision
throughput, but as long as the kernel is memory bound, the limited use of double preci-
sion has little impact.

Most kernel parameters are fixed throughout an observation. We avoid using reg-
isters for these parameters and obtain more efficient kernel binaries by using runtime
compilation supplying fixed parameters as C-style defines. The resulting code is also
more readable. We reduce GPU memory usage by using a small number of buffers that
the CUDA kernels alternate between as their in- and output.

The number of observation parameters supported by Cobalt is large. This affects
kernel complexity, kernel execution configuration (CUDA block and grid dimensions, as
well as input/output data dimensions and some transpose alternatives. This complexity
cannot lead to observation failures. To deal with execution configuration, GPU buffer
sizes and performance counters, we use a wrapper class for each kernel. This also
wraps the type unsafe argument passing when launching a CUDA kernel. Each kernel
unit test covers the wrapped kernel. Furthermore, we centrally document which buffers
are (re)used by which kernels and what the array dimension order and sizes are.

Although the development of highly optimised GPU kernels is a critical Cobalt in-
gredient, the details are outside the scope of this article. For more insight into radio
astronomy signal processing for Cobalt and beyond on various accelerator platforms,
we refer the interested reader elsewhere [120].
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5.8 Verification, validation and optimisation

Before Cobalt could be taken into operational use it needed to be extensively tested
and tuned. Regression testing and integration happened continuously during (software)
development. We determined science readiness during commissioning, a phase in the
last part of development where domain experts and instrument engineers work closely
together towards system-wide integration, validation, tuning and performance character-
isation. Some of these tests are still performed on one Cobalt node and LOFAR station
before deploying a new software release at full scale.

During Cobalt development we added about 400 tests in 100 test programs. Some
are unit tests, others test a feature, uncommon observation settings, across an interface,
or a complete Cobalt pipeline on a tiny amount of data. About another 100 unit tests
were already in place for the LOFAR Common package.

Incrementally developing tests was a substantial amount of work. Extending the test
set and updating documentation are part of delivering a new feature. What added to
the effort was dealing with tests that generally pass, but occasionally fail due to race
conditions or non-real-time testing of real-time code. We used the Jenkins6 continuous
integration service to manage regression test builds. The extensive use of testing was
critical for Cobalt to minimise regressions, both on component and on system level.
Furthermore, tests kept the code maintainable, by providing confidence and freedom to
improve or even refactor the Cobalt code.

Cobalt needs various non-default system settings to perform well. System firmware
(BIOS/EFI) and Linux kernel settings needed to be tuned for performance and pre-
dictability, such as (minimum) network buffer sizes, CPU frequency scaling, and map-
ping GPU and NIC interrupts to the CPU they are linked to. We do not need to bind
threads to cores within a socket, as long as we raise the CPU and I/O priority of threads
receiving UDP input and writing to storage. We also do not need to run a PREEMPT RT
(real-time) patched Linux kernel. Our multi-homed network and VLANs to interna-
tional stations required changes to ARP and routing settings to function correctly.

To get good performance for the input transpose via MPI, we needed to tune Open-
MPI RDMA settings, for which we used the point-to-point tests from the SKaMPI
benchmark [117]. We also send transfers between CPU sockets over InfiniBand instead
of directly between the CPUs via the on-board QuickPath Interconnect.

Due to a performance regression that couldn’t be resolved by reverting code com-
mits, we had to rework the MPI transfer scheme. Instead of supporting all surround-
ing tasks independently by scheduling their many point-to-point transfers, we applied
message combining to send fewer but larger messages. While the new implementa-
tion solved the performance regression, this came at the cost of increased use of mem-
ory/cache bandwidth, and it introduced more dependencies between producers and con-
sumers of MPI data. This is an example where we sacrificed an over-dimensioned re-
source (CPU cache/memory bandwidth) for a scarce resource (development effort).

We have more examples of unexpected regressions during development and oper-
ations, but in general, debugging performance issues silently introduced with system
software updates, changed system & network settings, or replaced hardware was time

6https://jenkins.io/

https://jenkins.io/
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consuming and difficult. To alleviate this risk, we used performance and configuration
verification scripts. This operational readiness check was especially useful when the
line between responsibilities for high performance software and system and network
administration blurred. When major hardware/software functionality had passed veri-
fication, the project scientist (i.e. an Observatory astronomer) was responsible for the
validation effort to deliver a science capable instrument.

Radio telescopes essentially sample electromagnetic noise, including radio interfer-
ence, and then perform stochastic signal processing. Thus there was no reference output
to bit-wise compare our output to. Moreover, the existing BlueGene-based system used
double precision and a different beamformer DSP filter chain. We therefore chose to
analyse Cobalt output to comply with signal and noise properties required for the most
demanding science cases. This proved the validity of the Cobalt output without having
to be bit-wise equal to its Blue Gene predecessor.

In total, we planned and performed about 30 experiments and worked with as-
tronomers and software developers to get issues resolved and the system tuned and char-
acterised. This effort took several months. Several experiments required custom tools
or software hooks and resolving issues can be time consuming. This was a substantial
project risk that had to be mitigated with a solid development process and extensive and
early testing.

During commissioning we observed no perceptible increase in system noise between
the Blue Gene/P based correlator and beamformer and the new Cobalt implementation.
Considering the difference in numerical precision used – double precision in Blue Gene,
single precision in Cobalt – this warrants some discussion. We note that these choices
were driven primarily by the selected hardware, not by necessity. Blue Gene was de-
signed for double precision processing. There was no advantage in using lower preci-
sion arithmetic. In contrast, the selected NVIDIA K10 GPU was optimised for single
precision processing. As shown in Table 5.2, this GPU has abysmal double precision
performance. Only delay compensation was considered vulnerable to this loss of pre-
cision. Comparative analysis showed that single precision delay compensation led to
an insignificant increase of the total noise [34]. Calculating the delays themselves does
require double precision, this is the only part of the cobalt pipeline to do so.

5.9 Operational experience

Cobalt has been LOFAR’s secondary correlator since January 2014 and its primary since
March 2014. In May 2014, Cobalt also took over for beamformer observations.

We have collected statistics from three years of operations with the Cobalt system.
Figure 5.9 shows the relative number of failed observations, with a break down into
four failure modes (N ≈ 23000). On average, 97.3% of submitted observations were
successful, clearly exceeding the required operational availability of > 95% described
in Section 5.5.

Observations may start at any moment (24/7), but normally, issue investigation starts
the next working day. Observations scheduled between the occurrence of an issue and
the start of the next working day may be adversely affected. The availabilities of other
LOFAR sub-systems are not shown, but were generally lower than that of Cobalt. How-
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Figure 5.9: Failure modes of the Cobalt system over three years, and their occurrence
in percentages.

ever, these generally work on non-volatile data where failures do not automatically result
in irretrievable data loss.

There was a noteworthy increase in availability after six months in operations that
can be attributed both to burn-in, as well as bug fixes in the Cobalt software and in
the scheduling system. Current operational Cobalt failures mostly originate in network
configuration or services, or in non-standard observation settings. Hardening and mon-
itoring the network and settings have reduced their impact (until such monitoring ser-
vices fail). We have run into several Linux kernel bugs, unexpectedly exposed with new
software releases or changes in work load. This includes a failure mode that caused
occasional Linux kernel panics in our system, due to a memory allocation bug that was
fixed with a newer kernel release. While this shows the value of keeping low-level soft-
ware updated and patched, we note that the regression mentioned in Section 5.8 may in
part have been caused by similar updates.

5.10 Summary and discussion

In this chapter we presented the Cobalt GPU-based correlator and beamformer sys-
tem for the LOFAR radio telescope. This system has successfully replaced the earlier
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Blue Gene based systems and has been in operations for almost four years now. We
introduced the hardware design, as well as the data flow-driven simplified system en-
gineering process that led to the final implementation. The challenges that were faced
during prototyping were described, as well as some of the engineering efforts that were
necessary to keep the GPUs at an acceptable operating temperature. Finally, we showed
some of the details of the software design, the verification process, and we discussed the
operational experience with the Cobalt system.

All nodes in Cobalt are identical and perform all necessary processing, there are no
dedicated nodes for a task. This requires careful programming, as was shown in Sections
5.7 and 5.8, but also makes for a highly efficient system with few idle components.

In contrast to similar chapters describing software correlators, we focused heavily
on the development process of the system design. We showed how hardware/software
co-design, in close collaboration with a commercial partner, can lead to an efficient and
affordable system. None of the systems aimed at the HPC market were, for various
reasons, suitable for our application. Close interaction between hardware vendor, hard-
ware system designer and software architect in the design and prototyping phases was
instrumental in finding a suitable node design.

An Agile test-driven development process was introduced to ensure timely deliv-
ery of a system that is fit for purpose and meets the requirements described in Section
5.5. We also noted in Section 5.8 that the test-driven aspect had great advantages in a
system that cannot be completely deterministic. As another example of co-design, the
experiences with previous LOFAR beamformer systems showed that a redesign of this
component would better match the requirements of the majority of the science users.
While this delayed the delivery of the Cobalt beamformer slightly, we took this oppor-
tunity to improve LOFAR non-imaging capability.

5.11 Impact

This project has generated a significant amount of interest. Discussions with the Univer-
sity of Cambridge HPC team, showed that they faced very similar issues, although their
applications are very different. The University of Cambridge used our Cobalt hardware
design as the basis for their Wilkes general purpose cluster7, which reached #2 on the
November 2013 edition of the Green500 [70] list. The size of this cluster made this
decision particularly note-worthy. It was a 128 node cluster, with just 8 nodes per rack,
taking up 16 racks in total. At 4U per node, this was not a particularly dense solu-
tion, but the, at the time, unique and abundant PCIe structure in these nodes was judged
sufficiently desirable to justify the additional expense in terms of rack space.

Informal presentations of the Cobalt design to several industry partners, including
senior Dell management, have resulted in an increased awareness of radio astronomy as
an eScience. It was difficult to find a chassis from any one of the major vendors that
could meet the requirements of the Cobalt project. We hope that our discussions with
industry, using this project as an example, will improve the suitability of future HPC
system designs for the next generation of radio telescopes.

7http://www.hpc.cam.ac.uk/services/wilkes.html

http://www.hpc.cam.ac.uk/services/wilkes.html


102 COBALT: a GPU-based correlator and beamformer for LOFAR

The initial design approach taken in this project, where the hardware is closely
matched to the software requirements, has since been successfully employed in the SKA
Science Data Processor preliminary design, described in chapter 4.

5.12 Retrospective

During the preparation of this thesis we noted that the original paper did not specify
whether the Cobalt system as commissioned meets its requirements. At time of writ-
ing, Cobalt is reaching the end of its lifespan, with its successor being commissioned.
We can now retrospectively conclude that most requirements were met by the Cobalt
system.

In more detail, both functional requirements were met, although the second require-
ment approaches the limits of our available resources. Cobalt is able to produce 127
streams of time domain data with a frequency resolution of 256 subbands, slightly sur-
passing the 244 subband requirement.8 The hardware can handle up to 88 stations in
correlator mode, with up to 77 physical stations available and used in production at the
time of writing.

The system was delivered on budget, although full functionality was delivered about
3 months later than scheduled, missing our on time requirement. Delivery was in stages,
as mentioned in Section 5.9. In this same section we also show, using operational data
shown in Figure 5.9, that its operational availability far exceeds the required 95%, al-
though not until Q3 2014. System maintenance amounted to an average of 0.2 FTE from
the hosting institute over the lifetime of the system, excluding some incidental additional
effort by ASTRON domain specialists, totalling less than the required 0.25 FTE. To-
tal operational cost, including above mentioned system maintenance, energy consump-
tion and rack-space rent, amounted to less than 15% of the one-time capital investment
(CAPEX), well below the 50% requirement.

All further requirements were soft, i.e. nice to haves. Nevertheless, many of these
were achieved over the lifetime of the system, demonstrating that Cobalt was a highly
flexible and capable system. Table 5.6 shows the various requirements and whether
they were satisfied by the Cobalt system. Online flagging was implemented to only
detect data that was lost during transmission. Due to the limited amount of memory
available on the GPUs, filter window sizes would have to be relatively small, limiting
the performance of any interference flagging.

5.13 Our propositions in this chapter

To close this chapter, we show how the various propositions, as introduced in chapter
1, are supported. Three of the four propositions apply to this chapter, the bounding,
co-design and value propositions. We shall briefly discuss these below.

8In coherent complex voltage mode, required output bandwidth exceeds the available network capacity.
Although the Cobalt system meets the requirement, this requirement was in hindsight unrealistic.
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Requirement Achieved Remarks

Correlate 64 stations hardware can handle up to 88
Create 127 Beams, 244 subbands hardware limited to 256 subbands
On time partial functionality on time
Within budget for capital investment
Staged delivery see Section 5.9
Availability ≥ 95% see Figure 5.9
Maintenance ≤ 0.25 FTE average 0.2 FTE/yr
Ops cost ≤ 50% CAPEX < 15% of CAPEX
Fly’s eye mode
8 Beams in correlator mode achieved 488 beams
Online flagging only lost data, not interference
Superterp beamforming - hardware capable, no requirement
Additional offline processing - hardware capable, not implemented
Commensal observations
Parallel sub-arrays
Responsiveness to triggers
Additional observation modes - hardware capable, not implemented

Table 5.6: Cobalt requirements and whether they were achieved.

5.13.1 The bounding proposition
The Cobalt project, as documented in this Chapter, is a further excellent example of
the bounding proposition in active use. In the introductory sections of this chapter, in
particular section 5.5, the bounds of the system are clearly articulated. We note that,
due to the fact that the Cobalt system was intended to be a ’drop-in’ replacement of
an existing system, this problem was fairly well bound. The experience gained with
systems before Cobalt, the Blue Gene/L and Blue Gene/P based LOFAR correlator and
beamformers, was instrumental here. This chapter defined the bounds of the Cobalt
design in terms of functional and operational requirements on the system, as well as
project bounds such as capital investment and development effort available. Compared
to the previous two chapters, which describe the conceptual evolution of a system, rather
than the design of a physical system meant as a drop-in replacement of an existing
solution, the bounds are much more pronounced and detailed.

5.13.2 The co-design proposition
In this Chapter we arguably take the co-design proposition even further than in previous
Chapters. Here we note, in Section 5.5, that for the Cobalt system we took the slightly
unusual approach of focusing on data flow first, and compute requirements a close sec-
ond. We argue that, in this case, the effective and efficient use of the available compute
capacity relies critically on the efficient flow of data through the system. We go on to
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design a tailored compute solution that tries to avoid data-transport bottlenecks on all
levels of granularity, the various networks, the PCIe infrastructure in the node, down to
the available memory bandwidth per processor. The careful attention given to the vari-
ety of data transport systems in Cobalt during the design process was a key contributing
factor to its success.

5.13.3 The value proposition
In the Cobalt project the value potential of the system, as articulated by the value propo-
sition, was a key factor in the design process. The system only has a very limited set
of applications to run, the correlator and beamformer pipelines, and we could therefore
afford to heavily optimise for these. While cost was an important consideration in the
design process, value, defined by the functional and operational requirements, was more
important. By focusing heavily on data flow in the design of the system, value poten-
tial of the system was maximised. Our retrospective shows that the operational cost of
Cobalt, designed to be as close to an off the shelf system as possible to exploit available
mass-market experience, was much lower than required. This results in a better relative
science value, as defined in chapter 2, than expected.
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CHAPTER 6
Software-defined Networks in

large-scale radio telescopes
P. Chris Broekema 1, Damiaan R. Twelker 2, Daniel C. Romão 2, Paola
Grosso 2, Rob V. van Nieuwpoort 2,3 and Henri E. Bal 4

context and contributions

This chapter is based on a paper presented at the Computing Frontiers Conference in
2017. It has been extended to include additional context and reasoning to properly place
the work into context.

