
ExaScale High Performance Computing in the Square
Kilometer Array

P. Chris Broekema†,?
broekema@astron.nl

Rob V. van Nieuwpoort?,†
rob@cs.vu.nl

Henri E. Bal?
bal@cs.vu.nl

†Netherlands Institute for Radio Astronomy (ASTRON)
Postbus 2, 7990 AA, Dwingeloo, The Netherlands

?VU University Amsterdam
De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands

ABSTRACT
Next generation radio telescopes will require tremendous amounts
of compute power. With the current state of the art, the Square Kilo-
meter Array (SKA), currently entering its pre-construction phase,
will require in excess of one ExaFlop/s in order to process and re-
duce the massive amount of data generated by the sensors. The
nature of the processing involved means that conventional high per-
formance computing (HPC) platforms are not ideally suited. Con-
sequently, the SKA project requires active and intensive involve-
ment from both the high performance computing research commu-
nity, as well as industry, in order to make sure a suitable system is
available when the telescope is built. In this paper, we present a
first analysis of the processing required, and a tool that will facili-
tate future analysis and external involvement.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Astronomy

General Terms
Design, Performance, Reliability

Keywords
ExaScale Computing, Square Kilometer Array, High Performance
Computing, Streaming Computing

1. INTRODUCTION
The Square Kilometer Array (SKA) is a next-generation radio

telescope currently entering its pre-construction phase. The central
processor for the SKA will require computational resources well
in excess of what even current top-of-the-line supercomputers can
offer. Additionally, the processing done is quite different from con-
ventional high performance computing applications, in computa-

c©ACM, 2012. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version is published in the proceedings.
AstroHPC’12, June 19, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-1338-4/12/06 ...$10.00.

tional intensity1, in its streaming nature, and in its relative robust-
ness against hardware failures.

In this paper, we present an analysis of SKA central processing
on future supercomputer hardware, for as far as possible consider-
ing the limited information available. We also present an analysis
tool that will allow the accurate and detailed analysis of SKA pro-
cessing on a system level. This is intended to show not only archi-
tectural shortcomings of current or near-future high performance
computing platforms, but also to identify design points that would
make future systems particularly suited for radio astronomy.

This paper is structured as follows. First, we will briefly de-
scribe the Square Kilometer Array. In section 3, the computational
requirements of the first phase of the SKA are identified, followed
by an analysis of radio-astronomical algorithms, as compared to
conventional HPC applications. We then present an analysis of the
HPC roadmaps and identify where these fall short of our require-
ments. In section 6, we present a SKA analysis tool, followed by
our conclusions. We end by briefly discussing future work.

2. THE SQUARE KILOMETER ARRAY
The Square Kilometer Array is a next-generation radio telescope,

with a total collecting area of approximately one square kilometer.
It will operate over a very wide frequency range, from 70 MHz
to 10 GHz, which will require several different receiver types. It
will be built in the southern hemisphere, either in South Africa or
Western Australia. The SKA will be capable of extremely high
sensitivity and angular resolution.

The extremely high sensitivity and angular resolution requires an
array with a very large number of receivers, covering a very large
area. SKA sites are projected to extend up to 3000 km from the
central core and will contain millions of receivers.

The SKA will cover a frequency range from 70 MHz to 10 GHz.
This can’t be covered with a single antenna type, so arrays consist-
ing of two, possibly three, different receptors will be built.

• The low end of the frequency range, from 70 to 450 MHz,
will be covered by low-frequency sparse aperture arrays of
simple dipole antennas (AA-low). Clusters of around 11,200
of these dipole antennas will be grouped into stations of about
180 meters in diameter. It is expected that 250 of these sta-
tions will be built. Each AA-low station will eventually pro-
duce between 10 and 30 Tb/s of data, to be transported to the
central processor, depending on the number of simultaneous

1Computational intensity is defined as the number of floating point
operations per byte of I/O. Normally I/O is considered to be a mem-
ory access, but for the SKA this is often a network read.

beams required. In phase 1 this will be limited to ∼1 Tb/s per
station. In total these stations will generate up to 7.5 Pb/s.

