
Energy-Efficient Data Transfers in Radio Astronomy with Software

UDP RDMA∗

Przemyslaw Lenkiewicz
IBM Research - Netherlands

lenkiewicz@nl.ibm.com

P. Chris Broekema
ASTRON –

Netherlands Institute for Radio Astronomy
broekema@astron.nl

Bernard Metzler
IBM Research - Zurich
bmt@zurich.ibm.com

March 23, 2017

Abstract

Modern radio astronomy relies on very large amounts
of data that need to be transferred between vari-
ous parts of astronomical instruments, over distances
that are often in the range of tens or hundreds of
kilometres. The Square Kilometre Array (SKA) will
be the world’s largest radio telescope, data rates be-
tween its components will exceed Terabits per second.
This will impose a huge challenge on its data trans-
port system, especially with regard to power con-
sumption. High-speed data transfers using modern
off-the-shelf hardware may impose a significant load
on the receiving system with respect to CPU and
DRAM usage. The SKA has a strict energy budget
which demands a new, custom-designed data trans-
port solution. In this paper we present SoftiWARP
UDP, an unreliable datagram-based Remote Direct
Memory Access (RDMA) protocol, which can sig-
nificantly increase the energy-efficiency of high-speed
data transfers for radio astronomy. We have imple-
mented a fully functional software prototype of such
a protocol, supporting RDMA Read and Write oper-
ations and zero-copy capabilities. We present mea-

∗Preprint submitted to Future Generation Computer
Systems

surements of power consumption and achieved band-
width and investigate the behaviour of all examined
protocols when subjected to packet loss.

1 Introduction

Modern radio telescopes, such as the LOw Frequency
ARray (LOFAR) [1] and the upcoming Square Kilo-
metre Array (SKA)[2] are in essence large-scale dis-
tributed sensor networks, characterised by large num-
bers of receivers producing staggering amounts of
data. This data is often generated by custom hard-
ware in remote areas, while processing it into us-
able science data is done in data centres in nearby
cities. Receiving and processing these streams is
a computationally intensive task that may consume
considerable amounts of energy. A current state-of-
the-art example is LOFAR: 54 antenna stations pro-
duce around 250 Gb/s of sensor data in total, to be
transported over 65 km to the central processor. The
Square Kilometre Array (SKA) will produce much
more data, to be transported over much longer dis-
tances. This data stream, about 3 Tb/s per telescope,
is to be transported from the Western Australian
desert to Perth, and from the Karoo desert to Cape
Town, both several hundred kilometres away.

1

ar
X

iv
:1

70
3.

07
62

6v
1

 [
cs

.N
I]

 2
2

M
ar

 2
01

7

Whereas the available compute capacity in current
telescopes is often limited by available capital, in the
SKA it will likely be limited by available energy. Ex-
perience with the LOFAR radio telescope has shown
that receiving large volumes of data may consume
significant compute resources [3, 4]. These consumed
resources cannot contribute directly to the science
result. It is therefore useful to investigate ways to
minimize the resources, and energy, required to re-
ceive streaming radio astronomical data. Reducing
the data transfer protocol overhead allows more of the
precious resources to be dedicated to scientific pro-
cessing. More energy-efficient handling of incoming
data can be directly translated into additional science
output within the limited available energy budget.

Typical implementations of the network protocol
stack such as the Linux* IP stack are designed with
robustness and security in mind. Strict separation
between user and system resources is maintained.
Received data is copied several times and will trig-
ger several interrupts and context switches before
the user application gains access to it. In the IBM*
Blue Gene/P supercomputer a different bottleneck,
namely software handling of Translation Lookaside
Buffer (TLB) misses, was mitigated by bypassing
conventional kernel processing [5]. This was used
to significantly decrease compute resources consumed
while receiving LOFAR data. In this paper we pro-
pose a similar approach aimed at the Square Kilo-
metre Array. The Linux IP stack requires significant
resources, in particular while receiving large volumes
of sensor data. We propose to bypass the host operat-
ing system and place data directly into user memory.
While this also bypasses several of the security fea-
tures that are essential in a typical network stack,
in a tightly controlled and private network, such as
found in a scientific instrument, these are less cru-
cial. We expect a reduction in resource consumption
and therefore a reduction of consumed energy. Since
the SKA Science Data Processor is expected to be
bound by very tight budgets, in particular in avail-
able energy, reducing the computational cost of re-
ceiving data would allow for more science, improving
the scientific efficiency of the instrument.

Remote Direct Memory Access (RDMA) technol-
ogy has been essential in high-performance network-

ing to resolve similar issues, namely to allow higher
bandwidth, lower latencies and lower CPU utiliza-
tion. RDMA-capable network interface controllers
(RNICs) provide this by moving data directly from
the user space memory of one machine to that of an-
other, without involving either of the host operating
systems. The application layer is involved only on
the side where the request is issued and it can ac-
cess the contents of memory buffers on a different
host thanks to memory pre-registration. The RDMA
technology is a very good example of how the data
movement process can be optimized for a specific sce-
nario, helping to utilize the full capabilities of the
hardware. However, the currently-available RDMA
solutions lack some of the features that are necessary
for a scenario such as the SKA. In particular, the
target scenario requires a more efficient handling of
the expected very high bandwidth-delay product of
the data transfer channel, and imposes application
specific requirements on time sensitive, partial data
transfer reliability [6].

In this paper we address the data transport chal-
lenges for modern radio astronomy instruments. We
introduce a possible solution that measurably reduces
the consumption of CPU resources and energy as-
sociated with that data transport. In particular,
we design and implement an efficient communication
protocol for transferring high rates of astronomical
data over long distances with the goal of being more
energy-efficient at the receiving end.

The main contributions of this paper are:

1. we design and prototype in software a partially
reliable, RDMA-based transport protocol suit-
able for modern radio astronomy applications;

2. we present experiments with results showing
that the energy-efficiency of the prototyped
transport stack is improved compared to stan-
dard UDP data transfer;

3. we argue that further, more dramatic improve-
ments in efficiency are possible when support for
this protocol is implemented in hardware.

2

2 The Square Kilometre Array

The Square Kilometre Array (SKA) is a new-
generation radio telescope which is currently being
designed by an international science and engineer-
ing team. Construction is expected to commence in
2019 and the first phase is expected to become oper-
ational from 2022. SKA phase 1 (SKA1) will consist
of two instruments: SKA1-Low, located in Western
Australia and SKA1-Mid in South Africa [7]. SKA1-
Low is an aperture array instrument consisting of 512
stations, each with 256 dual-polarised antennas, op-
erating between 50 and 350 MHz. The stations will
be 35 m in diameter and placed, at most, 65 km apart.
The antenna signals are coherently summed per sta-
tion into a station beam. SKA1-Mid will consist of
133 dishes, with an additional 64 MeerKAT [8] dishes
to be integrated into the SKA1 instrument, each with
a diameter of 15 m (13.5 m for the MeerKAT dishes),
capable of receiving signals between 350 MHz and
14 GHz. The processing of data produced in SKA1-
Low and SKA1-Mid is similar and therefore we will
not distinguish between them in this paper.