This work was conceived by Broekema, who also acted as first author for the paper.
Initial work was done by Twelker, based on a plan by Broekema and under supervision
of Broekema and Romão. This resulted in a very highly graded Bachelor’s thesis by
Twelker [154]. Broekema did all of the research presented in this Chapter, using some
of Twelker’s initial work and code, and wrote the vast majority of the content, with some
input from the co-authors.

In this chapter we show an example of the optimisation proposition in use.

Abstract

Traditional networks are relatively static and rely on a complex stack of inter-
operating protocols for proper operation. Modern large-scale science instruments,

1ASTRON, the Netherlands Institute for Radio Astronomy
2University of Amsterdam
3Netherlands eScience Centre
4Vrije Universteit Amsterdam
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such as radio telescopes, consist of an interconnected collection of sensors gen-
erating large quantities of data, using high-bandwidth IP over Ethernet networks.
Recently the concept of a software-defined network (SDN) has gained popularity,
moving control over the data flow to a programmable software component, the net-
work controller. In this chapter we explore the viability of such a software-defined
network in sensor networks typical of large scale radio telescopes. Based on expe-
rience with the LOw Frequency ARay (LOFAR), a recent radio telescope, we show
that the addition of such software control adds to the reliability and flexibility of
the instrument. We identify some essential technical SDN requirements for this ap-
plication, and investigate the level of functional support on three current switches
and a virtual software switch. A proof-of-concept application validates the viabil-
ity of this concept. While we identify limitations in the SDN implementations and
performance of two of our hardware switches, excellent performance is shown on a
third.

6.1 Introduction

Packet switching ASICs at the heart of networking equipment have significantly grown
in capability and flexibility over the years. To expose the increased functionality of these
networks, the concept of a software-defined network has appeared. In a traditional IP
over Ethernet network control over the data flow is mostly implicit. A software-defined
network moves the control plane to a programmable network controller, allowing posi-
tive and explicit control over the data flow. This concept has gained remarkable popular-
ity in recent years, with all switch manufacturers including support in their mainstream
products. In this chapter, we will study the usefulness of SDNs for an important appli-
cation: large-scale radio telescopes.

Modern large-scale science instruments, and in particular radio telescopes, are often
distributed sensor networks. They consist of large numbers of sensors, that sample the
object of interest. Specialised custom hardware is used to convert the collected data
into the digital domain and perform dedicated signal processing. A centralised general-
purpose computing facility reduces data volumes, calibrates the instrument and allows
the user to extract science.

These components are interconnected with high-volume networks, often based on
off-the-shelf IP over Ethernet equipment. This combination of specialised custom-
designed components, interconnected with general-purpose compute systems, may lead
to unexpected challenges. As an example (studied in this chapter), IP over Ethernet
relies on a complex stack of protocols to ensure traffic reaches its intended target as
determined by the destination IP address. This is regardless of the physical identity or
location of the host. Custom hardware may omit parts of that protocol stack to simplify
implementation, and the data flow in a radio astronomical sensor network is strictly uni-
directional. The network may not be able to populate their MAC address tables through
MAC learning, leading to packets being forwarded on all output ports.

We argue that a software-defined network adds valuable additional functionality,
while mitigating some of the challenges an IP over Ethernet network may cause. This
is illustrated by comparing several use cases based on experiences with a state-of-the-
art operational instrument in the Netherlands, LOFAR. By implementing a proof-of-
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concept application, we explore the required SDN functionality for this application, and
the current level of support for these SDN features in three available hardware switches
and a software-based virtual switch. In addition, we present some limited performance
measurements. While these give a useful indication of the expected latency, data loss
and potential bottlenecks, we note that the investigated switches are of modest scale and
performance.
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Figure 6.1: Top-level system overview of a radio telescope.

While two of our switches exhibit significant limitations in their OpenFlow imple-
mentation, software-based flexibility allows us to work around these. One of our SDN-
capable switches shows excellent performance for our application, exhibiting very low
latency, no significant data loss and a richly implemented OpenFlow feature set.

We show that the way in which packets with unrecognised destination addresses are
handled and the ability to explicitly program the port on which packets are forwarded
improve the robustness of a sensor network. In addition, we show that the added flexi-
bility allows us to build a conceptual publish/subscribe system in the network, which in
turn makes it easy to serve multiple processing pipelines without added overhead.

This chapter is structured as follows. We start with some background information,
discussing modern radio telescopes and SDNs. In Section 6.3 we show how a SDN fits
in a radio telescope, and the foreseen impact of a integrated SDN. Next we describe our
proof-of-concept application, the investigated switches and our experimental setup. We
explore the functionality of the various switches with respect to our application and do
some limited performance measurements in Sections 6.6 and 6.7. We close this chapter
with discussion, future work and conclusions. Finally, we look back at the propositions
in this thesis, and how this chapter contributes to these.

6.2 Background

We explore how a software-defined network may be integrated into a large-scale dis-
tributed radio telescope. Modern radio telescopes, like LOFAR and the Square Kilome-
tre Array (SKA) are examples of such instruments.
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6.2.1 Modern radio astronomy
As we mentioned in Chapter 1, modern radio astronomy is an extremely data- and
compute-intensive science. Since the signal of interest is exceptionally weak, enormous
amounts of data have to be collected, filtered and processed to achieve a useful result.
This is generally done by digitally combining multiple receivers into a large virtual in-
strument. Due to the high data volumes involved, the sensors and initial processing are
often highly specialised custom devices.

While we usually describe radio telescopes in terms of the processing required, it is
the data flow that drives the design. Therefore we can consider a radio telescope as a
high-performance sensor network. Recently, the concept of a distributed radio telescope
has emerged, and LOFAR and SKA, introduced in Chapters 3, 4 and 5, are perfect
illustrative examples. Figure 6.1 shows a high-level overview of a modern distributed
radio telescope. In this chapter we propose a redesigned receiving end of the general
purpose computing facility with an SDN capable switch, as shown in Figure 6.1.

6.2.2 Software-defined networks
From the description above and in previous chapters, it is clear that for all intents and
purposes modern radio telescopes, and more generally any sensor network, can be con-
sidered a special-purpose computer network. They are a collection of nodes and links
connected together, often using off-the-shelf hardware based on IP over Ethernet tech-
nology. General purpose computer networks are generally static, with tight coupling
between sender and receiver. In such a computer network there is no easy way to modify
the behaviour of the network without changing the behaviour of the sender and receiver
nodes.

A new paradigm has recently appeared in networking, that effectively separates the
control and data planes of the network [108]. Such a software-defined network con-
sists of SDN-capable switches: the data plane, a network controller: the control plane,
and a connection between these two. Special-purpose virtual services are built on top,
allowing dynamic modification of the network to suit applications, transparent to the
sending and receiving peers. Support for OpenFlow, a standardised method to commu-
nicate control data from the control plane to the data plane, is becoming standard in
more recent switches.

A software-defined network handles traffic based on a defined flow table. Incoming
packets are matched to a list of flows installed on the switch by the network controller,
and handled according to rules associated with those flows. Rules may modify source
and/or destination headers and forward packets to specific ports, giving the network con-
troller complete and explicit control over the data plane and effectively decoupling the
sending and receiving nodes. Non-matching packets may be either dropped or have their
header forwarded to the network controller for inspection, depending on configuration.

OpenFlow

The concept of a software-controlled network data plane is not new, but OpenFlow [96]
is the first standard software interface between control and data plane with a consider-
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able install base. Introduced in 2009, the initial stable release of the OpenFlow specifi-
cation, 1.0.0, describes a fairly sparse protocol. It allows installation, modification and
removal of the switch flow table. Each flow contains a header field for packet matching,
counter and action fields. Per packet processing involves:

1. Find the highest priority matching flow entry

2. Apply instructions

a) Modify packet & update match fields
b) Update action set
c) Update metadata

3. Send match data and action set to next table

If a packet does not match any of the flow entries in the flow table, the switch may
either drop the packet, send it to another table or forward the packet header to the con-
troller. This behaviour differs from that of a standard Ethernet switch, which would
forward a packet with an unknown destination to all ports.

Table
0

Execute
Action

set

Table
1

Table
n

OpenFlow switch

ID Type Counters

Bucket Actions  

Bucket Actions  

Bucket Actions  

Group

Figure 6.2: Packet processing pipeline of an OpenFlow switch, including groups.

The next major release that gained significant support, 1.3.0, introduced the concept
of groups1. An OpenFlow group combines similar fields as in above, with a list of
action buckets. Each of these provide similar functionality as the single list of action
fields described above, giving the ability to have each packet be processed by multiple

1Groups were introduced in version 1.1.0, but this and version 1.2 are not widely supported
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action lists. In addition, this release adds a far richer set of matching and action fields,
although the implementation of many of these is optional. Figure 6.2 shows the per
packet processing.

In this chapter, we investigate the viability of a software-defined network component
in a modern radio telescope by implementing a proof of concept application using Open-
Flow. Using the most prevalent SDN implementation available today, OpenFlow, and
using the most recent protocol version available in all our switches (1.3.0), we investi-
gate the functionality supported by four SDN-capable switches. These are described in
Table 6.1.

6.3 Software-driven data flow

A previous SKA memo [37] explored the use of Ethernet in a modern radio telescope
system, LOFAR. This showed that the unique and often custom-built hardware in such
systems is difficult to combine with Ethernet networks. These networks rely on a com-
plex multitude of supporting protocols and services to correctly direct traffic, many of
which are not implemented in the highly specialised sensor nodes. Most of the chal-
lenges identified in that chapter occur on the boundary where data from specialised
custom-built hardware is sent to general-purpose compute systems.

6.3.1 Impact
By replacing the traditional Ethernet-based infrastructure with a software-defined net-
work, many of the issues previously described are alleviated. We foresee two distinct
consequences:

1. The different way of processing packets in the packet processor will improve
robustness of the system:

• more direct control over packet forwarding
• better handling of multi-homed hosts

2. The increased flexibility offered by the software-controlled data plane will open
up the possibility for additional instrument functionality:

• ability to dynamically change the data flow
• integration of data flow and processing model

We discuss some examples below.

Robustness – Packet forwarding

A network switch typically receives data and forwards it to its destination. A MAC
address table, matching output ports with host MAC addresses, is maintained in the
switch, populated by monitoring source MAC address and incoming port of forwarded
packets. When the appropriate output port cannot be determined, data is forwarded on
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all output ports, with the exception of the ingress port, reducing the switch to a hub. This
behaviour guarantees that packets have the highest possible chance of arriving at their
destination, but in normal operation this should rarely be needed. Further traffic, such as
unicast acknowledgements, usually allows successive packets to be properly directed.

In a specialised sensor network with custom hardware this may cause problems. This
custom hardware may omit parts of the standard network stack, and it emits a continuous
stream of uni-directional data generated by the sensors. A misconfiguration or failure of
such a sensor may cause the network to be flooded by packets forwarded on all ports. In
effect this failure mode may be considered a self-inflicted Distributed Denial of Service
(DDoS) attack.

In a software-defined network, the way unrecognised packets are handled is con-
figurable. Non-matching packets may be dropped or have their headers forwarded to
the network controller for further processing. Neither of these actions will cause the
network to be flooded, although the latter may cause significant load on the network
controller.

Robustness – ARP flux

In high bandwidth systems, it may be necessary to connect multiple Ethernet interfaces
in a node to the same network. While there are ways to bond these devices into a single
virtual Ethernet interface, no guarantees can be given on the effective use of available
bandwidth. Therefore we prefer to explicitly address each of the interfaces. Linux nodes
tend to answer ARP requests for addresses they host on any interface, which may cause
switches to associate the wrong port with that MAC address. This gives rise to ARP
flux, in which data addressed to a node does arrive, but on the wrong interface, causing
the operating system to drop this data. Figure 6.3 shows ARP flux in a system with two
network interfaces.

10.0.0.1
00:00:00:00:00:AA

10.0.0.2
00:00:00:00:00:AB

A

B

Port/MAC table:
A: -/-
B: -/-

A: 00:00:00:00:00:AB
B: -/-

ARP request:who-has 10.0.0.2?

ARP request:who-has 10.0.0.2?

ARP reply: 10.0.0.2 is at 00:00:00:00:00:AB

eth0

eth1

switchnode

Figure 6.3: ARP flux with two network interfaces.

The positive control a software-defined network allows over the data flow mitigates
this problem. Whereas a conventional network relies on MAC learning to determine the
physical output port to forward packets to, in a software-defined network the output port
is explicitly defined.
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Flexibility – Publish-Subscribe model

Unicast traffic, traffic from one destination to another, is very difficult to redirect or du-
plicate at the network level. Switches may sometimes be configured to output traffic to
a designated port. This is resource intensive, and data forwarded on such a monitoring
port is not easily consumed by hosts. Such data will be addressed to the original desti-
nation host, both on Layer 2 (MAC address) and Layer 3 (IP address). Generally, a host
operating system will transparently drop data not specifically addressed to it, unless it
is running in promiscuous mode.

A software-defined network gives us the flexibility to not only forward data to a
specific physical output port, but also modify the packet headers to match the receiving
host. In essence, this breaks the tight coupling between sender and receiver, since the
sending peer no longer necessarily has knowledge of the receiving peer’s address. By
moving this control to the software layer of the receiving system we can build what can
conceptually be regarded as a publish/subscribe system. We note that this is similar to IP
multicast in concept, but not implementation. Where IP multicast relies on the network
infrastructure to properly direct data, in a software-defined network this is done by the
network controller. This not only improves flexibility, but also allows us to integrate this
functionality more deeply into our software, as described below.

In a radio telescope, we may use this functionality to process data more than once,
without the overhead of re-transmitting data. This is useful when running multiple pro-
cessing pipelines, serving multiple observation modes, or for instance to commission
new processing hardware or algorithms. In the latter use-case, results from newly in-
stalled hardware or software implementations would be compared to those from estab-
lished systems to verify functionality.

Flexibility – Data flow as part of the processing model

The addition of a software component into the data plane of a radio telescope allows
us to integrate this data plane into our software systems. This more direct and positive
control over the data flow allows us to manipulate the data flow without having to recon-
figure the sending peer. Data movement may now be directly coupled to the processing
schedule, creating for instance a system of data-driven round-robin processing, where
data is directed to processing nodes as needed. Going even further we could envision
implementing an in-network transpose, similar in concept to an MPI_AllToAll().
The directing of data would be based on a combination of L2 and L3 addresses that
identify the content sufficiently.

6.4 SDN implementation

We explore the viability of a software-defined network as part of a modern science in-
strument in the remainder of this chapter. We focus on the most prevalent and most
widely implemented software-defined networking protocol currently available: Open-
Flow. First we investigate which features provided by OpenFlow are required to imple-
ment a suitable software-defined network for our application. We summarise the support
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for these features in four available SDN-capable switches, both hardware and software,
in Section 6.6.

Our proof of concept is simple, but allows us to gauge the level of support in current
platforms. Two cases are implemented, both manipulating a data stream emitted from a
LOFAR signal generator. This emulates a LOFAR station-processing board and emits a
continuous UDP/IP data stream to a single host identified by its IP and MAC address.

Two main scenarios are tested that are representative of how a software-defined net-
work may be used in a radio telescope.

1. redirect data destined for A to B

2. duplicate data destined for A to also go to B

Since we are most interested in the feasibility of the concept rather than performance
of these platforms, we limit ourselves to a single data stream of around 700 Mbps, which
is 1

4
th of the data rate of a single LOFAR station.