• The mid-frequency range may be covered by a dense aper-
ture array design, using tiles grouped in stations of about 60
meters in diameter (AA-mid). Up to 250 of these stations
may be built. AA-mid stations produce the same amount of
data as AA-low stations, totalling ∼2.5 Pb/s for 250 stations.
The AA-mid concept is part of the Advanced Instrumenta-
tion Program (AIP). Technologies in this program will be as-
sessed in terms of science impact, cost, and technical readi-
ness, and deployed in SKA phase 2 if shown to be feasible
and cost-effective.

• The high end of the frequency range, upward from 500 MHz,
will be covered by relatively small dishes, with a Single Pixel
Feed (SPF). These will be around 15 meters in diameter. A
subset of the dishes may be equipped with a Phased Array
Feed (PAF), or a Wide Band Single Pixel Feed (WBSPF).
These advanced feeds are also part of the Advanced Instru-
mentation Program. Around 3000 dishes will be built. Each
dish produces ∼120 Gb/s, assuming single pixel feeds. PAFs
will produce up 10 times more data, WBSPFs around twice
the amount of a SPF. All dishes together produce ∼360 Tb/s,
if fitted with single pixel feeds.

Remote

D: 20% AA: 0%

Figure 1: The distribution of collecting area for SKA phase 2

The SKA stations will be divided into four regions. Figure 1
shows the four regions of the SKA and the distribution of the col-
lecting area.

• The core will have a diameter of around 1 km, for each of
the receiver types. The dish core and the AA core will be
spatially separated from each other.

• The inner region has a diameter of around 5 km. The core
and inner regions together will contain more that half of the
total collecting area of the SKA.

• A mid region, extending out to 100 km for phase 1, and up to
180 km for phase 2, will contain dishes and pairs of AA-low
and, possibly, AA-mid stations. In each case, they will be
randomly placed within the area, with the density of dishes
and stations falling off towards the outer part of the region.

• The remote region extends from 180 km to 3000 km. This
will comprise five spiral arms, along which dishes, grouped
into stations of around 20, will be located. The separation
of the stations increases towards the outer ends of the spiral
arms.

The data from the receivers are transported, using long haul op-
tical links, to a central processor facility. The aggregate data rate
into the central processor will be in the order of 10 Pb/s, fittingly
described as a data deluge. There is no known way around this
central processing; the correlator requires data from all stations in
an observation. Figure 2 shows a high level overview of the SKA
system.

The central processor can conceptually be divided into the cen-
tral signal processor, handling correlation and beamforming, vis-
ibility processors, responsible for gridding, and image formation,
generating images and calibration solutions. The central processor
takes data from the SKA stations as input, and delivers calibrated
science data as output. The scientific data are stored in the science
data archive, intermediate data are, in principle, not stored. The
data rate out of the SKA central processor is several orders of mag-
nitude smaller than that coming in.

The feature that sets the SKA central processor apart from con-
ventional high performance computing applications, is its very high
input data rate. Since it is unlikely that enough high performance
storage will be available, or affordable, to allow batch processing,
and the system needs to keep up with the input data stream or risk
dropping data, the SKA central processor can be described as a
pseudo real-time streaming processor. Note that there is no hard
real-time deadline, apart from the requirement to keep up with the
input data stream, making the real-time requirements less strict than
in a classic real-time application.

An important consequence of the streaming nature of the SKA
central processor, is the need to dimension the system to be able to
comfortably handle the most demanding application. Since there
is no intermediate storage available, insufficient resources will in-
evitably and immediately lead to data loss if the central processor
is under dimensioned.

