
Energy-Efficient Data Transfers in Radio Astronomy with Software UDP RDMA

Przemyslaw Lenkiewicza,∗, P. Chris Broekemab, Bernard Metzlerc

aIBM Research Netherlands, David Ricardostraat 2-4, 1066 JS Amsterdam, The Netherlands
bASTRON Netherlands Institute for Radioastronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands

cIBM Zurich Research Laboratory, Saumerstrasse 4, 8803 Ruschlikon, Switzerland

Abstract

Modern radio astronomy relies on very large amounts of data that need to be transferred among parts of astronomical
instruments, over distances that are often in the range of tens or hundreds of kilometres. The Square Kilometre Array
(SKA) will be the World’s largest radio telescope. The data rates of transfers between its components will reach Terabits
per second. This will impose a huge challenge on the data transport infrastructure, especially with regard to power
consumption, as high-speed data transfers using modern off-the-shelf hardware impose a significant load on the system,
including CPU and DRAM usage. The SKA has a strict energy budget which demands a new, custom-designed data
transport solution. In this paper we present SoftiWARP UDP, an unreliable datagram-based Remote Direct Memory
Access (RDMA) protocol, which can highly increase the energy efficiency of high-speed data transfers and meets the
requirements of modern radio astronomy. We have implemented a fully functional software prototype of such a protocol,
supporting RDMA Read and Write operations and zero-copy capabilities. We present the measurements of achieved
power consumption and data bandwidth and also investigate the behaviour of all examined protocols with respect to
packet loss.

Keywords: RDMA, power-efficiency, radioastronomy

1. Introduction

Modern radio telescopes, such as the LOw Frequency
ARray (LOFAR) [1] and the upcoming Square Kilometre
Array (SKA)[2] are in essence large, distributed sensor net-
works, characterised by large numbers of sensors producing5

staggering amounts of data. This data is often generated
by custom hardware in remote areas. Receiving and pro-
cessing these data streams is a computationally intensive
task that may consume considerable amounts of energy.
In LOFAR, stations produce around 250 Gb per second of10

sensor data, to be transported over 65 km to the central
processor. The SKA will produce several orders of mag-
nitude more data, which is then significantly reduced by
the on-site correlator. This reduced data stream, about 3
Tbps per telescope, is then transported to Perth or Cape15

Town, several hundred kilometres away.
The detailed break-down of such a highly complex sci-

ence instrument is beyond the scope of this paper, but
both the antenna processing, as well as the on-site corre-
lator are expected to use highly specialised custom hard-20

ware to generate, reduce and transmit large volumes of
data. The Science Data Processor, located in Cape Town
and Perth, will be based on general-purpose compute sys-
tems. These will turn high volume intermediate data into

∗Corresponding author
Email addresses: Lenkiewicz@nl.ibm.com (Przemyslaw

Lenkiewicz), Broekema@astron.nl (P. Chris Broekema),
BMT@zurich.ibm.com (Bernard Metzler)

science-ready data products, a task that is both compute25

and data intensive.
In [3, 4] the authors have presented a study, which

shows that traversing the Linux IP stack for traffic pat-
terns such as these described above may be a significant
challenge for underpowered hardware. Considering the30

very high data rates projected for the SKA it is likely that
receiving such data streams will impose a significant load
on the receiving systems and consume a lot of energy. The
Linux network stack was designed with robustness as the
most crucial feature and therefore includes a strict sep-35

aration between user and system resources. This means
that received data is copied several times, triggering sev-
eral interrupts and context switches, before the user appli-
cation gains access to it. In [5] the authors have presented
how in the Blue Gene system a related bottleneck, namely40

software handling of Translation Lookaside Buffer (TLB)
misses, can be mitigated by bypassing conventional kernel
processing. This may significantly decrease resource con-
sumption for specific applications. In this paper we pro-
pose a similar approach. Since the Linux IP stack may be45

a bottleneck while receiving large volumes of sensor data,
we propose to avoid the host operating system and place
data directly into user memory. While this also bypasses
several of the security checks that are essential in typical
networking, in a tightly controlled and private network,50

such as found in a scientific instrument, these are less cru-
cial. We expect a reduction in resource consumption and

Preprint submitted to Future Generations Computer Systems November 8, 2016

therefore a reduction in the amount of consumed energy.
Since the SKA Science Data Processor is expected to be
bound by very tight budgets, both capital and energy, re-55

ducing the cost of receiving data would allow for more
science, improving the scientific efficiency of the Science
Data Processor.