Redirecting data
First, we redirect the data from its original destination to a second host. This is achieved
by modifying the Layer 2 destination MAC address and the Layer 3 destination IP ad-
dress, after which the packet is forwarded to the appropriate port. We use the Set Field
functionality defined in the OpenFlow standard to manipulate destination MAC and IP
address fields. Note that the implementation of none of the Set Field features is required
in the OpenFlow specification.

Duplicating data
Second, we modify the data flow such that it is emitted not just to its original destination,
but also to a second host. We forward packets unmodified to the physical port hosting
the original destination, while a second copy of the data stream undergoes modification
much like described above. Since this requires multiple independent actions on the same
data, a different approach is required. OpenFlow groups allow the creation of action
buckets, which are processed and applied independently. We configure the Group such
that all buckets are applied to a packet, a functionality that is required according to the
OpenFlow standard. However, we note that the applied actions are bound by the same
limitations described above. The Set Field functionality we rely on to readdress packets
is still optional.

Measurements
These use cases show the functional requirements we put on the available hardware.
Next we do a limited performance analysis by showing how these platforms handle data
streams representative of the ones seen in the LOFAR radio telescope. Our interest is
mainly in uninterrupted streaming data flows, so we concentrate our investigation on:
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1. the latency between a given command and the data arriving at the appropriate
node

2. any data lost when switching data streams

In normal operation, where data is forwarded to fixed output ports, we expect no data
to be lost regardless of the switching paradigm used. When actively modifying packet
headers we potentially introduce overhead that may lead to lost data. We test if current-
day hardware is capable of modifying header information at wire speed, without losing
data. In recent switching equipment this should be done in hardware, which should be
fully capable of achieving a lossless line rate.

We are also interested in the latency between a given command, and the first packets
being received on the appropriate host. While our application is not particularly latency
sensitive, from an operational point of view a predictable latency is much preferred.
Although the data stream uses an unreliable protocol and lost data cannot be retrieved,
we can tolerate limited loss of data, if detected.

6.5 Experimental setup

We investigate four SDN-capable Ethernet switches, summarised in Table 6.1. These
interface with a Ryu [1] network controller that exposes a RESTful interface for our test
application to communicate with.

Switch type Switch ASIC Software version OpenFlow version

Mininet / Open vSwitch VirtualBox virtual machine Open vSwitch 2.5.0 1.0 - 1.6
Pica8 P3290 Broadcom BCM56534 (Firebolt3) Open vSwitch 2.0.90 1.0 - 1.3
Cetect V350-48T4X Centec CTC5163 3.1.16.8.alpha Open vSwitch 1.9.90 1.0 - 1.3
Brocade ICX7250 Broadcom BCM56344 (Helix4) 08.0.40bT213 1.0 and 1.3

Table 6.1: Investigated switch platforms.

None of these platforms are particularly high performance, and per-port speed is
limited to a Gigabit per second at most. Nevertheless, these experiments give a useful
indication of the viability of software-defined networks for our particular application.

NTP (Network Time Protocol) synchronised nodes measure the time difference be-
tween the moment the command is given, until the data arrives at the new destination.
While we do some measurements of latency, we note that our primary interest is in the
functionality. Although our proof of concept only uses limited bandwidth and a single
stream, due to the near embarrassingly parallel nature of the data flows in radio astron-
omy, it is a representative test. This application also allows for an excellent exploration
of the functionality required for this application.

6.6 Functionality investigation

In the following sections we investigate the functional support for these OpenFlow fea-
tures in the four platforms described in Table 6.1. Many of these OpenFlow features are
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optional, which means that implementation of these is not mandatory and often omit-
ted. Furthermore, we found that some implemented features may lack hardware support,
leading to significant bottlenecks.

Implementation of the use cases described in the previous section relies on a number
of functional elements in the OpenFlow standard:

• Set Field action destination MAC address

• Set Field action destination IP address

• Group Type=ALL: output to multiple ports

• Group Type=ALL: apply action instructions

We note that to be truly useful, a software-defined network must be able to support
the above described functionality on Layer 3. While we can make a workable proof of
concept at Layer 2 by manipulating just destination MAC address and not destination IP
address, this requires either that all receiving hosts have the same IP address, or that all
host Ethernet interfaces are run in promiscuous mode, which is not feasible in practice.

We investigate the available functionality in a virtualised software switch, Open
vSwitch in Mininet, and three hardware switches: a Pica8 P3290, a Centec V350 and a
Brocade ICX7250.

6.6.1 Mininet / Open vSwitch
Mininet is a virtual machine-based virtual network environment. We used Mininet as
our primary development platform, using Open vSwitch as the virtual switch. Since the
same software is also used in two of our hardware platforms, it is interesting to compare
the feature set supported in a pure software environment with available hardware imple-
mentations. We used the most recent stable version of Open vSwitch at the time, which
fully implements OpenFlow up to and including 1.3, including all optional features.

6.6.2 Pica8 P3290
The first physical switch we investigate is a Pica8 P3290, located in the OpenLab testbed
of the University of Amsterdam, an experimentation environment for multi-domain net-
working research [92]. Based on a Broadcom switch ASIC and a Freescale CPU, it uses
the same Open vSwitch software as described above. This switch supports all features
required to redirect data based on Layer 3 packet header fields. However, modifying the
destination IP address causes major packet loss, which suggests that this is handled in
software, not by the switch ASIC. As a work-around, we assigned both receiving hosts
the same IP address and redirected data based on just Layer 2 fields (i.e. destination
MAC address). This is not necessarily a viable solution in production, since we rely on
hosts sharing IP addresses, which breaks normal IP networking. To duplicate data we
rely on OpenFlow groups, but in the Pica8 switch these did not function as expected.
Only a single, seemingly random, apply-action was executed before packets were for-
warded to their respective ports. Thus correctly addressed packets would only appear at
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one receiving host, while all others would receive packets addressed to the wrong des-
tination MAC address. For this particular platform we abandoned the use of OpenFlow
groups and instead installed a single flow that sets the destination MAC address to the
broadcast address and forwards the packets to all relevant output ports. We note that this
solution rules out the use of hybrid networking, since the use of the broadcast address
in streaming data will cause non-SDN switches to forward this data on all ports, quickly
overwhelming the network.

6.6.3 Centec V350
A software-defined network was included in the latest incarnation of the distributed
ASCI supercomputer, DAS-5 [18]. The installation at the Vrije Universiteit Amsterdam
has two Centec V350 switches based on custom silicon. This is targeted specifically at
software-defined/OpenFlow applications and uses the familiar Open vSwitch software
environment. Of the investigated hardware platforms, this was the only one that per-
formed flawlessly. All features we use to redirect and duplicate data using either Layer
2 or Layer 3 header information are supported without observable bottlenecks. While
the reported Open vSwitch version on this switch is 1.9.90, it supports OpenFlow ver-
sions 1.0, 1.2 and 1.3. Since this version of Open vSwitch only supports OpenFlow 1.0,
we speculate this is a fork with significant additional development.

6.6.4 Brocade ICX7250
Apart from the two specific OpenFlow-targeted switches investigated above, we looked
at a more mainstream product with OpenFlow support. The Brocade ICX7250 is a
top-of-rack switch based on a Broadcom ASIC, and like the Pica8 switch, located in
the OpenLab testbed of the University of Amsterdam. While it supports OpenFlow
versions 1.0 and 1.3, we found that there are many caveats that limit the usefulness of
this hardware for our application. Although the switch is able to match flows based on
Layer 3 fields, it can only modify a very limited set of header fields. IP destination
address is not one of these, although destination MAC address can be modified. This
means that directing or duplicating data can only be done based on Layer 2 header fields,
not Layer 3 header fields. Furthermore, the switch is not able to output to multiple ports
while modifying packet headers, effectively rendering duplication of data impossible.

While testing this platform, we found that we regularly had to reboot the switch to
solve unexplained packet loss. Identical flows installed after reboot yielded far better
results. We cannot explain this behaviour at this time, but suspect a bug in the firmware.

6.6.5 Summary
In Table 6.2 we summarise our experiences with the four described switches for our ap-
plication. While we note some missing features and we were not able to duplicate data
on the Brocade switch at all, we successfully implemented our proof-of-concept appli-
cation on all switches. Nevertheless, it is clear that support for the desired OpenFlow
functionality varies widely. Furthermore we found an undocumented deficiency in the
implementation of OpenFlow groups in the Pica8 switch.
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OpenFlow feature Open vSwitch Pica8 Centec Brocade

Set Field action: destination MAC address supported supported supported supported
Set Field action: destination IP address supported supported in software supported not supported
Group Type=ALL: apply-action instructions supported not fully supported supported supported
Group Type=ALL: output to multiple ports supported supported supported not fully supported

Table 6.2: Level of support for the important OpenFlow features for our investigated
switches.

6.7 Latency and loss

In Section 6.6 we concluded that not all platforms are capable of Layer 3 packet header
manipulation at line rate. We investigate the loss and latency of all four platforms while
redirecting and duplicating data using Layer 2 and, when available, Layer 3 packet
header information. While the virtual network environment is functionally very well
developed, it is limited in performance. Where other platforms will be expected to
handle the output of a single LOFAR hardware stream, at approximately 700 Mbps, we
reduce this to about 45 Mbps for Mininet to avoid packet loss. The virtual machine
environment, and the software-based Ethernet switch, make the latency measurements
for the Open vSwitch system less than reliable. For completeness, and as a comparison
against the other hardware-based switches, including these is still valuable. In all cases
ten measurements are done, and averages are shown in the Tables 6.3 and 6.4. Data loss
is measured over a period of three seconds, with 12000 packets generated per second.

6.7.1 Latency and Loss – Redirecting
In Table 6.3 we summarise the latency and loss of data when redirecting data. As dis-
cussed before, Layer 3 functionality is not available on the Pica8 and Brocade switches,
therefore no data is available. We note that redirecting data using an installed flow that
modifies the packet header and forwards packets to the appropriate port will lead to lim-
ited loss of data on the Centec and Brocade switches and the software Open vSwitch
environment. When the flow is installed, 16 or 32 packets are lost that arrive neither at
the original nor the new destination. This number is unrelated to the data rate, since we
ran a low bandwidth experiment and observed similar lost data. It is likely that a packet
buffer is flushed when the flow is installed.

To mitigate this behaviour, we could implement the same functionality using Open-
Flow groups, in much the same way as we did with the duplication of data. Once data is
flowing to the new destination, the original destination may be removed from the group.
Unfortunately, our chosen network controller lacks functionality to remove group en-
tries in the RESTful interface. Our analysis above indicates that neither the Pica8 nor
the Brocade platform will support this more advanced redirection of data.

The Pica8 switch exhibits significant loss of data when the appropriate flow is in-
stalled. While this amounts to approximately 1.3% of the total data flow, it is not inci-
dental, suggesting a bottleneck in the implementation. While not nearly as significant
as observed when we modified L3 headers on this switch, it is still worrisome. We note
that both the Pica8 and the Brocade switch exhibit high latency and extreme variance,
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Layer 2 Open vSwitch Pica8 Centec Brocade

average latency (ms) 202 74 5.9 265
standard deviation 316 212 0.76 74
average data loss (packets) 16 457 29 32
standard deviation 0 381 7 0

Layer 3 Open vSwitch Pica8 Centec Brocade

average latency (ms) 158 n/a 6.9 n/a
standard deviation 313 n/a 1.2 n/a
average data loss (packets) 16 n/a 29 n/a
standard deviation 0 n/a 7 n/a

Table 6.3: Latency and loss while redirecting data.

especially compared to the Centec switch. The stability of the Centec performance is
impressive.

6.7.2 Latency and loss – Duplicating
Table 6.4 shows our results for the second case study. We install an OpenFlow group
that forwards packets unmodified to the intended destination. A second copy of all
packets is modified such that the destination addresses (Layer 2 and Layer 3) match
the second receiving host and are forwarded on the appropriate port. The Pica8 switch
does not support modification of the destination IP address at this rate, therefore for this
switch we only modify the destination MAC address. In our Open vSwitch software
environment we measure both L2 and L3 duplication of data for reference. Considering
the excellent performance of the Centec switch, and the possible disturbance to the
cluster network due to the necessary modification on the hosts needed to make this
work, we only show L3 performance for that platform.

The Centec switch once again performs very well. We again note significant data loss
in the Pica8 switch, while none of the other workable switches exhibit any observable
loss.

6.7.3 Summary
Both the Pica8 and the Brocade switches exhibit relatively high latencies, especially
compared to the Centec switch. The loss of data on the Pica8 switch is worrisome,
since it is indicative of a bottleneck that will become more pronounced when we scale
up this proof of concept. In all measurements, the Centec switch showed excellent
performance. Latency is low and stable, and apart from the initial packets lost when a
flow is installed, no further loss was observed.



6.8. Discussion and future work 119

Layer 2 Open vSwitch Pica8 Centec Brocade

average latency (ms) 29 34 - n/a
standard deviation 38 70 - n/a
average data loss (packets) 0 314 - n/a
standard deviation 0 308 - n/a

Layer 3 Open vSwitch Pica8 Centec Brocade

average latency (ms) 59 n/a 5.1 n/a
standard deviation 55 n/a 0.43 n/a
average data loss (packets) 0 n/a 0 n/a
standard deviation 0 n/a 0 n/a

Table 6.4: Latency and loss while duplicating data.

6.8 Discussion and future work

In this chapter we show that a software-defined network in a modern radio astronomi-
cal sensor network is feasible. Support for the required OpenFlow functionality varies
widely and is often poorly documented. More detailed investigation, targeting more
modern and higher performance platforms is needed. However, the concept is sound
and the additional flexibility and robustness are highly desirable. Adding positive, ex-
plicit and centralised control over the data plane, adds an additional layer of control to
the data flow in a radio telescope. This opens up the possibility of integrating the data
plane in the processing schedule so we can steer data much more dynamically to the
compute resources needed.

We note that the two hardware switches that show poor performance are both based
on Broadcom switch ASICs targeted at conventional top-of-rack switches. This may in-
dicate that chips designed for more conventional switches with added SDN functionality
may be limited in performance compared to chips specifically designed for software-
defined networks. Further investigation on this subject is needed.

A recent development is P4 [27], a high-level language that allows a network engi-
neer, or an instrument engineer, to dynamically program packet processors that make up
a network. The OpenFlow protocol described in Section 6.2.2 has grown in complexity
over the years, adding possible header field entries and multiple stages of rule tables.
This complexity is constrained by a rigidly specified and repeatedly extended protocol.
P4 is designed to be a much more flexible and higher abstraction level language. A
more flexible and more extensible high-level language such as P4 may make the imple-
mentation of advanced packet processor features easier. However, although we noted
highly varied levels of support for the required functionality, these were independent of
the OpenFlow standard. The implementation, not the standard, limits the usefulness of
some of the switches we investigated.

The networks investigated in this chapter bear some resemblance to multimedia
broadcast infrastructures, where the use of IP multicast is well established. The South
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African MeerKAT radio telescope [80], currently under construction in the Karoo desert,
uses IP multicast in its data flow design. Their work has shown that while the net-
work can successfully distribute instrument data over the relevant subscribed processing
nodes, significant engineering effort was required [7]. The programmable nature of a
software-defined network makes it inherently more flexible than an IP multicast based
infrastructure.

6.9 Conclusions

In this chapter we have investigated the viability of a software-defined network in a
modern radio telescope. Based on an investigation on the functionality available in four
switches and an implementation of a simple proof-of-concept program, we conclude that
the concept is viable and valuable. A software-defined network by its very definition will
mitigate some of the robustness issues we have discussed in Section 6.3. In addition, we
have shown that the additional flexibility we envision is feasible on at least some of the
investigated platforms.