3. SKA PHASE ONE REQUIREMENTS
As a risk- and cost-reduction measure, the SKA will be built

in two phases. Phase 1 (often identified as SKA1), scheduled to
start construction in 2016, will consist of two receiver types, low-
frequency sparse aperture arrays and high-frequency dishes, and
have a maximum baseline of around 200 kilometers. The prelim-
inary specification of phase 1 defines 50 sparse aperture array sta-
tions and 250 dishes, although the science analysis may require
more, but smaller, aperture array stations be built. It is likely that
instead up to 250 smaller aperture array stations will be built. The
cumulative data rate of these smaller stations will be similar to the
original 50 bigger stations, but post-processing requirements will
increase considerably.

Although the exact computational requirements of the SKA phase
1 are not well defined yet, it is clear from the preliminary require-
ments[4] that these are well beyond the capabilities of current HPC
systems. A full analysis of the science requirements will be done
in the pre-construction phase, starting in 2012. An early analy-
sis of the current science requirements, based on the SKA phase 1
Design Reference Mission (DRM)[7], showed considerable differ-
ences with the preliminary requirements mentioned earlier[1].

It is of course unrealistic to expect the complete requirements for
the software and computing component for a complex system like
the SKA to be known at such an early stage. In fact, both software

Figure 2: A high level overview of the Square Kilometer Array

engineering experience[12, 18], and experience from the only oper-
ational radio telescope comparable to the phase 1 SKA, LOFAR[2],
show that requirements are likely to be subject to change. Having
said this, the preliminary requirements currently available, give us
a good first order estimate of the compute power needed for phase
1 of the SKA.

Figure 3 shows a schematic overview of the SKA phase 1 central
processor, based on these preliminary requirements. Note that the
minimum compute requirements shown are an absolute minimum.
They assume a computational efficiency of 100%. Furthermore,
recent experience has shown that the assumption that it takes 104

operations to completely process an input sample, may be a serious
underestimate. If we assume a computational efficiency of 10%,
quite reasonable in HPC, and 105 operations per input sample, we
would need to scale the central processor to a peak performance of
approximately 800 PFlop/s. This only covers the visibility proces-
sor and image generation parts of the central processor, it does not
include the correlator and beamformer.

Output from the correlator for SKA phase 1 will be in the or-
der of several terabytes per second. This extremely high data rate
makes the SKA central processor quite unique among high per-
formance computers. Most supercomputers in the Top500 are de-
signed to handle complex simulations, which typically have a very
high computational intensity. If we consider a software based cor-
relator and beamformer, the input data rate increases to around

100 terabytes per second. Although the concept of a highly in-
tegrated software based central processor, including the correlator
and beamformer, is intriguing and we will argue in section 7 that
this may offer significant advantages, in the rest of this paper we
will mostly ignore the beamformer and correlator, and concentrate
on what figure 3 calls the visibility processors and image formation.

4. RADIO-ASTRONOMICAL HPC
When analyzing the computational feasibility of an instrument,

like the SKA, the natural performance figure to look at centers
around the floating point arithmetic performance, usually expressed
as a LINPACK[11] performance figure. These figures form the ba-
sis for the Top500 list of the fastest supercomputers in the world[21].

The LINPACK benchmark is characterized by a large number
of parameters, like matrix sizes, that can be freely chosen to allow
the user to tailor or optimize the benchmark to the hardware being
tested. On the one hand this allows a extensive exploration of the
efficiency space, but it also makes LINPACK a highly unrealistic
benchmark.

The computational performance of the LINPACK benchmark de-
pends strongly on the double precision floating point performance
of matrix-matrix operations, and interconnect latency. Compared
to LINPACK, algorithms in radio astronomy are characterized by
a very low computational intensity, expected to be in the order of
1 floating point operation per byte of I/O, often even less[8]. Data

Figure 3: A schematic overview of the SKA phase 1 central processor

are mostly independent in frequency, which means that low latency
in an interconnect is far less important than high bandwidth.

Figure 4 shows a flow diagram of the calibration and imaging
steps in the SKA. This shows the current state of the art, which may
obviously change. It is beyond the scope of this paper to go into
the details, but it is important to note that, unlike current radio tele-
scopes, data must be calibrated and imaged online, the data rates
involved don’t allow temporarily storing intermediate data prod-
ucts.