In the field of modern high-speed networks the Re-
mote Direct Memory Access (RDMA) technology has been60

proposed to resolve similar issues, namely to allow higher
bandwidth, lower latencies and lower CPU utilization. RDMA
provides this by moving data directly from the user space
memory of one machine to that of another, without involv-
ing either of the host operating systems. The application65

layer is involved only on the side where the request is is-
sued and it can access the contents of memory buffers on
a different host thanks to memory pre-registration. The
RDMA technology is a very good example of how the
data movement process can be optimized for a specific sce-70

nario, helping to utilize the full capabilities of the hard-
ware. However, the currently-available RDMA solutions
lack some of the features that are necessary for a scenario
such as the SKA. In particular, the target scenario both
requires a more efficient handling of the expected very high75

bandwidth-delay product of the data transfer channel, and
imposes application specific requirements on time sensi-
tive, partial data transfer reliability [6].

In this paper we address the data transport challenges
for modern radio astronomy instruments. We introduce80

a possible solution that measurably reduces the consump-
tion of CPU resources and energy associated with that
data transport. In particular, we design and implement
an efficient communication protocol for transferring high
rates of astronomical data over long distances with the85

goal of being more energy efficient at the receiving end.
The main contributions of this paper are:

1. we design and prototype a partially reliable, RDMA-
based transport protocol suitable for modern radio-
astronomy applications;90

2. we present experiments with results showing that the
energy efficiency of the prototyped transport stack is
improved compared to standard UDP data transfer;

3. we argue that further, more dramatic improvements
in efficiency are possible when support for this pro-95

tocol is implemented in hardware.

2. The Square Kilometre Array

The Square Kilometre Array (SKA) is a new-generation
radio telescope which is currently being designed by a large
international science and engineering team. Building is ex-100

pected to commence in 2018 and the first phase is expected
to become operational in 2022. SKA phase 1 will consist
of two instruments: SKA1-Low, located in Western Aus-
tralia and SKA1-Mid in South Africa [7]. SKA1-Low is
an aperture array instrument consisting of 512 stations,105

each with 256 dual-polarised antennas, operating between

Central Signal Processor
Western Australia (AUS) /

Karoo desert (SA)

Science Data Processor
Perth (AUS) /

Cape Town (SA)

~3 Tbps UDP/IP

 ~700km

Regional
Science
Centres

Figure 1: Simplified data transport chart in the SKA, leading from
the SKA stations to the Central Signal Processor and the Science
Data Processor.

50 and 350 MHz. The stations will be 35 m in diameter
and placed at most 65 km apart. The antenna signals
are coherently summed per station into a station beam.
SKA1-Mid will consist of 133 dishes, with an additional110

64 MeerKAT [8] dishes to be integrated into the SKA1 in-
strument, each with a diameter of 15 m (13.5 m for the
MeerKAT dishes), capable of receiving signals between
350 MHz and 14 GHz. The processing of data produced
in SKA1-Low and SKA1-Mid is similar and therefore we115

will not distinguish between them in this paper.
A simplified diagram depicting the SKA data flow is

presented in Fig. 1. Data from the receivers is transported
to the Central Signal Processor (CSP), located in a highly
radio frequency-shielded building in the centre of the tele-120

scope. Here, data from all receiver or station pairs are
combined into visibilities data by the CSP correlator. The
resulting data is transported to the Science Data Processor
(SDP), similarly to CSP - one for each instrument, located
in Perth and Cape Town, several hundreds of kilometres125

away. The correlator is expected to be a dedicated FPGA-
based system, however GPU-based software correlators are
considered. Each of the SDP instantiations receives a con-
tinuous data stream of about 3 Tb per second.