We note that the supported functionality in the investigated platforms varies greatly.
While some offered support for all required features, others do not implement critical
features or implement some in software only. The OpenFlow standard is characterised
by a large number of optional elements, that may or may not be implemented by the
manufacturer, some of which we depend upon. Although all switches claim OpenFlow
v1.3 support, support for optional functionality is often not well documented. It is
noteworthy that the way Pica8 implements apply-action instructions in Groups violates
the OpenFlow standard.

6.10 Our propositions in this chapter

Finally let’s return to the propositions introduced in this thesis.

6.10.1 Value proposition
There is a convincing argument to be made that the optimisations discussed in this and
the next chapter are conceived primarily to add additional value to the instrument with-
out significantly adding cost. As such, while the primary contribution of these chapters
are to the optimisation proposition, they also contribute in a limited way to the value
proposition.

6.10.2 Optimisation proposition
This chapter epitomises the optimisation proposition. Experience with the LOFAR tele-
scope had identified the boundary between custom and commodity hardware as a po-
tential problem area. In particular the way packets are sent over the network, with-
out the benefit of a full IP stack on the custom hardware boards, was cause for con-
cern, considering Ethernet switches require such a stack for correct operation. Using
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a software-defined switch environment, based on OpenFlow, we showed that we can
mostly solve the problems identified with conventional Ethernet switches, while simul-
taneously adding functionality to the instrument. Unfortunately we also had to con-
clude that, while in a fully implemented software environment our experiments worked
flawlessly, none of the available hardware switches worked nearly as well. This was
mostly due to optional features that were not implemented, and severe bugs in the ven-
dor firmware. However, the concept was proven, and the additional functionality is
interesting. Therefore, investigation of more modern switches and alternative software
implementations is future work, the direction of which is intended to avoid the reliance
on vendor implemented firmware features.
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CHAPTER 7
Energy-Efficient Data Transfers in

Radio Astronomy with Software
UDP RDMA

Przemyslaw Lenkiewicz 1 and P. Chris Broekema 2 and Bernard Metzler 3

Context and contributions

This chapter is a slightly modified version of a paper that was published in the Future
Generation Compute Systems journal, which itself was an extension of a paper that was
presented at the Innovating the Network for Data-Intensive Science (INDIS) workshop
2016.

While most of the implementation and measurements in the paper were done by
Lenkiewicz, Broekema was the originator of the research. His novel idea, looking at re-
ducing energy consumed by significant processor overhead in receiving large amounts of
streaming data, was the key insight in this research. Furthermore, it was Broekema’s in-
sight that this work was highly applicable to radio astronomy in general, and the Square
Kilometre Array in particular. Broekema and Metzler initiated this research stream as
part of the DOME project, and Broekema led the work done at ASTRON in collabora-
tion with the DOME team at IBM Zürich. This work is an example of the optimisation
proposition.

1IBM Research - Netherlands
2ASTRON, the Netherlands Institute for Radio Astronomy
3IBM Research - Zürich
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Abstract

Modern radio astronomy relies on very large amounts of data that need to be
transferred between various parts of astronomical instruments, over distances that
are often in the range of tens or hundreds of kilometres. The Square Kilometre
Array (SKA) will be the world’s largest radio telescope, data rates between its com-
ponents will exceed Terabits per second. This will impose a huge challenge on its
data transport system, especially with regard to power consumption. High-speed
data transfers using modern off-the-shelf hardware may impose a significant load on
the receiving system with respect to CPU and DRAM usage. The SKA has a strict
energy budget which demands a new, custom-designed data transport solution. In
this chapter we present SoftiWARP UDP, an unreliable datagram-based Remote Di-
rect Memory Access (RDMA) protocol, which can significantly increase the energy-
efficiency of high-speed data transfers for radio astronomy. We have implemented a
fully functional software prototype of such a protocol, supporting RDMA Read and
Write operations and zero-copy capabilities. We present measurements of power
consumption and achieved bandwidth and investigate the behaviour of all examined
protocols when subjected to packet loss.

7.1 Introduction

Modern radio telescopes, such as the LOw Frequency ARray (LOFAR) [159] and the
upcoming Square Kilometre Array (SKA) [61] are in essence large-scale, distributed
sensor networks, characterised by large numbers of receivers producing vast amounts of
data. This data is often generated by custom hardware in remote areas, while processing
this data into usable science data is done in data centres in nearby cities. Receiving and
processing these data streams is a computationally intensive task that may consume con-
siderable amounts of energy. A current state-of-the-art example is LOFAR: 51 antenna
stations produce around 250 Gbps of sensor data in total, to be transported over 65 km
to the central processor. The Square Kilometre Array (SKA) will produce much more
data, to be transported over much longer distances. This data stream, about 3 Tbps per
telescope, is to be transported from the Western Australian desert to Perth, and from the
Karoo desert to Cape Town, both several hundred kilometres away.

Whereas the available compute capacity in current telescopes is often limited by
available capital, in the SKA it will likely be limited by available energy. Experience
with the LOFAR radio telescope has shown that receiving large volumes of sensor data
may consume significant compute resources [123, 124]. These consumed resources
cannot contribute directly to the science result. It is therefore useful to investigate ways
to minimise the resources, and energy, required to receive streaming radio astronomi-
cal data. Reducing the protocol overhead allow more of the precious resources to be
dedicated to scientific processing. More energy-efficient handling of incoming data can
be directly translated into additional science output within the limited available energy
budget.

The Linux network and IP stack was designed with robustness and security in mind.
Strict separation between user and system resources is maintained. Received data is
copied several times and will trigger several interrupts and context switches before the
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user application gains access to it. In the IBM Blue Gene/P supercomputer a different
bottleneck, namely software handling of Translation Lookaside Buffer (TLB) misses,
was mitigated by bypassing conventional kernel processing [169]. This was used to
significantly decrease compute resources consumed while receiving LOFAR data. In
this chapter we propose a similar approach aimed at the Square Kilometre Array. The
Linux IP stack requires significant resources, in particular while receiving large volumes
of sensor data. We propose to bypass the host operating system and place data directly
into user memory. While this also bypasses several of the security features that are
essential in typical network stack, in a tightly controlled and private network, such as
found in a scientific instrument, these are less crucial. We expect a reduction in resource
consumption and therefore a reduction in the amount of consumed energy. Since the
SKA Science Data Processor is expected to be bound by very tight budgets, in particular
in available energy, reducing the computational cost of receiving data would allow for
more science, improving the scientific efficiency of the instrument.

Remote Direct Memory Access (RDMA) technology has been essential in high-
performance networking to resolve similar issues, namely to allow higher bandwidth,
lower latencies and lower CPU utilisation. RDMA-capable network interface controllers
(RNICs) provide this by moving data directly from the user space memory of one ma-
chine to that of another, without involving either of the host operating systems. The ap-
plication layer is involved only on the side where the request is issued and it can access
the contents of memory buffers on a different host thanks to memory pre-registration.
The RDMA technology is a very good example of how the data movement process can
be optimised for a specific scenario, helping to utilise the full capabilities of the hard-
ware. However, the currently-available RDMA solutions lack some of the features that
are necessary for a scenario such as the SKA. In particular, the target scenario both re-
quires a more efficient handling of the expected very high bandwidth-delay product of
the data transfer channel, and imposes application specific requirements on time sensi-
tive, partial data transfer reliability [39].

In this chapter we address the data transport challenges for modern radio astronomy
instruments. We introduce a possible solution that measurably reduces the consumption
of CPU resources and energy associated with that data transport. In particular, we de-
sign and implement an efficient communication protocol for transferring high rates of
astronomical data over long distances with the goal of being more energy-efficient at
the receiving end.

The main contributions of this chapter are:

1. we design and prototype in software a partially reliable, RDMA-based transport
protocol suitable for modern radio astronomy applications;

2. we present experiments with results showing that the energy-efficiency of the
prototyped transport stack is improved compared to standard UDP data transfer;

3. we argue that further, more dramatic improvements in efficiency are possible
when support for this protocol is implemented in hardware.
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7.2 The Square Kilometre Array

The Square Kilometre Array has been described is sufficient detail in Chapters 3 and 4.
For this Chapter, we note that the SKA Science Data Processor (SDP) is expected to be
bound by strict energy and capital budgets that will severely limit the scale of the system.
In Section 7.1 we cite previous work that showed that receiving large volumes of data
itself also requires significant resources. The resources consumed just receiving data do
not directly contribute to the scientific output of the SDP. In this work we aim to reduce
these compute resources required to receive the incoming data stream by avoiding a well
known system bottleneck: the Linux IP stack and the associated kernel overhead.

Considering the large distances and volumes of data, it is not feasible to use a reliable
data transport protocol for the data transport between CSP and SDP. This would require
constant buffering of the transmitted packets at the sending side until confirmations from
the receiving side arrive. In a highly optimised real-time environment, such as the CSP
correlator system, this would incur very significant cost and performance overheads.
The chosen transmission protocol for this data stream is therefore unreliable, based on
UDP/IP over Ethernet, with far lower sender-side overhead. At this point the transported
data is highly redundant. Loss of a fraction of this data will result in reduced signal-to-
noise ratio in the end-product, but this is, within reason, acceptable. Goal of this work is
to maximise the scientific output of the Science Data Processor per invested Euro and/or
Joule by minimising cycles spent on data transport that don’t directly contribute to the
science output.

The specific set of requirements for this particular SKA data transport component
can be summarised as follows:

• very high data rates, several Terabits per second

• almost entirely uni-directional traffic

• UDP/IP over Ethernet

• prioritising bandwidth over latency

• desire for very high energy-efficiency

• full reliability is not crucial, some data loss is tolerable1

In the remainder of this chapter we investigate how an existing industry standard
RDMA implementation can be modified in such a way that it can be used to transport
SKA specific data streams. By avoiding a known bottleneck we expect to save a measur-
able amount of computational resources and energy. This can immediately be translated
into increased scientific performance for the same investment.

1A SKA SDP requirement states that at most 1% of data loss, excluding data flagged due to interference, is
tolerable. For comparison. in LOFAR at most 5% of loss overall is tolerable, including flagging and lost data in
pipelines. However, lost data will always lead to reduced signal to noise in the science product. Minimising data
loss is therefore important.
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7.3 RDMA, iWARP and SoftiWARP

Receiving multiple high-bandwidth UDP/IP data streams requires significant CPU re-
sources. Since CPU cycles can be translated into consumed energy, it can be assumed
that a more efficient way to receive large data streams will consume less energy. In ad-
dition, compute resources spent on receiving data cannot be utilised for data reduction
or processing.

Implemented as an operating system service, the Linux network I/O stack was de-
signed with the main focus on robustness and security while maintaining good perfor-
mance. Applications access network services via the socket API. To achieve separation
and protection, all communication data are copied between application buffers (user
space memory) and operating system (kernel) memory within the socket layer. On the
transmission path, after copying data into the kernel, network protocol output process-
ing packetises the data, stores it for potential retransmission and informs the network
adapter to fetch the packets for wire transmission. In the network packet input path data
are first moved from the network card into kernel memory and an interrupt is issued,
which handles network protocol processing within the kernel. As a result of protocol
processing, kernel data buffers containing the received data are queued to the socket
receive queue for application retrieval. Within a system call, the application eventually
copies those data from kernel memory to application receive buffers, which typically in-
volves waking up the application thread waiting for data reception. Both in the sending
and receiving path, traversing the Linux networking stack incurs non-negligible over-
head (interrupt handling, context switches, network protocol processing, data copy op-
erations), which degrades application-available CPU processing power, while limiting
achievable communication bandwidth and adding to end-to-end communication latency.
Moving the data directly between the network device and application buffer would avoid
such overhead, but if not done properly, would violate the data protection and separa-
tion principles of the operating system. However, in a tightly controlled and private
environment, such as in a scientific instrument, these limitations might be acceptable.

In the past decade the Remote Direct Memory Access (RDMA) technology has been
gaining more and more relevance in the field of high-speed communication. Its develop-
ment was driven by the need for high throughput and low latency networking, especially
in High Performance Computing. RDMA provides this by moving data directly from the
user space memory of one machine to that of another, without involving host operating
system and minimising host CPU usage. The application layer registers memory buffers
with the local RDMA-capable network interface controller (RNIC) for remote write or
read access. Under the control of local and remote RNIC, RDMA write operations
transfer data from a local buffer to a tagged remote buffer that was advertised by the
peer, whereas the RDMA read operation transfers data from a tagged remote buffer to a
tagged local buffer. The application layer is involved only on the side where the request
is issued. Any application buffer used as a source or target for an RDMA operation must
be pre-registered with the local RNIC device, and is typically pinned into physical host
memory. This allows the RDMA device to access the buffer in physical memory without
further OS intervention. To allow overlapping communication and computation, RDMA
offers an asynchronous communication interface. RDMA operations are posted as Work
Requests (WRs) to a communication endpoint and are asynchronously processed by the
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RDMA device. Work completions are signalled and retrieved asynchronously as well.
RDMA is provided through several network technologies, including Myrinet [25],

Infiniband [112], RDMA over Converged Ethernet (RoCE) [147, 22] and iWARP [71,
116]. The functionality and performance of these standards has been evaluated and
compared in various studies [90, 115]. Well-known programming interfaces, like the
Message Passing Interface, may be used in order to access the RDMA functionality on
different hardware [91].

Both RoCE and iWARP are deployed over Ethernet, which makes them very inter-
esting candidates for the SKA data transport service. RoCE defines the transmission of
InfiniBand packets directly over Ethernet, which limits its scope to the Ethernet broad-
cast domain and thus leaves it non-routable. To solve that issue, a recent protocol ex-
tension (RoCEv2) puts it on top of UDP/IP. On the other hand, iWARP defines RDMA
operations on top of TCP/IP networks, giving it the advantage of being compatible with
the existing Internet infrastructure. Unfortunately, both RoCE and iWARP rely on the
implementation of a rather complex protocol state machine (TCP or InfiniBand) meant
to provide a level of data transmission reliability which is not needed and even obstruc-
tive for the intended use: data to be transmitted have a limited relevance in time – in
case of partial data loss the protocol should favour the transmission of new data over
the retransmission of lost fragments. Lost data fragments shall result in just dropping
the entire affected application level message at RDMA protocol level, while keeping the
end-to-end connection intact.

In our work towards an energy-efficient protocol for modern radio astronomy we
have chosen the iWARP standard as the baseline, but extended it with an unreliable
service. This was achieved by replacing the TCP protocol with UDP and modifying the
semantics of the RDMA application interface.

7.3.1 Implementation of iWARP in software
Although the full range of advantages of RDMA is only available through hardware
support for iWARP (in order to offload I/O and protocol processing from the CPU), a
software implementation can also be well motivated. iWARP is still a relatively young
technology and therefore it is useful to be able to rely on a software solution for testing
and development purposes. Furthermore, the software version can be introduced in
the less stressed parts of the infrastructure, whereas the more utilised parts would be
equipped with iWARP-capable NICs – provided that the software implementation can
operate in such a mixed scenario. Thanks to the RDMA semantics and the asynchronous
API, even a software implementation can provide benefits such as a zero-copy data
transmit path and less application interaction/scheduling, which can lead to increased
performance and lowered CPU load and power consumption. Software iWARP can also
be used for migrating existing applications to the RDMA interface without the need for
RDMA hardware. Finally, it can ease the development of new, experimental extensions
to the RDMA stack without hardware prototyping. The SKA scenario is a good example
of such a case, as we want to experiment with an implementation of iWARP that is
tailored specifically for our needs.

The idea to implement the iWARP protocol fully in software has been already ap-
proached and there are solutions available, such as the Software iWARP implementation
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by the Ohio Supercomputing centre [51],[52] or the SoftiWARP [104] implementation
by IBM Research.