Initial sky
model

Calculate residual
image

Converged?Construct model
updateUpdate model

Predict model
visibility

Subtract model
from corrected

visibility

Final sky
model

Major cycle

Minor cycle

Observed
visibility

data

Solve for
calibration

Correct
observed
visibility

Selfcalibration

Flag visibility data

Figure 4: Flow diagram of SKA calibration and imaging

This exposes an interesting challenge. The very high input data
rate demands a streaming processing model, without intermediate
storage of data products. Unfortunately there is no known single-
pass calibration method. Therefore, a very high performance buffer

is required to store intermediate data, while the multi-pass calibra-
tion algorithm converges.

Nearly all computations are done on complex numbers. Fourier
transforms, vector and matrix operations, and complex multiply-
adds play an important role. In contrast to most conventional HPC
applications, we can probably get away with single-precision float-
ing point operations for a lot of our processing. This may signif-
icantly reduce data rates and, assuming appropriate hardware sup-
port, the size of the central processor. The exact ratio of single-
and double-precision processing, as well as an accurate decompo-
sition of the exact operations required and the exact computational
intensity of the various processing steps, will be part of a detailed
investigation in the upcoming pre-construction phase.

While the LINPACK benchmark gives us a reasonable idea of the
performance characteristics of current state of the art supercomput-
ers, it is of limited use for the evaluation of a system for the SKA.

5. HPC ROADMAP ANALYSIS
The most powerful supercomputers in the world, according to

their performance in the LINPACK benchmark, are ranked in the
Top500 list. This list is updated twice per year and goes back to
1993. Plotting the aggregate performance of the Top500 machines
shows a steady increase in available compute power over the last
two decades, mostly consistent with Moore’s law.

A straightforward extrapolation of the past lists shows that a ma-
chine capable of handling the phase 1 central processor require-
ments, should be available by 2018 - 2019. This is illustrated in
figure 5. This only shows the development in compute power, as
measured using the LINPACK benchmark.

In 2008 the ExaScale panel published a report on the expected
developments in high performance computing in the coming dec-
ade[15]. By looking at current, and expected developments in the

Figure 5: Top 500 extrapolation shows ExaScale systems avail-
able by 2018 - 2019

different components of a high performance computer, a projection
was made of a feasible ExaScale system. Although one should
carefully weigh the value of long term predictions like the ones in
this study, they did highlight some disturbing trends.

One of the most obvious developments in HPC is the increase in
overall concurrency. Moore’s law, as interpreted as the doubling of
the number of components per unit of area on a chip every 18-24
months, is expected to continue to hold for the next decade or so,
which means that feature sizes in future processor will continue to
decrease for the foreseeable future. Due to increased leakage power
at small feature sizes, processor clock frequency has leveled off.
Future systems are expected to continue to run at a clock frequency
in the order of one to several Gigahertz.

The power budget available for a single processor socket has
also leveled off. The practical limit for commodity cooling so-
lutions is around 150W per socket. Water-cooling may raise this
limit slightly. In the future we’ll see aggressive and fine grained
power gating shutting down unused parts of a CPU, allowing the
remaining components to dynamically scale in performance to fill
the available thermal budget. It is likely that the available thermal
budget per socket will be insufficient to allow all components in a
processor to run at full power simultaneously.

So the trend is that individual cores tend to not increase in perfor-
mance very much, certainly not sufficiently to follow Moore’s law.
Shrinking feature sizes, however, allow us to add ever-increasing
numbers of cores on a CPU. Additionally, many-core architectures,
like GPUs and special purpose accelerators, can now be integrated
into the CPU. These developments lead to a massive increase in
required application concurrency to efficiently use the available re-
sources. Nevertheless, these developments are, by themselves, not
enough to reach the performance levels shown in figure 5. In order
to bridge that gap, an increase in the total number of processors is
also required, possibly with additional accelerator hardware. Re-
gardless, both relative memory size and bandwidth are unlikely to
keep up.