A simplified diagram depicting the SKA data flow
is presented in Fig. 1. Data from the receivers is
transported to the Central Signal Processor (CSP),
located in a radio frequency-shielded building at the
centre of the telescope. Here, data from all receiver
or station pairs are combined into visibilities by the
CSP correlator. The resulting data is transported
to the Science Data Processor (SDP), one for each
instrument, located in Perth and Cape Town, sev-
eral hundreds of kilometres away. Each of the SDP
instantiations receives a continuous data stream of
about 3 Tb per second.

The SDP produces science-ready calibrated data
products for analysis by the radio astronomer, a task
that is highly data intensive and is expected to re-
quire compute resources in the 100 PetaFlop range.
Data from the SDP are distributed to Regional Sci-
ence Centres for further analysis and dissemination.

Whereas the central processors in current tele-
scopes are generally limited by available capital bud-
get, it is expected that the SKA SDP will be limited
by available energy. Considering this strict budget,
improving the energy-efficiency of secondary tasks

Central Signal Processor
Western Australia (AUS) /

Karoo desert (SA)

Science Data Processor
Perth (AUS) /

Cape Town (SA)

~3 Tbps UDP/IP

 ~700km

Regional
Science
Centres

Figure 1: Simplified data transport chart in the SKA,
leading from the SKA stations to the Central Signal
Processor and the Science Data Processor.

not directly related to the science output can have
significant indirect impact on the scientific efficiency
of the SKA SDP. In Section 1 we cite previous work
that showed that receiving large volumes of instru-
ment data requires significant compute resources.
These consumed resources, and this fraction of the
energy budget, do not directly contribute to the sci-
entific output of the SDP. By avoiding a well known
system bottleneck: the Linux IP stack and the asso-
ciated kernel overhead, we reduce the energy required
to receive streaming data typical in radio astronomy.
As a direct consequence, more of the limited energy
budget is available for scientific computing, leading
to increased scientific output of the SKA SDP within
the energy budget.

Considering the large distances and volumes of
data, it is not feasible to use a reliable data trans-
port protocol for the data transport between CSP
and SDP. This would require constant buffering of
the transmitted packets at the sending side until con-
firmations from the receiving side arrive. In a highly
optimized real-time environment, such as the CSP
correlator system, this would incur very significant
cost and performance overheads. The chosen trans-
mission protocol for this data stream is therefore un-
reliable, based on UDP/IP over Ethernet, with far
lower sender-side overheads. At this point the trans-
ported data is highly redundant. Loss of a fraction of
this data will result in reduced signal-to-noise ratio
in the end-product, but this is, within reason, accept-
able.

The specific requirements for this particular SKA
data transport component can be summarised as fol-

3

lows:

• very high data rates, several Tb/s

• strictly uni-directional traffic

• prioritizing bandwidth over latency

• desire for very high energy-efficiency

• full reliability is not crucial, some data loss is
tolerable

In the remainder of this paper we investigate how
an existing industry standard RDMA implementa-
tion can be modified in such a way that it can be used
to transport SKA specific data streams. By avoiding
a known bottleneck we expect to save a measurable
amount of computational resources and energy. This
can immediately be translated into increased scien-
tific performance for the same investment.

3 RDMA, iWARP and Softi-
WARP

Receiving multiple high-bandwidth UDP/IP data
streams requires significant CPU resources. Since
CPU cycles can be translated into consumed energy,
it can be assumed that a more efficient way to re-
ceive large data streams will consume less energy. In
addition, compute resources spent on receiving data
cannot be utilised for data reduction or processing.

Implemented as an operating system service, the
Linux network I/O stack was designed with the main
focus on robustness and security while maintaining
good performance. Applications access network ser-
vices via the socket API. To achieve separation and
protection, all communication data is copied between
application buffers (user space memory) and operat-
ing system (kernel) memory within the socket layer.
On the transmission path, after copying data into the
kernel, network protocol output processing packetises
the data, stores it for potential retransmission and
informs the network adapter to fetch the packets for
wire transmission. In the network packet input path,
data are first moved from the network card into ker-
nel memory and an interrupt is issued, which handles

network protocol processing within the kernel. As a
result of protocol processing, kernel data buffers con-
taining the received data are queued to the socket
receive queue for application retrieval. Within a sys-
tem call, the application eventually copies those data
from kernel memory to application receive buffers,
which typically involves waking up the application
thread waiting for data reception. Both in the send-
ing and receiving path, traversing the Linux net-
working stack incurs non-negligible overheads (inter-
rupt handling, context switches, network protocol
processing, data copy operations), which degrades
application-available CPU processing power, while
limiting achievable communication bandwidth and
adding to end-to-end communication latency. Mov-
ing the data directly between the network device and
application buffer would avoid such overheads, but
if not done properly, would violate the data protec-
tion and separation principles of the operating sys-
tem. However, in a tightly controlled and private
environment, such as in a scientific instrument, these
limitations might be acceptable.

In the past decade the Remote Direct Memory Ac-
cess (RDMA) technology has been gaining more and
more relevance in the field of high-speed communica-
tion. Its development was driven by the need for high
throughput and low latency networking, especially in
High Performance Computing. RDMA provides this
by moving data directly from the user space memory
of one machine to that of another, without involv-
ing the host operating system and minimising host
CPU usage. The application layer registers memory
buffers with the local RDMA-capable network inter-
face controller (RNIC) for remote write or read ac-
cess. Under the control of local and remote RNIC,
RDMA write operations transfer data from a local
buffer to a tagged remote buffer that was previously
signaled by the peer, whereas the RDMA read oper-
ation transfers data from a tagged remote buffer to a
tagged local buffer. The application layer is involved
only on the side where the request is issued. Any
application buffer used as a source or target for an
RDMA operation must be pre-registered with the lo-
cal RNIC device, and is typically pinned into physical
host memory. This allows the RDMA device to access
the buffer in physical memory without further OS in-

4

tervention. To allow overlapping communication and
computation, RDMA offers an asynchronous commu-
nication interface. RDMA operations are posted as
Work Requests (WRs) to a communication endpoint
and are asynchronously processed by the RDMA de-
vice. Work completions are signalled and retrieved
asynchronously as well.

RDMA is provided through several network tech-
nologies, including Myrinet [9], Infiniband [10],
RDMA over Converged Ethernet (RoCE) [11, 12] and
iWARP [13, 14]. The functionality and performance
of these standards has been evaluated and compared
in various studies [15, 16]. Well-known programming
interfaces, like the Message Passing Interface, may be
used in order to access the RDMA functionality on
different hardware [17].