It is however important to note that a software implementation of the iWARP pro-
tocol will most likely not guarantee a power efficiency to meet the energy budget re-
quirements of the SKA. This choice gives a good ground for experiments on the points
relevant for the scientific instrument, namely CPU utilisation, power consumption and
behaviour under packet loss. The final solution, one that can be incorporated in the de-
sign of SKA, should rely on hardware support. This work could of course be seen as
a step towards such solution, as all the created code will be made available in a public
repository.

7.3.2 SoftiWARP
The work presented in this chapter is based on the SoftiWARP (SIW) open source
software implementation of the iWARP protocol suite, developed at the IBM Zürich
Research Lab and available from GitHub2. SoftiWARP comprises two main building
blocks: a kernel module, which implements the iWARP protocols on top of TCP ker-
nel sockets, and a user level library. SoftiWARP integrates with the industry standard
OpenFabrics3 RDMA host stack and thus exports the OpenFabrics RDMA API to both
user space and kernel space applications. Due to close integration with the Linux kernel
socket layer, SoftiWARP allows for efficient data transfer operations. On the sending
side, it supports zero copy data transfers out of application buffers. On the receiving
side, the implementation makes use of target buffer address information available with
the RDMA protocol headers: the packet payload is directly copied from their in-kernel
representation (sk buff) to the final application buffer without scheduling the receiv-
ing application. Since the implementation conforms to the iWARP protocol specifica-
tion, it is wire compatible with any peer network adapter (RNIC) implementing iWARP
in hardware.

7.3.3 Implementing an unreliable connected SoftiWARP service
In order to fulfil the requirements of the SKA we have defined and implemented a new
unreliable, connection oriented RDMA transport protocol based on SoftiWARP. Here,
communication between hosts is implemented over UDP kernel sockets instead of the
reliable, connection-oriented TCP. The issues with TCP and UDP protocols for long-
distance data transfers has been addressed in multiple studies. In [149] the authors have
pointed out a poor utilisation of network capacity when using TCP in long-distance
transfers and proposed a new congestion control algorithms to partially address this
problem. In [42] we can find an evaluation of new advanced TCP stacks, which can
give good performances on high speed long-distance network paths and limit the need of
using multiple parallel streams. In contrast, other work on high bandwidth long distance
connections conclude that TCP is able to achieve good utilisation, but hardware and
software architectures of the computers and their IP stacks may limit performance [97,

2https://github.com/zrlio/softiwarp
3https://www.openfabrics.org
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14]. The presented studies show clearly that a reliable connection brings shortcomings
that we have also mentioned before, namely growing complexity of traffic management,
delays, buffering and therefore, higher CPU utilisation and power consumption. An
unreliable transport protocol can mitigate or avoid many of the identified shortcomings.

In SoftiWARP UDP the unreliable connection is used both for the connection man-
agement operations, as well as the data transfer. After connection setup, the application
data transfer does not enforce reliability, but is implemented in an unreliable, message-
oriented manner: the sender segments the RDMA message into a set of UDP datagrams,
which are reassembled on the receiver side into the original message and, if completely
received, delivered to the application. Messages which remain incomplete due to UDP
packet loss are silently dropped at the receiver.

To retain the efficiency of the original implementation, any inbound, in-sequence
data are directly placed into the application target buffer without intermediate queueing.
At API level, error handling has been implemented as simple as possible: if a message
remains incomplete due to data loss or corruption, the content of the target buffer re-
mains undefined. If the lost message belongs to an RDMA Send/Receive operation, the
current Receive operation remains incomplete and the receive buffer gets re-used for
placing the next inbound RDMA Send. Corrupted RDMA Write messages just leave
the application buffer in undefined state. While originally not defined for the iWARP
protocol, an ’RDMA Write with Immediate Data’ operation might further improve the
handling of unreliable RDMA Writes at the target side: only if the RDMA Write op-
eration completes successfully, the ’Immediate Data’ are delivered to the application
indicating the complete placement of a new RDMA Write. These data could carry ad-
ditional application level information such as a message sequence number. Only Infini-
Band and ROCE currently define this optional ’Immediate Data’ semantics for RDMA
Writes. With that, it is currently up to the application to detect corrupted data placed via
RDMA Writes.

Unreliable RDMA Read operations are currently supported at an experimental level
only. First of all, this operation is not required for the SKA use case: Data streaming is
strictly uni-directional and only dictated by the sender delivering radio-astronomic data
to a data processing entity. Secondly, supporting unreliable RDMA Reads requires a
further extension of the protocol state machine at the RDMA Read initiator side, since
it must detect permanently lost RDMA Read Request/Response pairs. A timer based
detection of message loss appears to be a viable solution to the problem, but is currently
not implemented.

The extended SoftiWARP implementation runs on both UDP and TCP and allows to
select reliable connection (RC) or unreliable connection (UC) services on a per connec-
tion basis. For the UC service, the client side must first create a connection endpoint
with an appropriate OpenFabrics service attribute, namely IBV QPT UC, which repre-
sents an Unreliable Connection Queue Pair. On the server side a listener endpoint for
the same service type must exist. If the client connects its endpoint with the listener,
a new server side endpoint will result, which is associated with the connecting client
endpoint. After connection setup, both sides can use the new RDMA association for
unreliable data transfer operations.
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7.4 Experiments

In this section we present in-depth tests of SoftiWARP UDP and analyse how a software
implementation of iWARP standard is able to perform in terms of achieved bandwidth
and power consumption in comparison to standard TCP and UDP sockets. Our test
platform comprises two server machines equipped with Intel Xeon E3-1240 v3 CPUs
running at 3.40 GHz, 16 GB RAM and Chelsio T5-580 40 Gb RDMA-capable Ethernet
cards. The machines are interconnected with a direct connection using a QSFP+ cable.
The tests have been performed with:

• The Netperf4 benchmark tool with additional tests implemented, which carry traf-
fic over RDMA protocols, both over TCP and UDP,

• The LOFAR telescope traffic generator5, which creates data packets at rates that
correspond to that of a LOFAR telescope station. TCP and UDP Sockets as well
as TCP and UDP iWARP is supported for data transport.

We use two measurement points in our experiments to precisely assess the energy con-
sumption of the data transfers. Using the RAPL Technology [125] the values from Intel
Processor’s registers can be read and the power consumption of the CPU and DRAM
can be estimated in a very accurate way. We use the Performance Application Pro-
gramming Interface (PAPI) library6 and the Likwid tool7 to read the power meters. We
have also constructed a custom-made power meter based on an Arduino board and volt-
age sensors attached to the PCI-Express slot [121]. Using this device we can measure
the power consumption of the NIC with an accuracy of 1/100 Watt and 1 millisecond
sampling rate.

7.4.1 Power consumption of Chelsio T5
The power consumption of the Chelsio T5 NIC has been measured using the power
meter mentioned in the previous section, under numerous different test scenarios. The
results of these tests are shown in Fig. 7.1 in a consecutive manner. The blue line
presents the trace of power consumption of the Chelsio T5 NIC. The value of 9 W shows
the idle state of the NIC and each peak of around 13.5 W represents one test being
carried out. Peaks 1 to 6 represent Netperf tests over different transport protocols in the
following order: SoftiWARP TCP, sending side; SoftiWARP UDP, receiving side; TCP
sockets, sending side; TCP sockets, receiving side; Hardware iWARP, sending side;
Hardware iWARP, receiving side. Tests 7 and 8 represent 50 instances of the LOFAR
traffic generator, first the sending side, then the receiving side.

We can see from Fig. 7.1 that the power consumption of the NIC card is very simi-
lar in all cases and doesn’t depend on the kind of transport protocol used. Further tests
have been performed with varying message sizes and all available transport methods, on

4http://www.netperf.org
5https://gitlab.com/broekema/SDP Controller
6http://icl.cs.utk.edu/papi/
7https://github.com/RRZE-HPC/likwid
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sending and receiving side. All of them have shown nearly identical results of 9 W for
idle state and 13.5 W for full link speed. Therefore, we can conclude that the power con-
sumption of the RNIC is very consistent and doesn’t show a dependency from the type
of traffic. In the following sections we will focus only on the CPU and DRAM power
consumption, as this is where all of the tested protocols show significant differences.
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Figure 7.1: Power consumption of Chelsio T5 during eight consecutive tests using Net-
perf (tests 1-6) and the LOFAR traffic generator (tests 7-8).

7.4.2 Radio astronomy data flow
In this section we mimic the data flow from LOFAR, an operational radio telescope with
very similar characteristics to the future SKA. A traffic generator is used to emulate the
data produced by a LOFAR Remote Station Processing (RSP) board. This is a UDP/IP
data stream, measuring approximately 760 Mb/s, transmitted in packets of 8 kB, which
is a limit imposed by local memory on the station FPGA boards. Each LOFAR antenna
field produces four of these data streams, totalling slightly more than 3 Gb/s per antenna
field. LOFAR currently has 73 antenna fields, 24 core stations which may be split into
two independent antenna fields, 18 remote stations and 7 international stations. Three
more international stations are under construction, which brings the maximum LOFAR
input data rate to almost 230 Gb/s. We generate 50 data streams in our experimen-
tal setup, which at 37.5 Gb/s corresponds to roughly 1

6
th of the total LOFAR data flow.

Preliminary designs of the SKA system data flow make it likely that data transported be-
tween the CSP and SDP will have very similar characteristics, albeit with much higher
data rates at longer distances. Considering the parallel nature of this data flow, energy
consumption, and savings, scale linearly with increasing bandwidth. Apart from in-
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Figure 7.2: Power consumption of CPU and DRAM for receiving a transfer of LOFAR-
like traffic over TCP and UDP sockets.

creased travel latency, and possibly a slightly higher chance of lost packets, distance
should have little impact on the conclusions in this chapter. Our generator is capable of
transmitting the said data stream using TCP and UDP sockets and also with TCP and
UDP SoftiWarp.

In Fig. 7.2 we show the power consumed by receiving 50 emulated LOFAR data
streams using TCP Sockets on the left image and UDP sockets on the right one. The
energy consumption for receiving TCP traffic is measurably higher than when using
UDP due to the additional overhead of the TCP/IP protocol stack. This is a clear indi-
cation that reducing this protocol overhead will result in a smaller energy consumption.
The average power consumption for TCP in this experiment is 45.09 W and for UDP
it is 40.05 W. In Fig. 7.3 we present the power consumption measurements obtained
with the LOFAR traffic generator using SoftiWarp TCP on the left image and SoftiWarp
UDP on the right image. The power consumption during transfers with software iWarp
implementation is clearly lower than in the case of TCP and UDP sockets, presented in
the previous image. The average value for the TCP experiment was 32.38 W and for the
UDP experiment it was 31.01 W. The power efficiency difference between the TCP and
UDP transfer in this case isn’t as clear as with the sockets scenario, however the Soft-
iWarp UDP transfers achieved a better bandwidth, which can be seen on Fig. 7.4. We
can explain this with the fact that the used message size in these transfers is relatively
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Figure 7.3: Power consumption of CPU and DRAM for receiving a transfer of LOFAR-
like traffic over SoftiWarp TCP and SoftiWarp UDP.

low (8kB) and TCP-based protocol may have a problem achieving full link speed. The
UDP-based protocol is more likely to achieve better speeds with smaller messages due
to the lower overhead of the unreliable protocol. We will look further into the matter of
achieved bandwidth and power efficiency (as Gb/s per Watt) in the following sections
and present more results on this subject.

7.4.3 Power consumption of SoftiWARP TCP
In this section we carry out a set of transfers with the Netperf tool for the Sockets- and
RDMA-based protocols with varying message size used. This will allow to observe
the behaviour of different transport methods in different scenarios and allow to calcu-
late the theoretical energy efficiency for all the transport methods. The tests have been
performed with all of the offloading features of the NIC switched off, which was done
for two reasons: firstly, we want to assess the direct effect of the transport protocol on
the power consumption when no hardware support is available. Secondly, the offload-
ing features available in modern NICs offer significantly more support for TCP protocol
compared to UDP protocol, which means that with the offloading turned on the solutions
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Figure 7.4: Achieved bandwidth of LOFAR-like traffic on the receiving side using Soft-
iWarp TCP (left image) and SoftiWarp UDP (right image).

based on the UDP protocol would be penalised. First we present the power consumption
traces of different protocols and in Sec. 7.4.5 we present the complete set of numerical
values and evaluate the normalised power consumption per achieved bandwidth. As
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Figure 7.5: Power consumption of CPU and DRAM for data transfer over TCP sockets
(first peak) and SoftiWARP TCP (second peak), receiving side.

mentioned before, we are interested in the power consumption on the receiving side of
the connection, therefore we initially focus on these results. This is motivated by the
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fact that the receiving sides of the data transfers in the SKA (CSP and SDP) will most
likely be HPC systems, so experiments such as ours can give a good indication on the
expected power consumption. Most of the sending side devices, on the other hand, will
be custom-built devices. Therefore their power consumption patterns will be signifi-
cantly different from a standard HPC system and the problem of their power efficiency
needs to be addressed on their design level.

Fig. 7.5 shows the system power trace on the receiving side during data transfer
with TCP sockets (first peak) and then SoftiWARP TCP (second peak). The blue line
represents the power consumption of the CPU whereas the red line shows the DRAM
power consumption. We performed six tests for both TCP sockets and SoftiWARP TCP
and compared them to confirm that the power consumption follows very similar patterns
in all cases. The data bandwidth achieved during the tests shown in Fig. 7.5 is 25.1 Gb/s
for TCP sockets and 27.85 Gb/s for SoftiWarp TCP. As we can see, neither protocol is
able to achieve the full link speed when the offloading features are switched off and
we are communicating between just two instances of the testing application. However,
already we can note that the bandwidth achieved when using SoftiWARP TCP is slightly
larger and the power consumption is smaller. The average power consumption from six
TCP socket tests is 17.4 W and for SoftiWARP the average is 15.89 W.

7.4.4 Power consumption of SoftiWARP UDP
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Figure 7.6: Power consumption of CPU and DRAM for data transfer over UDP sockets
(first peak) and SoftiWARP UDP (second peak), receiving side.

Similarly to Sec. 7.4.3 we have performed the comparison between UDP sockets and
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SoftiWARP UDP. Fig. 7.6 presents the system power trace during the execution of two
Netperf tests: first peak shows the test using UDP sockets and the second one presents
a SoftiWARP UDP test. It is clearly visible that in this case the power consumption
difference between standard sockets and SoftiWARP is significant. The average energy
consumption in the UDP socket-based tests is 24.21 W and 13.72 W for SoftiWARP-
based tests. Furthermore, the near-full link speed of the connection is achieved in both
cases: 39.37 Gb/s for the UDP stream test and 38.24 Gb/s for SoftiWARP.

7.4.5 Comparison of power efficiency
In order to quantify and directly compare the power efficiency of different transport pro-
tocols we performed a set of experiments in which we measured the power consumption
used by the entire data transfer, including the CPU, DRAM and the NIC. Then we have
calculated the normalised power efficiency, which we define as follows:

E =
BW

P
(7.1)

[E] =
Gb/s

W
(7.2)

From (7.1) it can be seen that our metric, the normalised power efficiency (E), is defined
as the data bandwidth (BW ) divided by the total power consumption (P ), expressed in
Gigabits per second per Watt (7.2). With this metric we are able to provide a good
comparison on how much power is needed by specific transport protocols in a manner
that is independent from the variations in bandwidth in different experiments. We note
that we have opted not to use the equivalent Gb/J metric, since this does not emphasise
the bandwidth aspect and could, for instance, also be used to denote the power efficiency
of storage systems. We perform six experiments for each value, using message sizes
in the range of 8 kB to 2 MB. The tested transport services include: TCP sockets, UDP
sockets, SoftiWARP TCP and SoftiWARP UDP – both using RDMA Read and RDMA
Write operations. The UDP sockets have only been tested for message sizes up to 64 kB
as such size is the largest supported by this transport protocol. As before, during the
first tests all of the offloading features of the NICs have been turned off. However, this
time we have also performed tests with the following offloading features enabled: rx and
tx checksumming offloading, generic receive offload (GRO) and generic segmentation
offload (GSO). This was done to see the impact of such features on the results and
compare them with the no-offload scenario.