The SDP produces science-ready calibrated data prod-130

ucts for analysis by the radio astronomer, a task that is
highly data intensive and is expected to require compute
resources in the 100 PetaFlop range. Data from the SDP
are distributed to Regional Science Centres for further
analysis and dissemination.135

The SKA Science Data Processor is expected to be
bound by strict energy and capital budgets that will severely
limit the scale of the system. In Section 1 we cite previ-
ous work that showed that receiving large volumes of data
itself also requires significant resources. The resources con-140

sumed just receiving data do not directly contribute to the
scientific output of the SDP. In this work we aim to reduce
these compute resources required to receive the incoming
data stream by avoiding a well known system bottleneck:
the Linux IP stack and the associated kernel overhead.145

Considering the large distances and volumes of data,
it is not feasible to use a reliable data transport protocol
for the data transport between CSP and SDP. This would
require constant buffering of the transmitted packets at
the sending side until confirmations from the receiving150

side arrive. In a highly optimized real-time environment,

2

such as the CSP correlator system, this would incur very
significant cost and performance overheads. The chosen
transmission protocol for this data stream is therefore un-
reliable, based on UDP/IP over Ethernet, with far lower155

sender-side overhead. At this point the transported data
is highly redundant. Loss of a fraction of this data will
result in reduced signal-to-noise ratio in the end-product,
but this is, within reason, acceptable. Goal of this work is
to maximise the scientific output of the Science Data Pro-160

cessor per invested Euro and/or Joule by minimising cycles
spent on data transport that don’t directly contribute to
the science output.

The specific set of requirements for this particuluar
SKA data transport component can be summarised as fol-165

lows:

• very high data rates, several Terabits per second

• almost entirely uni-directional traffic

• UDP/IP over Ethernet

• prioritising bandwidth over latency170

• desire for very high energy efficiency

• full reliability is not crucial, some data loss is toler-
able

In the remainder of this paper we investigate how an
existing industry standard RDMA implementation can be175

modified in such a way that it can be used to transport
SKA specific data streams. By avoiding a known bot-
tleneck we expect to save a measurable amount of com-
putational resources and energy. This can immediately
be translated into increased scientific performance for the180

same investment.

3. RDMA, iWARP and SoftiWARP

Receiving multiple high-bandwidth UDP/IP data streams
requires significant CPU resources. Since CPU cycles can
be translated into consumed energy, it can be assumed185

that a more efficient way to receive large data streams will
consume less energy. In addition, compute resources spent
on receiving data cannot be utilised for data reduction or
processing.

Implemented as an operating system service, the Linux190

network I/O stack was designed with the main focus on
robustness and security while maintaining good perfor-
mance. Applications access network services via the socket
API. To achieve separation and protection, all communi-
cation data are copied between application buffers (user195

space memory) and operating system (kernel) memory within
the socket layer. On the transmission path, after copying
data into the kernel, network protocol output processing
packetises the data, stores it for potential retransmission
and informs the network adapter to fetch the packets for200

wire transmission. In the network packet input path data

are first moved from the network card into kernel memory
and an interrupt is issued, which handles network protocol
processing within the kernel. As a result of protocol pro-
cessing, kernel data buffers containing the received data205

are queued to the socket receive queue for application re-
trieval. Within a system call, the application eventually
copies those data from kernel memory to application re-
ceive buffers, which typically involves waking up the appli-
cation thread waiting for data reception. Both in the send-210

ing and receiving path, traversing the Linux networking
stack incurs non-negligible overhead (interrupt handling,
context switches, network protocol processing, data copy
operations), which degrades application-available CPU pro-
cessing power, while limiting achievable communication215

bandwidth and adding to end-to-end communication la-
tency. Moving the data directly between the network de-
vice and application buffer would avoid such overhead, but
if not done properly, would violate the data protection and
separation principles of the operating system. However, in220

a tightly controlled and private environment, such as in
a scientific instrument, these limitations might be accept-
able.