Both RoCE and iWARP are deployed over Eth-
ernet, which makes them very interesting candidates
for the SKA data transport service. RoCE defines the
transmission of InfiniBand packets directly over Eth-
ernet, which limits its scope to the Ethernet broad-
cast domain and thus leaves it non-routable. To solve
that issue, a recent protocol extension (RoCEv2) puts
it on top of the UDP/IP protocols. On the other
hand, iWARP defines RDMA operations on top of
TCP/IP networks, giving it the advantage of be-
ing compatible with the existing Internet infrastruc-
ture. Unfortunately, both RoCE and iWARP rely
on the implementation of a rather complex protocol
state machine (TCP or InfiniBand) meant to provide
a level of data transmission reliability which is not
needed and even obstructive for the intended use:
data to be transmitted have a limited relevance in
time – in case of partial data loss the protocol should
favour the transmission of new data over the retrans-
mission of lost fragments. Lost data fragments shall
result in just dropping the entire affected application
level message at RDMA protocol level, while keeping
the end-to-end connection intact.

In our work towards an energy-efficient protocol for
modern radio astronomy we have chosen the iWARP
standard as the baseline, but extended it with an un-
reliable service. This was achieved by replacing the
TCP protocol with UDP and modifying the seman-
tics of the RDMA application interface.

3.1 Implementation of iWARP in
software

Although the full range of advantages of RDMA is
only available through hardware support for iWARP
(in order to offload I/O and protocol processing from
the CPU), a software implementation can also be
beneficial. iWARP is still a relatively young tech-
nology and therefore it is useful to be able to rely
on a software solution for testing and development
purposes. Furthermore, the software version can
be introduced in the less stressed parts of the in-
frastructure, whereas the more utilised parts would
be equipped with iWARP-capable NICs – provided
that the software implementation can operate in such
a mixed scenario. Thanks to the RDMA seman-
tics and the asynchronous API, even a software im-
plementation can provide benefits such as a zero-
copy data transmit path and less application inter-
action/scheduling, which can lead to increased per-
formance and lowered CPU load and power consump-
tion. Software iWARP can also be used for migrating
existing applications to the RDMA interface without
the need for RDMA hardware. Finally, it can ease
the development of new, experimental extensions to
the RDMA stack without hardware prototyping. The
SKA scenario is a good example of such a case, as
we want to experiment with an implementation of
iWARP that is tailored specifically for our needs.

The idea to implement the iWARP protocol fully
in software has already been explored and there are
solutions available, such as the Software iWARP
implementation by the Ohio Supercomputing cen-
tre [18],[19] or the SoftiWARP (SIW) [20] implemen-
tation by IBM Research.

It is important to note that a software implemen-
tation of the iWARP protocol will most likely not
guarantee a power efficiency to meet the energy bud-
get requirements of the SKA. However, this choice
is sufficient for experiments on the points relevant
for the scientific instrument, namely CPU utilization,
power consumption and behaviour under packet loss.
The final solution, one that can be incorporated in
the design of SKA, should rely on hardware support.
This work should of course be seen as a step towards
such a solution, as all the created code will be made

5

available in a public repository.

3.2 SoftiWARP

The work presented in this paper is based on the
SoftiWARP open source software implementation of
the iWARP protocol suite, developed at IBM Re-
search - Zurich and available from GitHub1. Soft-
iWARP comprises two main building blocks: a ker-
nel module, which implements the iWARP protocols
on top of TCP kernel sockets, and a user level li-
brary. SoftiWARP integrates with the industry stan-
dard OpenFabrics2 RDMA host stack and thus ex-
ports the OpenFabrics RDMA API to both user space
and kernel space applications. Due to close integra-
tion with the Linux kernel socket layer, SoftiWARP
allows for efficient data transfer operations. On the
sending side, it supports zero copy data transfers out
of application buffers. On the receiving side, the im-
plementation makes use of target buffer address in-
formation available with the RDMA protocol head-
ers: the packet payload is directly copied from their
in-kernel representation (sk buff) to the final appli-
cation buffer without scheduling the receiving appli-
cation. Since the implementation conforms to the
iWARP protocol specification, it is wire compatible
with any peer network adapter (RNIC) implementing
iWARP in hardware.

3.3 Implementing an unreliable con-
nected SoftiWARP service

In order to fulfil the requirements of the SKA we
have defined and implemented a new unreliable, con-
nection oriented RDMA transport protocol based on
SoftiWARP. Here, communication between hosts is
implemented over UDP kernel sockets instead of the
reliable, connection-oriented TCP. The differences in
using TCP and UDP for long-distance data transfers
is a well-studied and documented matter. As we have
described before, the reliability characteristic of TCP
data transfers can result in a set of undesirable fea-
tures. Known problems includee.g. a poor utilization

1https://github.com/zrlio/softiwarp
2https://www.openfabrics.org

of network capacity when using TCP in long-distance
transfers [21], the need to use multiple streams in
high-speed, long-distance network paths [22], or the
difficulty of management of the used buffer size to
assure optimized delivery [23]. To overcome some of
these issues, the use of UDP in long-distance, high-
speed data transfers has been proposed [24, 25].

In the work described in this article we are im-
plementing a first connection oriented RDMA proto-
col which incorporates an unreliable data transport
layer. We are able to perform RDMA Write and Read
operations over this unreliable transport service. In
SoftiWARP UDP the unreliable connection is used
both for the connection management operations, as
well as the data transfer. After connection setup, the
application data transfer does not enforce reliability,
but is implemented in an unreliable, message-oriented
manner: the sender segments the RDMA message
into a set of UDP datagrams, which are reassem-
bled on the receiver side into the original message
and, if completely received, delivered to the applica-
tion. Messages which remain incomplete due to UDP
packet loss are silently dropped at the receiver.

To retain the efficiency of the original implemen-
tation, any inbound, in-sequence data is still directly
placed into the application target buffer without in-
termediate queueing. At API level, error handling
has been implemented as simply as possible: if a
message remains incomplete due to data loss or cor-
ruption, the content of the target buffer remains un-
defined. If the lost message belongs to an RDMA
Send/Receive operation, the current Receive opera-
tion remains incomplete and the receive buffer gets
re-used for placing the next inbound RDMA Send.
Corrupted RDMA Write messages just leave the ap-
plication buffer in an undefined state. While origi-
nally not defined for the iWARP protocol, an ’RDMA
Write with Immediate Data’ operation might further
improve the handling of unreliable RDMA Writes
at the target side: only if the RDMA Write oper-
ation completes successfully, is the ’Immediate Data’
delivered to the application indicating the complete
placement of a new RDMA Write. These data could
carry additional application level information such
as a message sequence number. Only InfiniBand
and ROCE currently define these optional ’Immedi-

6

ate Data’ semantics for RDMA Writes. Therefore, it
is currently up to the application to detect corrupted
data placed via RDMA Writes.