So ExaScale systems will be characterized by massive paral-
lelism on many levels. Huge numbers of nodes, possibly of various
types, will be connected to a cohesive but highly complex system.
Within a node, and even within a processor, we’ll see various levels
of parallelism. It is probable that processors will be heterogeneous,
consisting of both a smaller number of general purpose, complex,
super-scalar, out-of-order cores, and many, much simpler, cores op-
timized for floating point operations. It is possible that these will be
augmented by a number of special purpose accelerators. The het-
erogeneous nature of these processors makes them relatively hard
to program, but the potential performance and efficiency of such a
system is tremendous.

Conventional HPC applications are often relatively compute in-
tensive; the number of Flops per bit of I/O is very large. SKA
processing, in contrast, contains a significant portion of operations
with very low computational intensity. The streaming nature of the

SKA central processor emphasizes this. Although most HPC ap-
plications will notice the significantly reduced memory bandwidth
per Flop available in future systems, the I/O bound and stream-
ing nature of SKA processing makes this a particularly significant
problem for us.

2009 2011 2018 2009 vs
Jaguar ’K’ computer (projected) 2018

System Rpeak 2 PF 10 PF 1 EF O(1000)
Node Rpeak 125 GF 128 GF 1 - 15 TF O(10 - 100)
Energy 6 MW 10 MW 20 MW O(10)
Energy/Flop 3 nJ/F 1 nJ/F 20 pJ/F -O(100
System memory 0.3 PB 1 PB 32-64 PB O(100)
Memory/Flop 0.6 B/F 0.1 B/F 0.03 B/F -O(10)
Memory bw/node 25 GB/s 64 GB/s 2 - 4 TB/s O(100)
Memory bw/Flop 0.2 B/s/F 0.5 B/s/F 0.002 B/s/F -O(100)
Total concurrency 225,000 548,352 O(109) O(105)
MTTI2 days days hours -O(10)

Table 1: A projected 2018 supercomputer compared to two cur-
rent ones

In table 1 two recent top-of-the-line supercomputers are com-
pared to the projected ExaScale machine as predicted by the Ex-
aScale panel. A number of interesting features have been selected
for comparison. Particular pain points are highlighted in bold face,
the decrease in available memory bandwidth per Flop is especially
worrying. In the next few sections we will investigate the impact of
the various trends shown in this study.

Energy consumption
The ExaScale study used a total power consumption of 20MW as
a design target for an ExaScale machine. They argued that this
allowed some growth beyond that of todays largest systems, but
still not be so high as to preclude it from deployment in anything
other than specialized strategic national defense applications. The
same study also concluded that even the most optimistic projections
with respect to improvements in energy consumption per Flop, still
fall short of this target by several factors.

The scale of the problem becomes clear when we look at the cur-
rent state of the art. IBM’s Blue Gene/Q prototypes are currently
the most energy efficient machines in the Top500, by a significant
margin[6]. These machines offer an efficiency of 2 GFlop/s/W. The
design goal of an ExaScale machine within a 20 MW power enve-
lope requires an efficiency of at least 50 GFlop/s/W.

Figure 6: Energy distribution in an ExaScale system

Figure 6 shows the energy distribution in the most optimistic pro-
jection of a 2018 ExaScale supercomputer. Even in this very opti-
mistic projection, more than half of the energy consumed is needed
for I/O. It is worrying to note, though, that external I/O, i.e. data
coming into or going out of the machine, is not taken into account at
all. The ExaScale panel mainly considered conventional HPC ap-
plications, which are characterized by very little external I/O. The
SKA central processor, in contrast, is characterized by a massive
data stream into the system and a much smaller, but in comparison

2Mean Time To Interrupt

to conventional HPC applications still significant, stream of data
out to the science data archive.

Input/output
The problem of input/output is closely related to that of energy con-
sumption. As was shown in the previous section, a world-class su-
percomputer in the SKA time frame will consume the bulk of its
energy moving bits around. Unfortunately, most HPC roadmaps
limit I/O predictions to memory and interconnect bandwidth, and
they often ignore external data transport.