In the past decade the Remote Direct Memory Access
(RDMA) technology has been gaining more and more rele-225

vance in the field of high-speed communication. Its devel-
opment was driven by the need for high throughput and
low latency networking, especially in High Performance
Computing. RDMA provides this by moving data directly
from the user space memory of one machine to that of an-230

other, without involving host operating system and min-
imising host CPU usage. The application layer registers
memory buffers with the local RDMA-capable network
adapter (RNIC) for remote write or read access. Under the
control of local and remote RNIC, RDMA write operations235

transfer data from a local buffer to a tagged remote buffer
that was advertised by the peer, whereas the RDMA read
operation transfers data from a tagged remote buffer to a
tagged local buffer. The application layer is involved only
on the side where the request is issued. Any application240

buffer used as a source or target for an RDMA operation
must be pre-registered with the local RNIC device, and is
typically pinned into physical host memory. This allows
the RDMA device to access the buffer in physical mem-
ory without further OS intervention. To allow overlapping245

communication and computation, RDMA offers an asyn-
chronous communication interface. RDMA operations are
posted as Work Requests (WRs) to a communication end-
point and are asynchronously processed by the RDMA de-
vice. Work completions are signalled and retrieved asyn-250

chronously as well.
RDMA is provided through several network technolo-

gies, including Myrinet [9], Infiniband [10], RDMA over
Converged Ethernet (RoCE) [11, 12] and iWARP [13, 14].
The functionality and performance of these standards has255

been evaluated and compared in various studies [15, 16].
Well-known programming interfaces, like the Message Pass-
ing Interface, may be used in order to access the RDMA

3

functionality on different hardware [17].
Both RoCE and iWARP are deployed over Ethernet,260

which makes them very interesting candidates for the SKA
data transport service. RoCE defines the transmission of
InfiniBand packets directly over Ethernet, which limits its
scope to the Ethernet broadcast domain and thus leaves
it non-routable. To solve that issue, a recent protocol265

extension (RoCEv2) puts it on top of UDP/IP. On the
other hand, iWARP defines RDMA operations on top of
TCP/IP networks, giving it the advantage of being com-
patible with the existing Internet infrastructure. Unfor-
tunately, both RoCE and iWARP rely on the implemen-270

tation of a rather complex protocol state machine (TCP
or InfiniBand) meant to provide a level of data transmis-
sion reliability which is not needed and even obstructive
for the intended use: data to be transmitted have a lim-
ited relevance in time – in case of partial data loss the275

protocol should favor the transmission of new data over
the retransmission of lost fragments. Lost data fragments
shall result in just dropping the entire affected application
level message at RDMA protocol level, while keeping the
end-to-end connection intact.280

In our work towards an energy-efficient protocol for
modern radio astronomy we have chosen the iWARP stan-
dard as the baseline, but extended it with an unreliable
service. This was achieved by replacing the TCP proto-
col with UDP and modifying the semantics of the RDMA285

application interface.

3.1. Implementation of iWARP in software

Although the full range of advantages of RDMA is only
available through hardware support for iWARP (in order
to offload I/O and protocol processing from the CPU),290

a software implementation can also be well motivated.
iWARP is still a relatively young technology and there-
fore it is useful to be able to rely on a software solution for
testing and development purposes. Furthermore, the soft-
ware version can be introduced in the less stressed parts of295

the infrastructure, whereas the more utilised parts would
be equipped with iWARP-capable NICs – provided that
the software implementation can operate in such a mixed
scenario. Thanks to the RDMA semantics and the asyn-
chronous API, even a software implementation can pro-300

vide benefits such as a zero-copy data transmit path and
less application interaction/scheduling, which can lead to
increased performance and lowered CPU load and power
consumption. Software iWARP can also be used for mi-
grating existing applications to the RDMA interface with-305

out the need for RDMA hardware. Finally, it can ease
the development of new, experimental extensions to the
RDMA stack without hardware prototyping. The SKA
scenario is a good example of such a case, as we want to
experiment with an implementation of iWARP that is tai-310

lored specifically for our needs.
The idea to implement the iWARP protocol fully in

software has been already approached and there are solu-
tions available, such as the Software iWARP implementa-

tion by the Ohio Supercomputing centre [18],[19] or the315

SoftiWARP [20] implementation by IBM Research.