Unreliable RDMA Read operations are currently
supported at an experimental level only. First of all,
this operation is not required for the SKA use case:
data streaming is strictly uni-directional and only
dictated by the sender delivering radio-astronomic
data to a data processing entity. Secondly, support-
ing unreliable RDMA Reads requires a further ex-
tension of the protocol state machine at the RDMA
Read initiator side, since it must detect permanently
lost RDMA Read Request/Response pairs. A timer
based detection of message loss appears to be a viable
solution to the problem, but is currently not imple-
mented.

The extended SoftiWARP implementation runs on
both UDP and TCP and allows the selection of reli-
able connection (RC) or unreliable connection (UC)
services on a per connection basis. For the UC ser-
vice, the client side must first create a connection
endpoint with an appropriate OpenFabrics service at-
tribute, namely IBV QPT UC, which represents an Un-
reliable Connection Queue Pair. On the server side
a listener endpoint for the same service type must
exist. If the client connects its endpoint with the lis-
tener, a new server side endpoint will result, which is
associated with the connecting client endpoint. After
connection setup, both sides can use the new RDMA
association for unreliable data transfer operations.

4 Experiments

In this section we present in-depth tests of Soft-
iWARP UDP and analyse how a software imple-
mentation of the iWARP standard is able to per-
form in terms of achieved bandwidth and power con-
sumption in comparison to standard TCP and UDP
sockets. Our test platform comprises two servers
equipped with Intel* Xeon E3-1240 v3 CPUs run-
ning at 3.40 GHz, 16 GB RAM and Chelsio T5-580
40 Gb RDMA-capable Ethernet cards. The machines
are interconnected with a direct connection using a
QSFP+ cable. The tests have been performed with:

• The Netperf3 benchmark tool with additional
tests implemented which carry traffic over
RDMA protocols, both over TCP and UDP,

• The LOFAR telescope traffic generator, which
creates data packets at rates that correspond to
that of a LOFAR telescope station. TCP and
UDP sockets as well as TCP and UDP iWARP
are supported for data transport.

We use two measurement points in our experiments
to precisely assess the energy consumption of the data
transfers. Using the RAPL Technology [26] the val-
ues from the Intel processor’s registers can be read
and the power consumption of the CPU and DRAM
can be estimated in a very accurate way. We use
the Performance Application Programming Interface
(PAPI) library4 and the Likwid tool5 to read the
power meters. We have also constructed a custom-
made power meter based on an Arduino board and
voltage sensors attached to the PCI-Express slot. Us-
ing this device we can measure the power consump-
tion of the NIC with an accuracy of 1/100 Watt and
1 millisecond sampling rate.

4.1 Power consumption of the Chelsio
T5

The power consumption of the Chelsio T5 NIC has
been measured using the power meter mentioned in
the previous section, under numerous different test
scenarios. The results of these tests are shown in
Fig. 2 in a consecutive manner. The blue line presents
the trace of power consumption of the Chelsio T5
NIC. The value of 9 W shows the idle state of the
NIC and each peak of around 13.5 W represents one
test being carried out. Peaks 1 to 6 represent Net-
perf tests over different transport protocols in the
following order: SoftiWARP TCP, sending side; Soft-
iWARP UDP, receiving side; TCP sockets, sending
side; TCP sockets, receiving side; Hardware iWARP,
sending side; Hardware iWARP, receiving side. Tests
7 and 8 represent 50 instances of the LOFAR traffic

3http://www.netperf.org
4http://icl.cs.utk.edu/papi/
5https://github.com/RRZE-HPC/likwid

7

generator, first the sending side, then the receiving
side.

We can see from Fig. 2 that the power consumption
of the NIC card is very similar in all cases and doesn’t
depend on the kind of transport protocol used. Fur-
ther tests have been performed with varying message
sizes and all available transport methods, on both
the sending and receiving side. All of them have
shown nearly identical results of 9 W for idle state
and 13.5 W for full link speed. Therefore, we can
conclude that the power consumption of the RNIC
is very consistent and doesn’t show a dependency on
the type of traffic. In the following sections we will
focus only on the CPU and DRAM power consump-
tion, as this is where all of the tested protocols show
significant differences.

0

2

4

6

8

10

12

14

16

1
21

2
42

3
63

4
84

5
10

56

12
67

14

78

16
89

19

00

21
11

23

22

25
33

27

44

29
55

31

66

33
77

35

88

37
99

40

10

42
21

44

32

46
43

48

54

50
65

52

76

54
87

56

98

59
09

61

20

63
31

65

42

67
53

69

64

71
75

73

86

75
97

78

08

80
19

82

30

84
41

86

52

88
63

90

74

92
85

94

96

97
07

99

18

10
12

9
10

34
0

Po
w
er
	c
on

su
m
p-

on
	(W

)	

Time	(10	ms)	

Chelsio	T5	

Figure 2: Power consumption of Chelsio T5 during
eight consecutive tests using Netperf (tests 1-6) and
the LOFAR traffic generator (tests 7-8).

4.2 Radio astronomy data flow

In this section we mimic the data flow from LO-
FAR, an operational radio telescope with very similar
characteristics to the future SKA. A traffic genera-
tor is used to emulate the data produced by a LO-
FAR Remote Station Processing (RSP) board. This
is a UDP/IP data stream, measuring approximately
760 Mb/s, transmitted in packets of 8 kB, which is a
limit imposed by the local memory size on the sta-
tion FPGA boards. Each LOFAR antenna field pro-
duces four of these data streams, totalling slightly
more than 3 Gb/s per antenna field. LOFAR cur-

rently has 78 antenna fields, 24 core stations which
can be split into two independent antenna fields, and
18 remote stations, which brings the maximum LO-
FAR input data rate to around 250 Gb/s. We gener-

0	

10	

20	

30	

40	

50	

60	

1	 47
	

93
	

13
9	

18
5	

23
1	

27
7	

32
3	

36
9	

41
5	

46
1	

50
7	

55
3	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

UDP	Sockets	

CPU	 DRAM	
0	

10	

20	

30	

40	

50	

60	

1	 45
	

89
	

13
3	

17
7	

22
1	

26
5	

30
9	

35
3	

39
7	

44
1	

48
5	

52
9	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

TCP	Sockets	

CPU	 DRAM	

0	

10	

20	

30	

40	

50	

60	

1	 82
	

16
3	

24
4	

32
5	

40
6	

48
7	

56
8	

64
9	

73
0	

81
1	

89
2	

97
3	

Po
w
er
	C
on

su
m
p-

on
	(m

s)
	

Time	(ms)	