Figure 7: Energy required for I/O

Figure 7 shows the energy required to transport a word of data
over a given distance[10]. As distance to the CPU increases, the en-
ergy required increases superlinearly. The streaming nature and the
massive input data rate of the SKA central processor mean that the
energy consumed for I/O in the SKA central processor will account
for much more than the 58% shown in figure 6.

Experience with the LOFAR radio telescope has shown that, al-
though a real-time streaming central processor is a feasible and
very flexible proposition[13, 17], significant work is often needed
to modify the system software designed and optimized for conven-
tional HPC applications[9, 16, 22].

Programmability
In the next decade or so we’ll see disruptive changes in the way
compute hardware is designed and built. Massive parallelism, com-
bined with heterogeneous and bandwidth starved architectures, will
have to be handled by all HPC developers, but for the SKA the
problem is amplified.

The streaming nature of the SKA central processor, as well as
the tremendous input data rate, make it unique in high performance
computing. This may mean that the programming models that will
be developed to handle the features of future supercomputers are
not suitable for our application. To make sure we can efficiently
use future hardware, we may need to develop these programming
models ourselves.

Current radio telescopes use a significant number of legacy codes
unsuitable for deployment on an ExaScale system. Some of these
handle relatively simple things, like coordinate transformations and
so on. These, casacore[3] and wcslib[5] are some examples, will
have to be rewritten for future systems. This is time consuming, but
the algorithms are well known and this should not be a significant
risk. Others deal with processing the massive data stream from
the correlator and beamformer. For these codes, merely porting
existing codes used by the pathfinder and precursor instruments is
not enough. Significant algorithm development is needed as well,
to make sure it can handle the data volumes, achieve the science

requirements, and efficiently use future ExaScale systems. This
must be considered a significant risk.

Reliability
In the next few years we’ll also see a tremendous increase in the
number of components in a supercomputer, as illustrated by the
total concurrency row in table 1. Since reliability per component
is not expected to increase significantly, it is inevitable that total
reliability of the system will decrease. In fact, one can say that the
system must be considered somewhat broken all of the time.

In contrast to conventional HPC applications, SKA processing is
relatively robust against failures. Within reason, the data are em-
barrassingly parallel, and loss of a small portion of data is often
quite acceptable. As long as the system software is capable of de-
tecting and reporting failed nodes, this reduced system reliability
should not present a serious problem.

6. HPC INVOLVEMENT
The SKA community has been remarkably successful in attract-

ing interest in the project, both from industry, and from the HPC
research community. Since the SKA community itself lacks much
of the experience and, frankly, critical mass required to handle the
disruptive technology changes expected to occur in the next couple
of years, it is essential to leverage this generated interest and get an
increased involvement of industry and academia in the project.

One way of doing this is demonstrated by Lawrence Livermore
National Lab. For their new supercomputer, Sequoia, they’ve pub-
lished a set of sixteen representative benchmark codes[19]. These
codes give a useful insight into the scalability and efficiency prob-
lems these applications face, but the obvious goal is of course to
enable industry to optimize their architectures, software, and pro-
gramming models to perform optimally for these applications.

A SKA analysis tool
ASTRON, VU University Amsterdam, and Delft University of Tech-
nology have in the past few years concentrated a lot of research on
various computational kernels on many-core architectures. These
were optimized for the specific architecture targeted and showed in
great detail what the bottlenecks for that particular platform are[14].
This work will continue for future architectures.

Additionally, we’ve now produced the beginnings of a frame-
work and a small set of reference codes that are far more generic,
but should show in detail what operations are required in SKA
processing. These are written for clarity, and show not only the
computational processing, but, more importantly, also the data-flow
through the system. It is possible, in theory, to model the entire life
cycle of the data processing, from instrument to final image, using
this framework.

The first version, presented in this paper, will concentrate on the
framework, providing datastructures and streaming datacommuni-
cation primitives. A small set of computational codes are provided
and more will be added as they become available[20].