Figures 7.7 and 7.8 show example results with hardware offloading features disabled
and enabled, respectively. Both figures present results for the following message sizes:
256 kB for TCP-based protocols and 64 kB for the UDP-based protocols. At these values
the given protocols have achieved their maximum bandwidth.

The tests performed without hardware offloading demonstrate that when using TCP
even a relatively modern system is unable to achieve full link speed using a single core.
Only the UDP-based protocols have been able to achieve the near-full link speed, how-
ever with UDP sockets this was coupled with significant power consumption on the
sending and receiving sides. On the other hand, the SoftiWarp UDP tests using RDMA
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Figure 7.7: Results of power consumption tests with the offloading features of the NIC
disabled.

Write have been able to achieve nearly identical results with the hardware offloading
enabled and disabled, which was around 38.79 Gb/s bandwidth with only 13.64 W of
average power consumption on the receiving end. The power consumption on the send-
ing side remains among the highest in the above table, but this is not a crucial issue
for radio astronomy applications as the sending side will most likely not be a standard
computer but rather a custom-built FPGA unit, designed specifically to issue RDMA
Write operations. Therefore, the power consumption of the sending side is a research
topic on its own and cannot be evaluated using experiments similar to those presented
in this chapter.

The results presented in Fig. 7.8 confirm our assumptions from Sec. 7.4.3, namely
that the TCP-based protocol family receives significantly more support of hardware of-
floading. In the second set of tests almost all protocols achieved full link bandwidth,
except for SoftiWarp TCP RDMA Write. The plain UDP Socket test didn’t receive any
support from the hardware offloading features, achieving the same bandwidth and power
consumption. The SoftiWarp UDP RDMA Read test has achieved the full link speed due
to the Receive Offload and Segmentation Offload features. Finally, it is important to no-
tice that the SoftiWarp UDP Write test still offers the lowest power consumption on the
receiving side of all the protocols, even when competing with the hardware-supported
TCP sockets or SoftiWarp TCP.

Fig. 7.9 depicts how individual bandwidth values (left panel) and power consumption
(right panel) correspond to varying message sizes. These charts allow for visualising the
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Figure 7.8: Results of power consumption tests with the offloading features of the NIC
enabled.

trends and optimal values for specific protocols. The achieved bandwidth, but also the
resulting power consumption, increases with increasing message size for all protocols.
The optimal value is around 512 kB for the TCP protocols and around 64 kB for the UDP
protocols. UDP sockets are the highest consumer of energy of all protocols, but also they
are the only ones that achieve the best link speed without hardware support. SoftiWarp
UDP is able to achieve very similar results with regard to bandwidth, but shows much
lower power consumption, therefore its achieved power efficiency is higher.

The above results are used to calculate the normalised values of the power efficiency
as expressed by (7.1) and (7.2). The calculated values are depicted in the efficiency
chart shown in Fig. 7.10. Comparing the TCP and UDP groups, the former one is less
efficient, which can be explained by the low bandwidth achieved by TCP protocols as
shown in Fig. 7.9 left. Comparing SoftiWARP protocols to plain sockets, both over TCP
and UDP, we can see that SoftiWarp is more power efficient in both cases. In all of the
experiments SoftiWarp TCP performs better than TCP sockets and SoftiWarp UDP bet-
ter than UDP sockets. This advantage results from the design of the SoftiWARP receive
path implementation: after receiving iWARP packets into kernel memory, SoftiWARP
directly copies their content into the target application buffers. Making use of the one-
sided semantics of RDMA communication this final data placement does not involve
the scheduling of the receiving side application process.

Although these results are still based on software prototype of SoftiWARP UDP, we
can already confirm that the reduced data touching and the decreased overhead from the
OS lead to very desired characteristics and promising results. The power consumption of
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Figure 7.9: Bandwidth (left panel) and power consumption (right panel) results for tests
with varying message sizes.

SoftiWARP is lower than TCP or UDP sockets in all cases and the achieved bandwidth
is at least as good.

7.4.6 Behaviour in case of packet loss
Finally, we wanted to assess the behaviour of all the tested protocols in case of signifi-
cant packet loss. We have done this by emulating packet loss using the Netem network
emulation tool8 in the range of 0.1% to 10%. The achieved bandwidths can be seen in
Fig. 7.11. The difference between TCP-based and UDP-based protocols is significant.
The former tend to sustain their original bandwidth in the initial part of the tests as
all the lost packets are re-transmitted. However, with larger packet loss the network is
no longer capable to keep up with re-transmission and the bandwidth gets significantly
reduced. The UDP-based protocols do not rely on the retransmission-based reliable
communication implemented by the TCP protocol and are able to maintain the trans-
fers on the same level, regardless of the problems occurring along the link. The only
decrease in bandwidth is the actual amount of packets that have been dropped. As we
can see in the chart, this doesn’t hold true for the results of SoftiWarp UDP RDMA
Reads, which - as discussed earlier - are not yet fully supported in our implementation.
The protocol does not yet recover from completely lost RDMA READ request/response
pairs, which results in transfer breakdown as soon as the packet loss reached 3%.

The above results show that the use of a protocol that relies on two-way communi-
cation and tries to provide full reliability on the transport level, such as the TCP, can be
infeasible for a scenario such as the SKA. It is true that the introduced packet loss in

8https://wiki.linuxfoundation.org/networking/netem
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our experiments was very high, but the tests were performed for a short, local connec-
tion. In the case of the SKA, where the connections spread over hundreds of kilometres
in length, we would see a much more drastic influence of packet loss on the achieved
bandwidth. This result confirms another reason for the choice of an unreliable transport
protocol for our purposes. The power consumption in different packet loss scenarios
didn’t show any noteworthy behaviour. It corresponded to what we have seen in our
previous experiments, namely that with growing packet loss the energy consumption
was lower, because the achieved bandwidth was also lower.

7.5 Conclusions and Future Work

In this chapter we presented the data transport requirements of the world’s largest radio
telescope, the Square Kilometre Array (SKA). We proposed a solution to meet these
requirements, namely an unreliable, datagram-based iWARP protocol implementation.
We have then presented a software prototype of such a protocol, called SoftiWARP
UDP, and evaluated its performance and power efficiency together with those of TCP
and UDP sockets. We have confirmed that UDP is a very good choice for long distance
transfer of astronomical data. The protocol overhead is lower, which leads to lower
power consumption. Furthermore, the use of a reliable transport protocol is not feasible
in a scenario such as the SKA, as it (1) leads to higher power consumption, and (2) the
data transfer quality soon becomes unacceptable in case of non-negligible data packet
loss.

Our software prototype of SoftiWARP UDP is already capable of outperforming
TCP and UDP sockets by as much as 70% in terms of power efficiency (when comparing
SoftiWarp UDP with standard TCP/IP sockets, see figure 7.10). This is a very desired
result, however we expect a much higher improvement of the power efficiency with
implementation of the SoftiWARP UDP protocol in hardware, e.g. using FPGAs and
the source code of SoftiWARP UDP, which we leave for future work on this subject.
A solution desired for the SKA purposes would have typical RDMA characteristics,
where all four lower network layers are handled in hardware. Considering our results,
we believe that with a hardware implementation the SoftiWARP UDP protocol would
bring all the benefits of RDMA, namely an outstanding power efficiency, low latencies
and CPU utilisation and high bandwidths, while meeting the specific requirements of
the radio astronomy data transfer service.

Finally, our tests show that the DRAM power consumption was not reduced using
SoftiWarp UDP, and now has a much more significant impact (approximately 23%, see
figure 7.6) on the total consumption. Solutions for its reduction should be explored. We
will look into using flash storage technology instead of DRAM for data ingress, which
is energy efficient and offers high bandwidth and low-latency access.

7.6 Our propositions in this chapter

We now return to the propositions that from the basis of this thesis.
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7.6.1 Value proposition
As mentioned in the previous chapter, we can argue that the optimisations identified and
explored in this thesis are primarily intended to increase the relative science value of the
system, as defined in chapter 2. While this chapter primarily contributes to the optimi-
sations proposition, we cannot ignore the underlying reasoning for these optimisations.
Therefore this chapter also contributes partially to the value proposition.

7.6.2 Optimisation proposition
In chapter 3 we identified that the large volumes of data moving in and out of the SKA
Science Data Processor may require significant amounts of energy. In this chapter we
not only verified this claim, we also provided a potential solution to the problem: a
software RDMA based receive stack that requires significantly less energy. While the
particular solution is one of many implementations available, the energy savings of all
of these should be similar. It is noteworthy that the energy required to receive large
volumes of data would generally be considered inevitable. Because we consider data-
transport and compute together, this source of energy consumption becomes an obvious
potential optimisation target.
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CHAPTER 8
Future developments in compute

and data-transport systems for
radio telescopes

So far in this thesis we have focused on ways to architect and design efficient compute
systems in support of radio astronomy and astrophysics instruments. One key element
we have seen several times in these considerations is timing the procurement of compute
infrastructure for maximum science impact. This relies on a continuous and predictable
increase of compute capacity per invested Euro, generally referred to as Moore’s law
scaling 1.

8.1 Computational scaling and the demise of Moore’s law

Computing as we know it today started in earnest in the second world war, but it was
the introduction of the first microprocessors in the late 1970s that started the dramatic
and sustained growth of compute capacity we have enjoyed for the last decades and that
has propelled us into the information age. Initially the main source of computational
scaling over time was derived from Dennard scaling [57]. This states, roughly, that as
transistors get smaller, their power density stays constant. In others words, as transistors
get smaller they require less energy to operate and thus required voltage and current are
reduced. Dynamic power consumption of integrated (CMOS) circuits is to its clock

1Moore’s law states that the number of components in an integrated circuit doubles every year [99], a number
later adjusted to 24 months [100].
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frequency. This meant that at the same or similar energy levels integrated circuits with
smaller transistors could be run at higher clock frequencies, with corresponding higher
performance.

Around 2006 transistors had shrunk to a level sufficiently small that leakage currents
in the components started to dominate energy consumed by the parts. Intel proved to be
unable to scale its Netburst architecture based Pentium 4 processors beyond 3.8 GHz,
not even half the originally expected 10 GHz (after several fabrication process updates).
This unexpected setback required a radical re-think of architectures and led to the (at
that time rare) cancellation of the relatively new Netburst architecture and more focus
on energy efficiency and performance per clock cycle.

This focus on performance per clock cycle has driven two main developments. First,
multi-core systems have increased concurrency in systems, in theory allowing for an n-
fold increase in performance for an n-core system without increasing clock frequency.
However, only parts of a workflow will benefit from this, since Amdalh’s law states that
scaling in such a way is limited by the sequential part of the code. Second, ever more,
and more complex, SIMD (Single Instruction Multiple Data) instructions on ever longer
vectors were added to systems to increase the number of operations per clock cycle that
can be done. Third, hardware features were put in place to increase the occupancy of
the available compute resources, such as the ability to execute instruction out-of-order
and the addition Simultaneous Multithreading (SMT). In particular the first two put a
heavy burden on programmers and compiler designers to use these instructions properly,
and, more importantly, make sure sufficient data is available in the correct ordering to
effectively use these instructions.

More recently accelerators, like GPUs (Graphics Processing Units) have become
commonplace, which can roughly be considered as specialised co-processor with many,
not necessarily general purpose (or even Turing Complete) compute units. These offer
excellent computational performance, and while programming these is not easy, they
have been the mainstay of modern high-performance computing for several years now.

However, all of these developments still rely on the fact that, so far, we have been
able to reliably produce a new production process with smaller transistors every two
years. Shortly this will no longer be the case, and we already see significant slowdowns
in new processes being rolled out. Intel has had trouble introducing their 10 nm tech-
nology, due to poor yields [5]. In January 2019, Intel announced its first that its first
mass-production-ready 10 nm processors, originally expected to be available in 2016,
would be released by the end of 2019 [6], some three years late. Even if 10 nm will
eventually be an economically viable node, it is expected that only two more production
nodes will be available before physical limitations (i.e. quantum tunnelling and features
approaching the size of single atoms) prevent further scaling. It is expected that the
prohibitive cost of (the facilities to produce) these nodes will delay their introduction
significantly. Consequently, it is likely that the current slowdown of developments in
compute capacity will continue. If no alternative technologies are developed, these de-
velopments will come to a complete halt with the introduction of a fabrication process
in the order of 3-5 nm.
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8.2 Post-Moore computing

The physical limitations of current technologies have been known for quite a while.
Academia and industry have proposed a large number of alternative solutions to the
problem. While a survey of these alternatives is not within the scope of this thesis, a
recent report for the intelligence community [81] summarised them into four classes:

1. Classic Digital computing

2. Analog Computing

3. Neuro-inspired computing

4. Quantum computing

While the future of compute architectures as we known them today, and have known
for decades, is sombre, we note that this represents an extremely large market with
excessive amounts of available capital. Therefore, capital intensive solutions that extend
the viability of current technologies for even a short period of time are not beyond the
realm of possibilities. The cost of these solutions will however be such that performance
per invested Euro will no longer increase at the same rate as before. This development is
exacerbated by limited competition in the market of high-performance micro processors
and accelerators, driving component cost up.

While the number of alternative solutions identified below is large, only a subset of
these do not represent a radical change in architectures, making most, if not all, of the
theory underpinning modern computer science obsolete. The cost of such radical new
solutions is high. Not only does such a new paradigm likely require all-new software
to be written, it is likely that the entire algorithmic and theoretical basis underpinning
current state-of-the-art radio interferometry needs to be re-evaluated. This means that
a clear process to determine the applicability and viability of such technologies, and its
cost, both capital and other, is essential. The propositions introduced in this thesis, in
particular the value proposition, and its theoretical background introduced in Chapter
2, are highly relevant to that process. This will also drive a desire to extend the useful
lifespan of current and next-generation more conventional digital processing techniques,
since these can more easily and cheaply be used.

We will give a short overview of the four different classes of compute technologies,
and the ways they may be used in radio astronomy. Note that none of these have been
proven, and viability statements are best-guess estimates.

8.2.1 Classic Digital Computing
Considering the massive investments that have been made in all areas of information
technology, from application software to the algorithmic theory, hardware and manu-
facturing, it is very likely that classic digital computing will remain the dominant com-
puting technology for some time. This will extend even beyond the practical scaling
limit of CMOS, somewhere after 2020. At that stage, any improvement in capacity per
Euro (or Joule for that matter) be derived from architectural improvements. One of these
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that we see in production already, is 3D stacking, currently employed in high-bandwidth
memory (HBM), which drastically reduces the distance for information to travel. Con-
sequently, the bandwidth available is often exceptional, with the recently introduced
AMD Radeon 7 graphics card offering an unprecedented 1 TB/s bandwidth to a stack of
16 GB of memory in a consumer grade device 2.

Another development that is likely to continue is the appearance of specialised hard-
ware in general purpose compute resources. Recently Nvidia has added special purpose
deep learning (tensor cores) and ray tracing (RT cores) hardware to their line of GPUs.
While this has drastically increased the theoretical performance of these devices for
some applications, the cost of programming such systems will likely increase, due to
their heterogeneous nature.