So9iWarp	UDP	

CPU	 DRAM	
0	

10	

20	

30	

40	

50	

60	

1	 82
	

16
3	

24
4	

32
5	

40
6	

48
7	

56
8	

64
9	

73
0	

81
1	

89
2	

97
3	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

So9iWarp	TCP	

CPU	 DRAM	

Figure 3: Power consumption of CPU and DRAM for
receiving a transfer of LOFAR-like traffic over TCP
and UDP sockets.

ate 50 data streams in our experimental setup, which
at 37.5 Gb/s corresponds to roughly 1

6 th of the total
LOFAR data flow. Preliminary designs of the SKA
system data flow make it likely that data transported
between the CSP and SDP will have very similar
characteristics, albeit with much higher data rates at
longer distances. Our generator is capable of trans-
mitting the said data stream using TCP and UDP
sockets and also with TCP and UDP SoftiWarp. In
Fig. 3 we show the power consumed by receiving 50
emulated LOFAR data streams using TCP sockets in
the left image, and UDP sockets in the right one. The
energy consumed by receiving TCP traffic is measur-
ably higher than when using UDP due to the addi-
tional overhead of the TCP/IP protocol stack. This
is a clear indication that reducing this protocol over-
head will result in a smaller energy consumption. The
average power consumption of TCP in this experi-
ment is 45.09 W and for UDP it is 40.05 W. In Fig. 4
we present the power consumption measurements ob-
tained with the LOFAR traffic generator using Soft-
iWarp TCP in the left image, and SoftiWarp UDP
in the right image. The power consumption during

8

0	

10	

20	

30	

40	

50	

60	

1	 47
	

93
	

13
9	

18
5	

23
1	

27
7	

32
3	

36
9	

41
5	

46
1	

50
7	

55
3	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

UDP	Sockets	

CPU	 DRAM	
0	

10	

20	

30	

40	

50	

60	

1	 45
	

89
	

13
3	

17
7	

22
1	

26
5	

30
9	

35
3	

39
7	

44
1	

48
5	

52
9	

Po
w
er
	C
on

su
m
p-

on
	(W

)	
Time	(ms)	

TCP	Sockets	

CPU	 DRAM	

0	

10	

20	

30	

40	

50	

60	

1	 82
	

16
3	

24
4	

32
5	

40
6	

48
7	

56
8	

64
9	

73
0	

81
1	

89
2	

97
3	

Po
w
er
	C
on

su
m
p-

on
	(m

s)
	

Time	(ms)	

So9iWarp	UDP	

CPU	 DRAM	
0	

10	

20	

30	

40	

50	

60	

1	 82
	

16
3	

24
4	

32
5	

40
6	

48
7	

56
8	

64
9	

73
0	

81
1	

89
2	

97
3	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

So9iWarp	TCP	

CPU	 DRAM	

Figure 4: Power consumption of CPU and DRAM for
receiving a transfer of LOFAR-like traffic over Soft-
iWarp TCP and SoftiWarp UDP.

transfers with the software iWarp implementation is
clearly lower than in the case of TCP and UDP sock-
ets, presented in Fig. 3. The average value for the
TCP experiment is 32.38 W and for the UDP experi-
ment it is 31.01 W. The power efficiency difference be-
tween the TCP and UDP transfer in this case isn’t as
clear as with the sockets scenario, however the Soft-
iWarp UDP transfers achieved a better bandwidth,
which can be seen in Fig. 5. We can explain this by
the fact that the used message size in these transfers
is relatively low (8 kB) and the TCP-based protocol
may have a problem achieving full link speed. The
UDP-based protocol is more likely to achieve better
speeds with smaller messages due to the lower over-
head of the unreliable protocol. We will look further
into the matter of achieved bandwidth in the follow-
ing sections and present more results on this subject.

4.3 Power consumption of Soft-
iWARP TCP

In this section we describe a set of transfers with the
Netperf tool for the Sockets- and RDMA-based pro-
tocols using varying message sizes. This will allow us
to observe the behaviour of different transport meth-

31	

32	

33	

34	

35	

36	

37	

38	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	

BW
	(G

bi
t/
s)
	

Time	(sec)	

Achieved	Bandwidth	LOFAR	SIW	UDP	

31	

32	

33	

34	

35	

36	

37	

38	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	

BW
	(G

bi
t/
s)
	

Time	(sec)	

Achieved	Bandwidth	LOFAR	SIW	TCP	

Figure 5: Achieved bandwidth of LOFAR-like traf-
fic on the receiving side using SoftiWarp TCP (left
image) and SoftiWarp UDP (right image).

ods in different scenarios and enable us to calculate
the theoretical energy efficiency for all the transport
methods. The tests have been performed with all
of the offloading features of the NIC switched off,
which was done for two reasons: firstly, we want to
assess the direct effect of the transport protocol on
the power consumption when no hardware support
is available. Secondly, the offloading features avail-
able in modern NICs offer significantly more support
for TCP protocol compared to UDP protocol, which
means that with the offloading turned on the solu-
tions based on the UDP protocol would be penalised.
First we present the power consumption traces of dif-
ferent protocols and in Sec. 4.5 we present the com-
plete set of numerical values and evaluate the nor-
malised power consumption per achieved bandwidth.
As mentioned before, we are interested in the power
consumption on the receiving side of the connection,
therefore we initially focus on these results. This is
motivated by the fact that the receiving sides of the
data transfers in the SKA (CSP and SDP) will most
likely be HPC systems, so experiments such as ours
can give a good indication on the expected power
consumption. Most of the sending side devices, on
the other hand, will be custom-built devices. There-
fore their power consumption patterns will be signif-
icantly different from a standard HPC system and
the problem of their power efficiency needs to be ad-
dressed at their design level.

Fig. 6 shows the system power trace on the receiv-
ing side during data transfer with TCP sockets (first
peak) and then SoftiWARP TCP (second peak). The

9

0	

5	

10	

15	

20	

25	

30	

35	

1	 40
	

79
	

11
8	

15
7	

19
6	

23
5	

27
4	

31
3	

35
2	

39
1	

43
0	

46
9	

50
8	

54
7	

58
6	

62
5	

66
4	

70
3	

74
2	

78
1	

82
0	

85
9	

89
8	

93
7	

97
6	

10
15

	
10

54
	

10
93

	
11

32
	

11
71

	
12

10
	

12
49

	
12

88
	

13
27

	
13

66
	

Po
w
er
	c
on

su
m
p-

on
	(W

)	

Time	(ms)	

CPU	 DRAM	

Figure 6: Power consumption of CPU and DRAM
for data transfer over TCP sockets (first peak) and
SoftiWARP TCP (second peak), receiving side.

blue line represents the power consumption of the
CPU whereas the red line shows the DRAM power
consumption. We performed six tests for both TCP
sockets and SoftiWARP TCP and compared them
to confirm that the power consumption follows very
similar patterns in all cases. The data bandwidth
achieved during the tests shown in Fig. 6 is 25.1 Gb/s
for TCP sockets and 27.85 Gb/s for SIW TCP. As we
can see, neither protocol is able to achieve the full link
speed when the offloading features are switched off
and the communication takes place just between two
instances of the testing application. However, we can
already note that the bandwidth achieved when us-
ing SoftiWARP TCP is slightly higher and the power
consumption is lower. The average CPU power con-
sumption from six TCP socket tests is 17.4 W and for
SoftiWARP the average is 15.89 W.