The main goal of this effort is to provide the broader community
with a representative and coherent set of sample codes that allow
them a more detailed insight into the challenges that the SKA faces.

We present a first set of codes that are heavily based on the op-
erational and proven framework of the LOFAR real-time central
processor. All platform specific code was removed, as was a lot
of the LOFAR infrastructure not needed for a simple analysis tool.
Datastructures and sample codes are provided in the initial version,
as well as primitives for a small number of communication inter-
faces. There are no external dependencies, apart from some POSIX
headers, some Boost libraries, and, optionally, MPI.

Initially we will provide a number of simple algorithms, a cor-
relator, a beamformer and a polyphase filter, characterized by their
streaming nature and very low computational intensity. When they
become available, more complex algorithms, image formation, grid-
ding and dedispersion for instance, will be added. All of these
will be reference implementations, written for clarity not for per-
formance.

7. CONCLUSIONS
It is clear that the central processor of the SKA is quite different

from conventional HPC applications. Even though the LINPACK
benchmark is already of limited value for normal HPC applications,
its emphasis on low-latency interconnects and high computational
intensity matrix-matrix operations means LINPACK figures are of-
ten misleading for our application.

This highlights the underlying problem: due to the markedly dif-
ferent properties of normal HPC applications versus radio-astro-
nomical reductions, conventional future HPC installations are ill
suited for SKA processing. How this can be improved should be
part of a detailed study in the oncoming SKA pre-construction
phase.

The very high data rates involved in the central processor are
a major concern, especially considering the fact that moving bits
around is going to account for the bulk of the energy consumed
in a future supercomputer. Any design or technique that limits the
amount of data movement should be seriously considered. This
also means that optimization of code should no longer focus on
maximum utilization of the computational resources, but instead
try to minimize energy consumption. In practice this will often
mean minimizing I/O.

A highly integrated central processor, combining correlator, beam-
former and science data processing in a single integrated solution
that avoids highly inefficient switches in favor of integrated back-
plane communication, may well be more energy efficient than sep-
arate components. It is also important to realize that, although the
efficiency in Joules/Op of custom hardware, FPGAs for instance, is
still, and will probably continue to be, unbeatable for simple opera-
tions, like the correlator or beamformer, this is offset by power hun-
gry data transport between the dedicated hardware solution and the
general purpose science data processor. In other words, Joules/Op
is really not a suitable metric to evaluate the efficiency of a sys-
tem, since this ignores data transport. Instead a measure for the
energy consumed by the entire central processor for a unit of scien-
tific data, Joules per generated image pixel for instance, should be
adopted.

Streaming processing support, both in hardware, and in software,
is, and will continue to be, limited. Unfortunately, the SKA is quite
unique in HPC in its requirement for very high input data rate and
streaming processing of data. This means that we cannot expect
any off the shelf solution to be immediately suited for SKA central
processing. LOFAR experience has shown that significant work,
especially streaming I/O related, is often needed to optimize an oth-
erwise excellent HPC platform for radio astronomy.

The unique nature of our problem should be leveraged as an in-
teresting case study for industry and research alike. Getting a chal-
lenging streaming application to work efficiently on a platform re-
quires all components involved, hardware, operating system, com-
munication middleware, and software, to work together in the most
optimal way possible. In other words, if a streaming pseudo real-
time application, like the SKA central processor, works efficiently
on a platform, most other more conventional applications will also
benefit from the optimizations required to get to that point.

By publishing a relatively simple, but representative set of codes,

we give researchers and industry representatives the opportunity to
get a more accurate idea of the processing challenges faced by the
SKA. This will hopefully help turn the significant academic and
industry interest generated by the project into useful research.

8. FUTURE WORK
With the analysis framework introduced in this paper we intend

to start an in depth analysis of the computational requirements of
the SKA. We will show, by optimizing parts of the system on a
modern and challenging platform, what architectural choices work
well for our application, and where that platform can be improved.
This will result in a more generic set of design points for a system
optimized for SKA like operations.