Non-conventional or special purpose systems

Current compute systems are generally based on technology that has been developed
over years. One of the key characteristics of these systems is that they are backward
compatible, which requires significant chip real-estate to implement. More efficient
systems, built from the ground up to support a small sub set of applications, may be
feasible and even affordable. Such systems would be designed to excel at one, or a
small set of similar, application(s), potentially with degraded performance for other
applications.

8.2.2 Analog Computing
Fundamentally, an analog computer attempts to build an analogy for the system that is
being studied. While an analog surrogate of a classic digital computer has been studied
in some detail, the complexities of having a continuous state space over continuous or
discrete time, whereas digital computers operate on a discrete state space and discrete
time, means that progress has been slow. It has been shown that a Turing machine can
be simulated by an analog computer, suggesting that analog computers are at least as
powerful as digital computers [28].

It is important to note that analog computers are much older than digital ones. Me-
chanical analog computers have been used for centuries, the oldest of which, the abacus,
dating back to 2500 BC. An interesting relatively recent discovery is that of an ancient
Greek clockwork analog computer designed to calculate astronomical positions, the An-
tikythera mechanism [67]. Some of the most complicated mechanical analog computers
were produced for sophisticated targeting systems in naval ships and heavy bombers
during the second world war.

Electronic analog computers are more recent. An interesting example used the anal-
ogy between the motion of water and the flow of electricity to model the slope of rivers
(by DC) and tides (by AC) [161]. An analog computer based on this analogy, Deltar,
was constructed in the Netherlands in the wake of the catastrophic 1953 floods to model
tidal flows in preparation of the Delta works plans [155]. Until gradually replaced by

2https://www.amd.com/en/products/graphics/amd-radeon-vii

https://www.amd.com/en/products/graphics/amd-radeon-vii


8.2. Post-Moore computing 149

numerical methods run on digital computers in 1983, Deltar was used to study the effect
of the Delta works, built to protect the Dutch coast against further floods.

Digital computers replaced most of their analog counterparts when they became
abundantly available in the 1970s. Recently, analog computers leveraging the massive
advances in CMOS technology, are being reconsidered due to their potential energy
efficiency. However, although some analog computers are Turing complete, this does
not guarantee they are easily (re)programmable. In other words, analog systems may
be single- or narrow-purpose, making them essentially unsuited for general purpose
computing. Furthermore, while the precision of digital computers is only limited by
word-size and arbitrary precision arithmetic provides any precision required, in analog
computers this is a function of design and quality of components. Moreover, since num-
bers are represented by physical phenomenon, there are practical limits to the precision
achievable with an analog computer. For instance, compare the size of the universe
(≈ 1027m) with the smallest measurable scale (Planck length; ≈ 10−35m), which is
≈ 1062. This implies that the maximum accuracy on distance measurement is 62 dig-
its. Similar fundamental limits exist for other physical quantities, such as time, mass,
charge, voltage, etc. We should note that hybrid analog / digital approaches to represent
numbers do not necessarily have this limitation.

When modern electronic analog systems become more mainstream, accuracy of
these must be considered first and foremost when assessing their use in a radio tele-
scope. For static, high throughput processing that does not change over the lifetime
of the instrument, analog computing may be a viable option. In particular parts of the
receiver signal processing component, such as the filters and beamformers shown in Fig-
ure 1.5 on page 8 of this thesis, may be suitable candidates for analog implementation.
In essence this would move the analogue/digital converter further upstream. Consider-
ing that these generally use relatively few bits to represent data (12 bits in LOFAR for
instance), the accuracy of analog computers should be sufficient. It seems unlikely that
analog computing would be suitable once data has been digitised, but further research is
required to confirm this. The fact that analog computers are particularly well suited for
solving differential equations can be key differentiating characteristic in this research.

8.2.3 Neuro-inspired computing
No amount of developments in classical digital computing is likely to approach what the
human brain can do within a power envelope of only about 20 W. Neuro-inspired com-
puting aims to mimic the structure of the brain, not simulate its characteristics. This is
characterised by highly interconnected and approximate computing, and unsurprisingly
its architecture looks similar to a classic neural network, with neurons applying weights,
which encode the knowledge learned from training sets, to information flowing through
the system.

Neuromorphic systems can be implemented using CMOS technology [78]. Conven-
tional digital computers can be used to gain experience with this style of computing, but
due to limited interconnect availability these are currently orders of magnitude less ef-
ficient than dedicated, possibly hybrid digital/analog [135], computers may be. General
purpose cores with bespoke and dedicated routing engines have been built to mitigate
this problem [68].
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Neuro-inspired systems are likely to excel at stream processing of sensor data. They
will be data driven, without a clock as in classic digital systems. Such systems are ex-
pected to be exceptionally energy efficient, but approximate in terms of accuracy. Apart
from the obvious applications of such systems in machine learning and other artificial
intelligence tasks, it may be possible to adapt even small scale neuro-inspired systems
to the tasks we currently entrust to custom designed Field Programmable Gate Array
(FPGA) boards at the receiver level in modern radio telescopes. These are generally
digital filters, fast Fourier transforms and beamformers that are applied immediately
after digitisation on very large data streams, but involve comparatively little compute
resources per bit of data. Besides a possibly significant reduction on required energy
for such tasks, the data driven nature of such neuro-inspired compute systems may be
a significant advantage that warrants additional investigation. It potentially negates the
need for synchronisation of the FPGA clock and the data stream coming into the board,
considering the data is in itself triggering the processing.

Whatever the advantages may be, it is unlikely that neuro-inspired computers will
displace classic digital computers any time soon. They may however be an interesting
addition to a hybrid system designed in a holistic manner to leverage the specific ad-
vantages of each specific technology. The scientific impact of the approximate nature
of neuro-inspired computing needs to be determined, especially when applied near the
initial receivers.

8.2.4 Quantum computing
No chapter on future computing can be complete without at least acknowledging the
developments in quantum computing. Conceived fairly recently by the legendary physi-
cist Feynman [64], it has been the promised technology ever on the edge of practical
applications for years. While a conventional digital computer operates on bits, with a
definite value of either 0 or 1, a quantum computer operates on quantum bits, or qubits,
that each are in a superposition of states. A key distinguishing feature between qubits
and digital bits is that multiple qubits can exhibit quantum entanglement, which broadly
means that the superposition of two qubits maintains higher correlation than is possible
in classical systems. In other words, if two qubits are entangled, measuring the value of
one qubit will result in the same value as measuring the other, even if they are separated
after entanglement.

One of the earliest papers considering the utility of quantum computers showed that
a universal quantum computer is indeed Turing complete and can perfectly simulate
any Turing machine [58]. In other words, any problem that can be solved using a Turing
machine, and therefore using any general purpose computer, can be solved on a universal
quantum computer. This was rigorously confirmed twelve years later [23].

Since universal quantum computers are Turing complete, we should be able to map
any computable problem to a quantum computer. However, not all problems will benefit
from this mapping. In other words, quantum supremacy is not guaranteed, and indeed
for many problems there is little to no benefit in the move to a quantum computer. There
are a fairly small number of algorithms that are expected to show quantum supremacy,
Shor’s algorithm for factorising large integers being the most well known [142].



8.2. Post-Moore computing 151

Quantum algorithms

Since the idea of a quantum computer was conceived, only a hand full of classes of
quantum algorithms have been discovered. These can be summarised as:

1. using Fourier Transforms to find periodicity, Shor’s algorithm [142] being the
prime example.

2. Grover’s search algorithm [73] and its generalisations.

3. algorithms for simulating or solving problems in quantum physics, exemplified
by Feynman’s initial ideas [64].

4. quantum walks, quantum analogues to classic random walks, first proposed by
Childs [45].

While for a small set of problems quantum computers seem to offer tremendous ad-
vantages over conventional computers, as typified by these classes of algorithms, this
set has not grown significantly in years. Some research has been done into the reasons
for this [143], which concludes that either these systems are so different from normal
computers that our techniques for designing algorithms are unsuitable, or there are only
a handful of problems that actually benefit significantly from quantum computers. Com-
puter scientists and physicists have been thinking about ways to use quantum computers
for a while, although focus has been on problems that are difficult or impossible to solve
with a conventional computer. It is certainly too soon to tell definitively, but the current
state of the art limits applicability of quantum computers to the subset of problems that
map well onto the four classes of algorithms mentioned above.

While not enough research has been done to identify the applicability of any of
these classes of algorithms for radio astronomy or astrophysics, we can make some
initial assessments. In Chapters 1 and 2 we argue that modern aperture synthesis ra-
dio astronomy was born by virtue of the Fast Fourier Transform and the development
of (mini-)computer fast enough to run these at scale. At the heart of Shor’s algorithm
for factorisation is quantum Fourier transform [142]. However, implementing an accu-
rate quantum Fourier transform is difficult, and Shor proves in his seminal paper that
an approximation is sufficiently accurate for his factorisation algorithm. For quantum
computers to be useful for aperture synthesis radio astronomy, we must first determine
if a quantum Fourier transform is a suitable alternative to the FFT, and what the required
accuracy would be. It is important to note that while the quantum Fourier transform at
the heart of Shor’s algorithm is exponentially faster than even a Fast Fourier Transform,
it is unclear if it can be integrated into the normal radio astronomy work flow as is, and
if the potential increase in performance is worth the additional cost and complexity that
will inevitably accompany such a complex, and likely heterogeneous, system.

A possible further application is in the area of pulsar search. The current state of the
art uses an exhaustive search of a 5-dimensional space (x, y, pulsar dispersion rate, pul-
sar timing and pulsar acceleration), which is computationally an extremely expensive
task. Alternatively this could, in theory, be seen as a search in an unstructured set of
data, for which Grover’s algorithm [73] may be suited. A quadratic speedup over con-
ventional search may be achievable, but further research is required to properly gauge
the suitability of this class of algorithm for pulsar search.
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We do note however that both of these applications are relatively data-intensive and
that data transport will be a critical weakness of early quantum computers. Current
systems measure data transport capabilities in kilobytes per second, rather than the gi-
gabytes per second that are the norm in modern radio telescopes. Extreme cooling re-
quirements of the current generation of early quantum chips limit the ability to transport
large volumes of data quickly. We do not expect this to change significantly in the initial
batch of operational quantum computers, and this may severely limit the applicability
of these for radio astronomy and astrophysics.

8.3 Data transport systems

Whereas developments in compute technology are expected to be challenging and po-
tentially revolutionary, the same is not true for the underlying technology for data-
transport systems. While photonics will continue to be applied closer to, and be ex-
tended into, the node, there is no reason to assume that physical limitation will the
growth of available bandwidth at more or less the same rate we’re used to. That said,
other developments, such as the appearance of programmable networks and open source
network operating systems, may offer interesting new ways to apply the propositions
introduced in this thesis. This development is arguably a reaction to the closed nature
of networking vendors and the vendor lock-in that entails. As a result, many major
cloud providers have started to develop their own networking equipment, with some,
Microsoft and Facebook in particular, open sourcing their hardware 3 and software 4.
This combination of highly commoditised hardware and extendable open source soft-
ware makes for an attractive option to build application specific code on, essentially
further integrating the network into the compute system, as recommended by the co-
design proposition in this thesis. Furthermore, the open source software environment
should allow easier and more extensive optimisation options, facilitating the optimisa-
tion proposition, by limiting reliance on vendor software quality, although the Switch
Abstraction Interface (SAI), the layer that interfaces hardware with a common software
stack, may still vary in quality.

Analogous to quantum computing, quantum networking facilitates the transmission
of quantum information using qubits between physically separated quantum processors.
While progress in this area has been slow, even though physical links are based on stan-
dard telecom fibres, the efficient and fault-tolerant transmission of quantum information
is essential to the successful application of quantum computers in any application. The
high data rates involved in radio telescopes make this particularly important.

8.4 Data storage technologies

As with data-transport systems, the expectation is that developments in data-storage
technologies will continue more or less at the same rate as in the past. Although the
density of current magnetic storage media such as hard drives is such that continued

3https://www.opencompute.org/wiki/Networking/SpecsAndDesigns
4https://azure.github.io/SONiC/

https://www.opencompute.org/wiki/Networking/SpecsAndDesigns
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growth of density without assisting technologies is difficult, a number of solutions have
already appeared in the market. While there is no physical limit in sight that will fun-
damentally limit the growth in storage density, the storage throughput to and from the
medium has lagged behind. This trend will likely continue, to mitigate this it is ex-
pected that a new tier of high-performance intermediate storage systems will appear.
Integrating such systems in a co-designed compute- and data-transport infrastructure
may require an interesting extension of the concepts introduced in this thesis.

Classic spinning media will continue to evolve for some time, with increased densi-
ties driving higher capacities in the same form factor. The gap between these spinning
media and solid state storage will continue to grow in terms of bandwidth to the media,
and decrease in terms of cost per unit of capacity. Eventually solid state storage, in a
number of different implementations or tiers, will completely replace magnetic storage.
There is no practical limit in sight yet for the development of solid state storage, both in
capacity per Euro, and in bandwidth to the storage.

One worry is the cost of, in particular high-performance, storage systems. Whereas
storage media itself are relatively inexpensive, it is interesting to note that enterprise
storage solutions generally increase the cost by several factors. Arguably, data produced
in radio astronomy is not very precious, and the measures taken to ensure data integrity
in such expensive systems are unnecessary. Furthermore, complex enterprise and high-
performance computing storage solutions are complex, difficult to maintain and tune,
and frankly fragile.

Abundant, affordable and relatively reliable storage solutions are not very interesting
to major vendors, since they offer slim margins over the media cost. There are, however,
open source hardware and software solutions available that may offer superior price per
capacity over commercially available solutions, at the cost of modest investment in man
power.

8.5 Tackling a challenging future

Since the advent of modern micro processors, we have been spoiled by a continuous and
predictable increase in available compute capacity over time. Physical limitations have
slowed down this development and within this generation will grind it to a halt. This
will lead to a diverging set of evolutionary and revolutionary developments that have the
potential to significantly disrupt the landscape of systems available for procurement.

While we can at this point speculate about the suitability of proposed new technolo-
gies, there is currently no solid basis to base any definite statements either way on.
However, the propositions we have proposed in this thesis, in particular the value and
co-design propositions, apply equally to both to current and future technologies.

Indeed, it seems likely that future systems will consist of a heterogeneous collection
of varying compute resources. Finding the most efficient combination of technologies
is essential, and while the design space is different, the process will be very similar to
the one introduced in Chapter 2 and applied in Chapters 4 and 5. However, beforehand
we need to investigate the viability of the various conventional and non-conventional
alternatives. Unless we have a clear understanding if and how radio astronomy and
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astrophysics can benefit from potential new technologies, there is a potential risk that
radio astronomy can not effectively take advantage of these when they become available.

It is our recommendation that a fundamental research project be started with the
following goals:

1. Closely track developments in both conventional and less-than-conventional com-
pute systems, collaborating widely with both industry and academia.

2. Investigate the viability and, where possible, the performance of the various other-
than-conventional compute systems for key radio astronomy and astrophysics ap-
plications.

3. Fundamental algorithmic research should be undertaken with the goal of building
a new theoretical basis for radio astronomy, to best utilise emerging other-than-
conventional compute resources, such as neuromorphic and quantum computers,
and compare this with current state-of-the-art implementations currently in use.

8.6 Our propositions in this chapter

8.6.1 Co-design proposition
While, contrary to chapters 3 and 4, we can not show practical applications of the co-
design proposition in action in this chapter, it does play a major role in our evaluation
of future technologies. In particular our initial estimate on the viability of quantum
computing in radio telescopes is based on this proposition. Whereas computationally it
may be advantageous to investigate whether quantum superiority is viable for some of
the applications in radio astronomy, much depends on the ability to transport data into
and out of such a system.