4.4 Power consumption of Soft-
iWARP UDP

Similarly to Sec. 4.3 we have performed the com-
parison between UDP sockets and SoftiWARP UDP.
Fig. 7 presents the system power trace during the ex-
ecution of two Netperf tests: the first peak shows the
test using UDP sockets and the second one presents
a SoftiWARP UDP test. It is clearly visible that
in this case the power consumption difference be-
tween standard sockets and SoftiWARP is significant.

0	

5	

10	

15	

20	

25	

30	

35	

1	 39
	

77
	

11
5	

15
3	

19
1	

22
9	

26
7	

30
5	

34
3	

38
1	

41
9	

45
7	

49
5	

53
3	

57
1	

60
9	

64
7	

68
5	

72
3	

76
1	

79
9	

83
7	

87
5	

91
3	

95
1	

98
9	

10
27
	

10
65
	

11
03
	

11
41
	

11
79
	

12
17
	

12
55
	

12
93
	

13
31
	

Po
w
er
	c
on

su
m
p-

on
	(W

)	

Time	(ms)	

CPU	 DRAM	

Figure 7: Power consumption of CPU and DRAM
for data transfer over UDP sockets (first peak) and
SoftiWARP UDP (second peak), receiving side.

The average CPU energy consumption in the UDP
sockets-based tests is 24.21 W and 13.72 W for the
SoftiWARP-based tests. Furthermore, the near-full
link speed of the connection is achieved in both cases:
39.37 Gb/s for the UDP stream test and 38.24 Gb/s
for SoftiWARP.

4.5 Comparison of power efficiency

In order to quantify and directly compare the power
efficiency of different transport protocols we per-
formed a set of experiments in which we measured
the power consumption used by the entire data trans-
fer, including the CPU, DRAM and the NIC. Then
we calculated the normalised power efficiency, which
we defined as follows:

E =
BW

P
(1)

[E] =
Gb/s

W
(2)

From equation (1) it can be seen that our metric,
the normalised power efficiency (E), is defined as the
data bandwidth (BW) divided by the total power
consumption (P). From equation (2) we can see that
it is expressed in Gigabits per second per Watt. With
this metric we are able to provide a good compari-
son of how much power is needed by specific trans-
port protocols in a manner that is independent from

10

the variations in bandwidth in different experiments.
We performed six experiments for each value, us-

Figure 8: Results of power consumption tests with
the offloading features of the NIC disabled.

Figure 9: Results of power consumption tests with
the offloading features of the NIC enabled.

ing message sizes in the range of 8 kB to 2 MB.
The tested transport services included: TCP sock-
ets, UDP sockets, SoftiWARP TCP and SoftiWARP
UDP – both using RDMA Read and RDMA Write
operations. The UDP sockets were only tested for
message sizes up to 64 kB as this size is the largest
supported by this transport protocol. As before, dur-
ing the first tests all of the offloading features of the
NICs were turned off. However, this time we also
performed tests with the following offloading features
enabled: rx and tx checksumming offloading, generic

receive offload (GRO) and generic segmentation of-
fload (GSO). This was done to see the impact of such
features on the results and compare them with the
no-offload scenario.

Figures 8 and 9 show example results with hard-
ware offloading features disabled and enabled, respec-
tively. Both figures present results for the following
message sizes: 256 kB for TCP-based protocols and
64 kB for the UDP-based protocols. At these val-
ues the given protocols have achieved their maximum
bandwidth.

The tests performed without hardware offloading
demonstrate that when using TCP, even a relatively
modern system is unable to achieve full link speed
using a single core. Only the UDP-based protocols
have been able to achieve the near-full link speed;
however with UDP sockets this was coupled with sig-
nificant power consumption on the sending and re-
ceiving sides. On the other hand, the SIW UDP
tests using RDMA Write have been able to achieve
nearly identical results with the hardware offloading
enabled and disabled, which was around 38.79 Gb/s
bandwidth with only 13.64 W of average power con-
sumption on the receiving end. The power consump-
tion on the sending side remains among the highest
in the above table, but this is not a crucial issue for
radio astronomy applications as the sending side will
most likely not be a standard computer but rather
a custom-built FPGA unit, designed specifically to
issue RDMA Write operations. Therefore, the power
consumption of the sending side is a research topic on
its own and cannot be evaluated using experiments
similar to those presented in this paper.

The results presented in Fig. 9 confirm our assump-
tions from Sec. 4.3, namely that the TCP-based pro-
tocol family receives significantly more support from
hardware offloading. In the second set of tests, almost
all protocols achieved full link bandwidth, except for
SIW TCP RDMA Write. The plain UDP Socket
test didn’t receive any support from the hardware of-
floading features, achieving the same bandwidth and
power consumption. The SIW UDP RDMA Read
test achieved the full link speed due to the Receive
Offload and Segmentation Offload features. Finally,
it is important to note that the SIW UDP Write test
still offers the lowest power consumption on the re-

11

ceiving side of all the protocols, even when competing
with the hardware-supported TCP sockets or SIW
TCP.

0	

5	

10	

15	

20	

25	

30	

35	

40	

Ba
nd

w
id
th
	(G

b/
s)
	

Message	size	

TCP	Sock	 UDP	Sock	 SIW	TCP	 SIW	UDP	

0	

5	

10	

15	

20	

25	

30	

35	

40	

Po
w
er
	C
on

su
m
p;

on
	(W

)	

Message	size	

TCP	Sock	 UDP	Sock	 SIW	TCP	 SIW	UDP	

Figure 10: Bandwidth (left panel) and power con-
sumption (right panel) results for tests with varying
message sizes.

Fig. 10 depicts how individual bandwidth values
(left panel) and power consumption (right panel) cor-
respond to varying message sizes. These charts allow
us to visualise the trends and optimal values for spe-
cific protocols. The achieved bandwidth, but also
the resulting power consumption, increases with in-
creasing message size for all protocols. The optimal
value is around 512 kB for the TCP protocols and
around 64 kB for the UDP protocols. UDP sockets
are the highest consumer of energy of all protocols,
but they are also the only ones that achieve the best
link speed without hardware support. SIW UDP is
able to achieve very similar results with regard to
bandwidth, but shows much lower power consump-
tion, therefore its achieved power efficiency is higher.