This is meant to expose architectural design points particular to
the SKA. It is hoped that, with a detailed and comprehensive anal-
ysis of the SKA system, industry can provide an architecture par-
ticularly suited for our application.

Acknowledgments
Tim Cornwell (CSIRO/CASS) provided the flow diagram showing
imaging and calibration (figure 4). Figures 2 and 1 were kindly
provided by Peter Dewdney of the SKA Project Office (SPO). This
work is supported by the SKA-NN grant from the EFRO/Koers
Noord programme from Samenwerkingsverband Noord-Nederland,
and the ASTRON / IBM Dome project, funded by the province
Drenthe and the Dutch Ministry of EL&I.

9. REFERENCES
[1] P. Alexander et al. Analysis of requirements derived from the

DRM, August 2011. SKA Software and Computing CoDR.
[2] H.R. Butcher. LOFAR: First of a New Generation of Radio

Telescopes. Proceedings of the SPIE, 5489:537–544,
October 2004.

[3] casacore. http://code.google.com/p/casacore/.
[4] P. Dewdney et al. SKA phase 1: Preliminary system

description, 2010.
[5] FITS world coordinate systems.

http://www.atnf.csiro.au/people/mcalabre/WCS/.
[6] The Green500 list. http://www.green500.org.
[7] SKA Science Working Group. The square kilometre array

design reference mission: SKA phase 1 v. 2.0, September
2011.

[8] Ben Humphreys and Chris Broekema. HPC technology
roadmap. Technical report, SPDO, December 2011. SKA
Software and Computing CoDR.

[9] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete
Beckman. ZOID: I/O-Forwarding Infrastructure for
Petascale Architectures. In ACM Symposium on Principles
and Practice of Parallel Programming (PPoPP’08), pages
153–162, Salt Lake City, UT, February 2008.

[10] Peter M. Kogge. Energy at exaflops. Supercomputing, 2009.
The ExaScale Panel.

[11] The LINPACK benchmark.
http://www.netlib.org/benchmark/hpl/.

[12] Steve McConnell. Code Complete, Second Edition.
Microsoft Press, Redmond, WA, USA, 2004.

[13] Jan David Mol and John W. Romein. The LOFAR Beam
Former: Implementation and Performance Analysis. In
EuroPar’11, volume LNCS 6853, Part II, pages 328–339,
Bordeaux, France, August 2011.

[14] R. V. van Nieuwpoort and J. W. Romein. Correlating Radio
Astronomy Signals with Many-Core Hardware. International
Journal of Parallel Processing, 1(39):88–114, February
2011.

[15] Peter M. Kogge et al. ExaScale Computing Study:
Technology Challenges in Achieving ExaScale Systems,
September 2008.

[16] John W. Romein. FCNP: Fast I/O on the Blue Gene/P. In
Parallel and Distributed Processing Techniques and
Applications (PDPTA’09), volume 1, pages 225–231, Las
Vegas, NV, July 2009.

[17] John W. Romein, P. Chris Broekema, Jan David Mol, and
Rob V. van Nieuwpoort. The LOFAR Correlator:
Implementation and Performance Analysis. In ACM
Symposium on Principles and Practice of Parallel

Programming (PPoPP’10), pages 169–178, Bangalore,
India, January 2010.

[18] Winston Royce. Managing the development of large software
systems. volume 26 of WESCON. IEEE, August 1970.

[19] ASC Sequoia Benchmark Codes.
http://asc.llnl.gov/sequoia/benchmarks/.

[20] A SKA analysis tool. http://www.exaska.org.
[21] The Top500 list. http://www.top500.org.
[22] Kazutomo Yoshii, Kamil Iskra, Harish Naik, Pete Beckman,

and P. Chris Broekema. Performance and Scalability
Evaluation of ’Big Memory’ on Blue Gene Linux.
International Journal of High Performance Computing
Applications, 25:148–160, May 2011. first published online
on May 12, 2010.