We also identify an interesting new trend towards openness in the development in
programmable networks. Major internet-based companies that rely on abundant and
cheap compute and data-transport capacity are moving towards an open ecosystem,
where hardware and software are open sourced, procured from multiple sources and
adapted to suit specific purposes. This may allow much further and more flexible inte-
gration of network and compute systems, extending the impact of this proposition even
further.

8.6.2 Value proposition
When evaluating new technologies, as we did in this chapter, it is essential to consider
the value potential of such new technologies relative to existing more conventional sys-
tems. This must the a key factor when deciding whether such future non-conventional
technologies are viable and applicable as part of the signal processing resources in large-
scale distributed radio telescopes. While not enough research has been done to evaluate
to what degree the various discussed technologies are suitable, the value proposition
does show how such evaluation should be done.
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8.6.3 Optimisation proposition
This chapter identifies an interesting new trend. Whereas networking equipment previ-
ously relied on vendor specific firmware, open source alternatives have appeared more
recently. These would allow development of specialised applications to be run in the
network, creating opportunities for optimisations that were previously difficult or im-
possible to implement. In chapter 6 we identified that vendor firmwares limited our
concepts. By reducing our reliance on vendor provided firmware to support our optimi-
sations, this development potentially strengthens the value and impact of the optimisa-
tion proposition.





CHAPTER 9
Conclusions

In this thesis we endeavoured to answer a research question that is both very generic
and highly specific. Architecture and design of a compute or eScience system is a broad
subject that opens opportunities for numerous other questions. At the same time, our
question focuses on a fairly small set of applications in a very defined area of research:
radio astronomy.

9.1 Summary of contributions in this thesis

In Chapter 1 of this thesis we posed the main question that drives the research presented
in this thesis:

• What is the optimal way to design a commodity compute and data transport ar-
chitecture for modern distributed radio telescopes, and how do we define optimal
in this context?

To address this question, and based on extensive architectural design experience,
we proposed four propositions that articulate some of our high-level recommendations.
Combined, these four propositions provide the basic starting point for the design of any
commodity compute system in a distributed radio telescope.

In Chapter 1 we introduced four propositions, summarised as the bounding, co-
design, value and optimisation propositions. These are based on extensive architec-
ture and design experience, both in the LOFAR radio telescope and in the design of
the Square Kilometre Array (SKA) Science Data Processor (SDP). The propositions
drive the direction of the research in this thesis and can also be taken as proposed de-
sign priorities and recommendations to take into account when architecting or designing
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the general purpose compute component in any modern distributed radio telescope, or
indeed large-scale scientific instrument.

To summarise the contributions in this thesis we shall consider each proposition in
turn, and discuss how these were addressed. We also briefly review some of the more
detailed contributions made in the various chapters that are not directly covered by the
propositions.

9.1.1 Proposition 1: the bounding proposition
Before embarking on an architecture or design, bound the problem in terms of require-
ments, such as capacity and functionality, and available resources such as funds, facili-
ties, manpower and interfaces.

At first glance, this proposition may seem obvious. This proposition is also in line
with systems’ engineering best practice. However, scientific instruments are not always
designed and built using proper systems’ engineering methods, and this elementary first
stage is often neglected. It is therefore quite relevant to explicitly articulate this propo-
sition.

In Chapters 3, 4 and 5 we showed how this proposition was used in practice, in
the design of the SKA Science Data Processor and the GPU-based LOFAR correlator
and beamformer respectively. The cases studied in Chapter 2 also show the bounding
proposition in use, even though the chapter itself does not significantly contribute to
this proposition. Especially in the SKA, where construction of designed system is years
away, bounding the problem has proven to be very useful. The progression shown be-
tween Chapters 3 and 4 was achieved in part due to considerable developments of the
bounds used, in particular required resources, computational and other, thanks to ex-
tensive modelling of the high priority science cases. While this indicates that there is
significant value in a continuous revisiting of the defined bounds as the architecture or
design matures, this does not invalidate the proposition itself.

9.1.2 Proposition 2: the co-design proposition
The compute- and data-transport systems supporting modern radio telescopes must not
be developed in isolation.

Although we refer to this as the co-design proposition, our intention is slightly dif-
ferent than the more general use of the term implies. Whereas co-design often refers
to hardware and software being developed side-by-side, here we mean the co-design
of compute- and data-transport systems. However, extensive and hard-learned experi-
ence with the LOFAR telescopes has shown that this is essential, considering the data-
intensive nature of commodity processing in radio telescopes. This does mean a slight
loss in modularity, with the data-transport and compute components essentially being a
monolithic component.

Chapter 5 embodies this proposition well. This chapter describes the design of a
data-intensive component of the LOFAR radio telescope. Considering the streaming
nature of the processing, efficient data-flow through the system, within and between
nodes, was a primary design consideration, while compute resources were an important,
but secondary, consideration. The ultimate success of this project was at least partly due
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to the careful and simultaneous design of the compute- and data-transport systems, both
internal and external, in Cobalt.

The conceptual design of the SKA Science Data Processor (SDP), discussed in chap-
ter 4, is less detailed, but similar to Cobalt, the data-transport system is designed in con-
cert with the compute resources. While the conceptual design of the SKA SDP does not
extend to the node level, the lessons learned in Cobalt apply, and a very similar design
process can be expected to occur during the construction phase of the SKA SDP. This
focus on both data-transport and compute ensures scalability and fitness for purpose of
procured systems. It is natural to assume that any new and less conventional solution
to these problems will require a similar focus. Considering the specialised nature of
many of the non-conventional solutions discussed in chapter 8 it is likely that compute
systems will shift to interconnected collections of heterogeneous resources, making the
data-transport infrastructure even more important.

9.1.3 Proposition 3: the value proposition
A system’s architecture and design should not only optimise for cost, but instead closely
consider the optimal ratio between value and cost.

This proposition is one of the core contributions of this thesis. It tries to articulate
a significant body of experience, exemplified by the partial CV shown on page 183 of
this thesis. While the message in itself is clear, it is generally exceptionally difficult
to quantify cost and, particularly, value of a data-transport and compute system, as we
show in Chapter 2.

Nevertheless, in particular in Chapters 4 and 5, we show that compute and data-
transport systems designed for radio astronomy benefit greatly from a balanced look at
both cost and value. Furthermore, the optimisations discussed in Chapters 6 and 7 must
either decrease cost, improve value in some way, or a combination of both in order to
be considered successful.

9.1.4 Proposition 4: the optimisation proposition
When both the compute- and data-transport systems are considered jointly, optimisa-
tions can be conceived on the boundary between these two that greatly benefit the whole.

This proposition is a consequence of proposition 2. As it turns out, when data-
transport and compute systems are designed together, and the data-transport infrastruc-
ture is not merely seen as a black-box interface between different components, very
interesting avenues for optimisation become available. We have explored two of these
on the boundary between commodity and specialised hardware, in detail in Chapters 6
and 7 of this thesis. A third possible optimisation opportunity, looking at open source
network operating systems and the programmability of these, was identified as future
work. At the time of writing, initial work on this has been started in collaboration with
the University of Amsterdam.



160 Conclusions

9.1.5 Other contributions
The propositions summarised above represent the primary contributions in this thesis.
However, during the course of this work, many other, more detailed, valuable contribu-
tions were made. In this section we will highlight the most important ones.

While we certainly did not invent the concept of value, we did introduce the con-
cepts of Total Value of Ownership, total lifetime computational value and total lifetime
scientific value in sections 2.3 and 2.4. By articulating the explicit desire to maximise
the scientific value of a system over its lifetime, rather than just minimise its total cost of
ownership regardless of the performance impact, we contribute a way to greatly improve
how we evaluate compute- and data-transport systems for radio telescopes.

The progression of the bounds, architecture and design of the Square Kilometre Ar-
ray Science Data Processor is also a key contribution of this thesis. Two chapters were
dedicated to this system, and apart from their support of the propositions, these show the
evolution of a highly scalable, data-driven, hardware architecture for the Science Data
Processor. The hardware design of this system, including the documentation delivered
as part of the preliminary and critical design reviews, should also be considered as sig-
nificant contributions, even though these are not published in journals or proceedings.
We note that scientific publications on this subject are planned.

We also contributed a detailed description of the design and engineering process
and construction of the GPU-based LOFAR correlator and beamformer. This chapter is
unique in that it describes the design, implementation and operational experiences with a
system designed specifically for production use in a radio telescope. We were therefore
able to retrospectively show that the system meets all requirements, not just in synthetic
benchmarks, but on actual production data as well. The design and implementation of
the Cobalt system itself was, of course, also a significant contribution that was essential
to the continuity of the LOFAR telescope.

We contributed two prototypes that demonstrate two different optimisations in the
way that data is received into a general purpose compute system. One moves the control
of data flows from the data plane into the control plane, while the second significantly
reduces the energy overhead associated with receiving large volumes of UDP/IP data by
avoiding parts of the Linux kernel network stack.

Finally we discussed, in some detail, how future technologies may be applied in a
modern radio telescope. Even though this work is not yet published in a peer-reviewed
journal or conference, we aim to write an extended and more detailed version in the near
future.

9.1.6 Research question
Having looked at the contributions in this thesis we now return to our original research
question reproduced at the start of this chapter. We have proposed a number of rec-
ommendations, articulated as propositions, that guide a design process to an optimal
solution. These recommendations can be further summarised as:

1. bound the problem

2. consider data-flow and compute together
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3. consider both cost and value

4. identify and investigate possible optimisations and research opportunities that in-
crease value or decrease cost (or a combination of the two)

This requires a combination of domain specific knowledge and general computer
science experience. In order to consider data-flow and compute, a detailed picture of
the performance profile of the target application must be available. Similarly, significant
knowledge about the system and target applications is needed in order to accurately
estimate the value potential of a system under design.

Essentially we argue that, to ensure optimal utilisation of the procured resources,
these need to be carefully balanced against their cost and their contribution to the scien-
tific value of the total system. In order to achieve this, the system designer needs to be
aware of the application intended to run on the designed system, in particular the way
data flows through the system. Similarly and equally important, the programmer needs
to be aware of the strengths and weaknesses of the target system.

9.2 Hardware components not discussed in this thesis

In this thesis we focused on the compute- and data-transport systems in radio astronomy,
and their co-design opportunities. While we have not discussed data-storage technolo-
gies in any meaningful way, these may also be handled similarly. An excellent example
of this can be found in the preliminary architecture for Square Kilometre Array Science
Data Processor, as described in Chapter 4. Here, three different tiers of storage infras-
tructure, the high-performance buffer and medium- and slow-tiers of science archive
storage, are designed to integrate neatly in the compute- and data-transport systems. In-
deed, the compute-, data-transport, and data-storage subsystems in this architecture are
designed as a single coherent system, although the data-storage system was not judged
to require a very detailed design, since this is likely to be procured as a stand-alone
appliance.

It is likely that the co-design proposition will need to be expanded in the near- to
mid future, with the appearance of near-line non-volatile storage tiers. These gener-
ally fit between volatile main memory in nodes, and slower, non-volatile storage media
either in the node, or in a dedicated storage system accessible via a high-performance
network, and are intended to mitigate the high latency and relatively low performance
of slower tiers of storage. Since these near-line storage technologies are integrated into
the node for performance reasons, the classic boundary between compute- and storage
sub-systems will inevitably blur. Such storage technologies are appearing today, in the
form of Intel’s 3D-Xpoint for instance, and will require a more detailed and integrated
architecture of the data storage systems similar to the one advocated in this thesis for
the compute- and data-transport systems.
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9.3 Future work

The software-defined networking concept introduced in Chapter 6 is the basis for fur-
ther work in that area. In this chapter we investigated the functional availability of fea-
tures required for our application, but this used Gigabit Ethernet networks and did not
extend to more high-performance networks. This work will be extended to more high-
performance networking equipment, 40 and 100 GbE, to more accurately match the
networks probably used in future radio telescopes such as the Square Kilometre Array.
Initial experiments offered no different insights when using such higher performance
equipment, with significant limitations in firmware remaining an issue. Furthermore, it
is likely that the concepts introduced in Chapter 6 can be realised with different tech-
nologies, such as IP Multicast, BGP or P4. An extended paper is planned to investigate
these.

In Chapter 6 we argue that the quality of the software running on the network equip-
ment currently limits the applicability of a Software-defined network in radio astron-
omy. The Open Compute project 1 aims to create a fully open source stack data centre
components, both in hardware and software. As part of this, a stack of open source net-
work operating system components has been developed, including a bootloader (Open
Network Install Environment, ONIE), a full Linux based operating system (Open Net-
working Linux, ONL), and a standardised interface to vendor specific hardware (Switch
Abstraction Interface, SAI). To mitigate the impact that the quality of switch software
has on the applicability of software-defined networking to our application, we intend to
implement our own software to implement this functionality on top of this open source
software stack.

Chapter 8 has not yet been published at a peer-reviewed conference or journal. It
is our intention to extend this chapter into an overview paper that offers an initial as-
sessment of the applicability of various newly developed compute concepts for data-
intensive science. Furthermore, the concepts introduced in this thesis, in particular those
in Chapter 2, combined with the new technologies and architectures that are being de-
veloped to address the demise of Moore’s law scaling, may be the subject of a new
direction of research. The combination of evolutionary and revolutionary developments
in compute and data-transport technology we expect to become available in the next
decade or so offers both interesting challenges an opportunities for research.

9.4 Discussion & conclusions

The work in this thesis is based on extensive experience designing, building and main-
taining IT infrastructure in support of radio telescopes and astrophysics. The proposi-
tions introduced in this thesis are supported by a number of peer-reviewed publications.
Furthermore, many architecture, design and procurement documents for current and
future telescopes take advantage of the same lessons learned. A number of these are
referenced in the Curriculum Vitae chapter that concludes this thesis.

1https://www.opencompute.org/

https://www.opencompute.org/
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In this thesis we propose that the architecture and design of compute- and data-
transport systems should be co-developed. The same is true for the management and
administration of these systems. Whereas conventional high-performance computing
centres and generic data centres generally split the responsibility for network and sys-
tems in separate departments, based on the co-design proposition there is a convincing
argument to be made that this is not an efficient solution in systems supporting a data-
intensive instrument. Since both the network and compute infrastructure rely heavily on
eachother and indeed are highly interdependent, cross-trained staff in a single unified
support department will be a more effective in supporting the instrument. This propo-
sition is based on anecdotal evidence, proof being difficult to obtain without significant
institutional changes, which are difficult without convincing evidence, the beginnings
of which were presented in this thesis.

In this thesis we have articulated and documented extensive design and architecture
experience gained in the development of commodity compute and data-transport sys-
tems for both the LOFAR radio telescope, currently operational, and the Square Kilome-
tre Array, the construction of which is still years away. The recommendations described
herein have proven to be essential when designing such systems to be effectively and
efficiently operated as part of a radio telescope. They also turn out to provide a solid
starting point when evaluating newly developed technologies for the use in such instru-
ments. Such revolutionary systems, or more likely the combination of commodity and
future technologies, will become ever more important to sustain the increase in computa-
tional resources that we need to build more powerful telescopes. The demise of Moore’s
law has made it clear that more diverse and heterogeneous systems will become com-
monplace, dramatically increasing the design space for the compute and data-transport
system architect for radio telescopes. However, the experience documented in this thesis
provides an excellent basis upon which we can base the evaluation of such complex sys-
tems. In all, the future for the design of commodity compute and data-transport systems
is challenging, but this offers not only avenues for interesting research, opportunities for
optimisation with dramatic performance potential are also abound.
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[78] Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André
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