The above results are used to calculate the nor-
malised values of the power efficiency as expressed
by (1) and (2). The calculated values are depicted
in the efficiency chart shown in Fig. 11. Compar-
ing the TCP and UDP groups, the former one is less
efficient, which can be explained by the low band-
width achieved by TCP protocols as shown in Fig. 10
left. Comparing SoftiWARP protocols to plain sock-
ets, both over TCP and UDP, we can see that SIW
is more power efficient in both cases. In all of the
experiments SIW TCP performs better than TCP
sockets and SIW UDP better than UDP sockets.

This advantage results from the design of the Soft-
iWARP receive path implementation: after receiving
iWARP packets into the kernel memory, SoftiWARP
directly copies their content into the target applica-
tion buffers. Making use of the one-sided semantics
of RDMA communication this final data placement
does not involve the scheduling of the receiving side
application process.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

8KB	 16KB	 32KB	 64KB	 128KB	 256KB	 512KB	 1MB	 2MB	

Po
w
er
	e
ffi
ci
en

cy
	

Message	size	

TCP	Sock	 UDP	Sock	 SIW	TCP	write	 SIW	UDP	write	

Figure 11: Power efficiency (in Gigabits per second
per Watt) of 10 s Netperf tests, receiving side. X axis
- message size, Y axis - power efficiency.

Although these results are based on the software
prototype of SoftiWARP UDP, we can already con-
firm that the reduced data touching and the de-
creased overhead from the OS lead to very desired
characteristics and promising results. The power con-
sumption of SoftiWARP is lower than TCP or UDP
sockets in all cases and the achieved bandwidth is at
least as good.

4.6 Behaviour in case of packet loss

Finally, we wanted to assess the behaviour of all the
tested protocols in case of significant packet loss. We
did this by emulating packet loss using the Netem
network emulation tool6 in the range of 0.1% to 10%.
The bandwidths achieved can be seen in Fig. 12. The
difference between TCP-based and UDP-based pro-
tocols is significant. The former tend to sustain their
original bandwidth in the initial part of the tests as

6https://wiki.linuxfoundation.org/networking/netem

12

1.4402E+12
1.4402E+12
1.4402E+12
1.4402E+12
1.4402E+12

0(

5(

10(

15(

20(

25(

30(

35(

40(

45(

0.10%(0.50%(1%(3%(5%(10%(

Ba
nd

w
id
th
)(G

b/
s)
)

)

Introduced)packet)loss)

TCP(Sockets(SIW(TCP(read(

UDP(Sockets(SIW(UDP(read(

SIW(TCP(write(SIW(UDP(write(

Figure 12: Achieved bandwidth with introduced
packet loss.

all the lost packets are re-transmitted. However, with
larger packet loss the network is no longer capable of
keeping up with re-transmission and the bandwidth
gets significantly reduced. The UDP-based protocols
do not rely on the retransmission-based reliable com-
munication implemented by the TCP protocol and
are able to maintain the transfers on the same level,
regardless of the problems occurring along the link.
The only decrease in bandwidth is the actual amount
of packets that have been dropped. As we can see in
the chart, this doesn’t hold true for the results of SIW
UDP RDMA Reads, which - as discussed earlier - are
not yet fully supported in our implementation. The
current protocol does not recover from completely
lost RDMA READ request/response pairs, which re-
sults in transfer breakdown as soon as the packet loss
reaches 3%.

The above results show that the use of a proto-
col that relies on two-way communication and tries
to provide full reliability on the transport level, such
as the TCP, can be infeasible for a scenario such as
the SKA. It is true that the introduced packet loss
in our experiments was very high, but the tests were
performed for a short, local connection. In the case
of the SKA, where the connections spread over hun-
dreds of kilometres in length, we would see a much
more drastic influence of packet loss on the achieved
bandwidth. This result confirms another reason for
the choice of an unreliable transport protocol for our
purposes. The power consumption in different packet

loss scenarios didn’t show any noteworthy behaviour.
It corresponded to what we have seen in our previ-
ous experiments, namely that with growing packet
loss the energy consumption was lower, because the
achieved bandwidth was also lower.

5 Conclusions and Future
Work

In this paper we presented the data transport re-
quirements of the world’s largest radio telescope, the
Square Kilometre Array (SKA). We proposed a so-
lution to meet these requirements, namely an unreli-
able, datagram-based iWARP protocol implementa-
tion. We then presented a software prototype of such
a protocol, called SoftiWARP UDP, and evaluated its
performance and power efficiency together with those
of TCP and UDP sockets. We have confirmed that
UDP is a very good choice for long distance transfer
of astronomical data. The protocol overhead is lower,
which leads to lower power consumption. Further-
more, the use of a reliable transport protocol is not
feasible in a scenario such as the SKA, as it (1) leads
to higher power consumption, and (2) the data trans-
fer quality soon becomes unacceptable in the case of
non-negligible data packet loss.

Our software prototype of SoftiWARP UDP is al-
ready capable of outperforming TCP and UDP sock-
ets in terms of power efficiency. This is a very desired
result, however we expect a much higher improve-
ment of the power efficiency with implementation of
the SoftiWARP UDP protocol in hardware, e.g. us-
ing FPGAs and the source code of SoftiWARP UDP,
which we leave for future work on this subject. A de-
sired solution for the SKA purposes would have typ-
ical RDMA characteristics, where all four lower net-
work layers are handled in hardware. Considering our
results, we believe that with a hardware implemen-
tation the SoftiWARP UDP protocol would bring all
the benefits of RDMA, namely an outstanding power
efficiency, low latencies and CPU utilization and high
bandwidths, while meeting the specific requirements
of the radio astronomy data transfer service.

For the future work on this topic we are planning

13

to look into using flash storage technology for data
ingress, which is energy efficient and offers high band-
width and low-latency access.

Acknowledgment

This work is conducted in the context of the joint
ASTRON and IBM DOME project and is funded
by the Netherlands Organisation for Scientific Re-
search (NWO), the Dutch Ministry of Economic Af-
fairs (EL&I), and the Province of Drenthe.

References

[1] M. P. van Haarlem, M. W. Wise, A. W. Gunst,
G. Heald, J. P. McKean, et al. LOFAR: The
LOw-Frequency ARray. Astronomy & Astro-
physics, 556, 2013.

[2] Peter E. Dewdney, Peter J. Hall, Richard T.
Schilizzi, and T. Joseph L. W. Lazio. The
Square Kilometre Array. Proceedings of the
IEEE, 97:1482–1496, June 2009.

[3] John W. Romein, P. Chris Broekema, Jan David
Mol, and Rob V. van Nieuwpoort. The LOFAR
Correlator: Implementation and Performance
Analysis. In ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP’10),
pages 169–178, Bangalore, India, January 2010.

[4] J.W. Romein, J.D. Mol, R.V. van Nieuwpoort,
and P.C. Broekema. Processing LOFAR Tele-
scope Data in Real Time on a Blue Gene/P Su-
percomputer. In URSI General Assembly and
Scientific Symposium (URSI GASS’11), Istan-
bul, Turkey, August 2011.

[5] Kazutomo Yoshii, Kamil Iskra, Harish Naik,
Pete Beckman, and P. Chris Broekema. Perfor-
mance and Scalability Evaluation of Big Mem-
ory on Blue Gene Linux. International Journal
of High Performance Computing Applications,
25:148–160, May 2011. first published online on
May 12, 2010.

[6] P. Chris Broekema, Rob V. van Nieuwpoort, and
Henri E. Bal. Exascale high performance com-
puting in the square kilometer array. In Proceed-
ings of the 2012 Workshop on High-Performance
Computing for Astronomy Date, Astro-HPC ’12,
pages 9–16, New York, NY, USA, 2012. ACM.

[7] P. Chris Broekema, Rob V. van Nieuwpoort,
and Henri E. Bal. The Square Kilometre Ar-
ray Science Data Processor Preliminary Com-
pute Platform Design. Journal of Instrumenta-
tion, 10(07):C07004, 2015.

[8] J. L. Jonas. MeerKAT - The South African
Array With Composite Dishes and Wide-Band
Single Pixel Feeds. Proceedings of the IEEE,
97(8):1522–1530, Aug 2009.

[9] Nanette J Boden, Danny Cohen, Robert E
Felderman, Alan E Kulawik, Charles L Seitz,
Jakov N Seizovic, and Wen-King Su. Myrinet:
A gigabit-per-second local area network. IEEE
micro, (1):29–36, 1995.

[10] Gregory F Pfister. An introduction to the in-
finiband architecture. High Performance Mass
Storage and Parallel I/O, 42:617–632, 2001.

[11] Hari Subramoni, Ping Lai, Miao Luo, and Dha-
baleswar K Panda. RDMA over EthernetA
preliminary study. In Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE Interna-
tional Conference on, pages 1–9. IEEE, 2009.

[12] Motti Beck and Michael Kagan. Performance
evaluation of the RDMA over ethernet (RoCE)
standard in enterprise data centers infrastruc-
ture. In Proceedings of the 3rd Workshop on
Data Center-Converged and Virtual Ethernet
Switching, pages 9–15. International Teletraffic
Congress, 2011.

[13] Thomas Gross and David Richard O’Hallaron.
iWarp: anatomy of a parallel computing system.
Mit Press, 1998.

[14] Mohammad J Rashti and Ahmad Afsahi. 10-
Gigabit iWARP Ethernet: comparative perfor-
mance analysis with InfiniBand and Myrinet-
10G. In Parallel and Distributed Processing

14

Symposium, 2007. IPDPS 2007. IEEE Interna-
tional, pages 1–8. IEEE, 2007.

[15] Jiuxing Liu, Balasubramanian Chandrasekaran,
Jiesheng Wu, Weihang Jiang, Sushmitha Kini,
Weikuan Yu, Darius Buntinas, Peter Wyck-
off, and Dhabaleswar K Panda. Performance
comparison of MPI implementations over Infini-
Band, Myrinet and Quadrics. In Supercomput-
ing, 2003 ACM/IEEE Conference, pages 58–58.
IEEE, 2003.

[16] Mohammad J Rashti and Ahmad Afsahi. 10-
Gigabit iWARP Ethernet: comparative perfor-
mance analysis with InfiniBand and Myrinet-
10G. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE Interna-
tional, pages 1–8. IEEE, 2007.

[17] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K
Panda. High performance RDMA-based MPI
implementation over InfiniBand. International
Journal of Parallel Programming, 32(3):167–
198, 2004.

[18] D. Dalessandro, A. Devulapalli, and P. Wyck-
off. Design and Implementation of the iWarp
Protocol in Software. In Proceedings of Parallel
and Distributed Computing and Systems 2005.
ACTA Press, November 2005.

[19] D. Dalessandro, A. Devulapalli, and P. Wyckoff.
iWarp protocol kernel space software implemen-
tation. In Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th Interna-
tional, pages 8 pp.–, April 2006.

[20] F.D. Neeser, B. Metzler, and P.W. Frey. Soft-
RDMA: Implementing iWARP over TCP kernel
sockets. IBM Journal of Research and Develop-
ment, 54(1):5:1–5:16, January 2010.

[21] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A
compound tcp approach for high-speed and long
distance networks. In Proceedings IEEE INFO-
COM 2006. 25TH IEEE International Confer-
ence on Computer Communications, pages 1–12,
April 2006.

[22] Hadrien Bullot, R. Les Cottrell, and Richard
Hughes-Jones. Evaluation of advanced tcp
stacks on fast long-distance production net-
works. Journal of Grid Computing, 1(4):345–
359, 2003.

[23] Andrea Francini. Periodic early detection for
improved {TCP} performance and energy effi-
ciency. Computer Networks, 56(13):3076 – 3086,
2012. Challenges in High-Performance Switching
and Routing in the Future Internet.

[24] Yunhong Gu and Robert L. Grossman. Udt:
Udp-based data transfer for high-speed wide
area networks. Computer Networks, 51(7):1777
– 1799, 2007. Protocols for Fast, Long-Distance
Networks.

[25] E. He, J. Leigh, O. Yu, and T. A. Defanti. Re-
liable blast udp : predictable high performance
bulk data transfer. In Proceedings. IEEE In-
ternational Conference on Cluster Computing,
pages 317–324, 2002.

[26] E. Rotem, A. Naveh, D. Rajwan, A. Anan-
thakrishnan, and E. Weissmann. Power-
Management Architecture of the Intel Microar-
chitecture Code-Named Sandy Bridge. Micro,
IEEE, 32(2):20–27, March 2012.

* Linux is a registered trademark of Linus Tor-
valds in the United States, other countries, or both.
Intel and Intel Xeon are trademarks or registered
trademarks of Intel Corporation or its subsidiaries
in the United States or other countries. IBM and
IBM BlueGene/P are trademarks of International
Business Machines Corporation, registered in many
jurisdictions worldwide. Other product or service
names may be trademarks or service marks of IBM
or other companies.

15

	1 Introduction
	2 The Square Kilometre Array
	3 RDMA, iWARP and SoftiWARP
	3.1 Implementation of iWARP in software
	3.2 SoftiWARP
	3.3 Implementing an unreliable connected SoftiWARP service

	4 Experiments
	4.1 Power consumption of the Chelsio T5
	4.2 Radio astronomy data flow
	4.3 Power consumption of SoftiWARP TCP
	4.4 Power consumption of SoftiWARP UDP
	4.5 Comparison of power efficiency
	4.6 Behaviour in case of packet loss

	5 Conclusions and Future Work