3.2. SoftiWARP

The work presented in this paper is based on the Soft-
iWARP (SIW) open source software implementation of
the iWARP protocol suite, developed at the IBM Zürich320

Research Lab and available from GitHub1. SoftiWARP
comprises two main building blocks: a kernel module,
which implements the iWARP protocols on top of TCP
kernel sockets, and a user level library. SoftiWARP inte-
grates with the industry standard OpenFabrics2 RDMA325

host stack and thus exports the OpenFabrics RDMA API
to both user space and kernel space applications. Due to
close integration with the Linux kernel socket layer, Soft-
iWARP allows for efficient data transfer operations. On
the sending side, it supports zero copy data transfers out330

of application buffers. On the receiving side, the imple-
mentation makes use of target buffer address information
available with the RDMA protocol headers: the packet
payload is directly copied form their in-kernel represen-
tation (sk buff) to the final application buffer without335

scheduling the receiving application. Since the implemen-
tation conforms to the iWARP protocol specification, it is
wire compatible with any peer network adapter (RNIC)
implementing iWARP in hardware.

3.3. Implementing an unreliable connected SoftiWARP ser-340

vice

In order to fulfil the requirements of the SKA we have
defined and implemented a new unreliable, connection ori-
ented RDMA transport protocol based on SoftiWARP.
Here, communication between hosts is implemented over345

UDP kernel sockets instead of the reliable, connection-
oriented TCP. This holds true for the connection man-
agement operations, as well as the data transfer. After
connection setup, the application data transfer does not
enforce reliability, but is implemented in an unreliable,350

message-oriented manner: the sender segments the RDMA
message into a set of UDP datagrams, which are reassem-
bled on the receiver side into the original message and,
if completely received, delivered to the application. Mes-
sages which remain incomplete due to UDP packet loss are355

silently dropped at the receiver.
To retain the efficiency of the original implementation,

any inbound, in-sequence data are still directly placed into
the application target buffer without intermediate queue-
ing. At API level, error handling has been implemented360

as simple as possible: if a message remains incomplete
due to data loss or corruption, the content of the target
buffer remains undefined. If the lost message belongs to
an RDMA Send/Receive operation, the current Receive
operation remains incomplete and the receive buffer gets365

1https://github.com/zrlio/softiwarp
2https://www.openfabrics.org

4

re-used for placing the next inbound RDMA Send. Cor-
rupted RDMA Write messages just leave the application
buffer in undefined state. While originally not defined
for the iWARP protocol, an ’RDMA Write with Immedi-
ate Data’ operation might further improve the handling370

of unreliable RDMA Writes at target side: only if the
RDMA Write operation completes successfully, the ’Im-
mediate Data’ are delivered to the application indicating
the complete placement of a new RDMA Write. These
data could carry additional application level information375

such as a message sequence number. Only InfiniBand and
ROCE currently define this optional ’Immediate Data’ se-
mantics for RDMA Writes. With that, it is currently up to
the application to detect corrupted data placed via RDMA
Writes.380

Unreliable RDMA Read operations are currently sup-
ported at an experimental level only. First of all, this oper-
ation is not required for the SKA use case: Data streaming
is strictly uni-directional and only dictated by the sender
delivering radio-astronomic data to a data processing en-385

tity. Secondly, supporting unreliable RDMA Reads re-
quires a further extension of the protocol state machine
at RDMA Read initiator side, since it must detect perma-
nently lost RDMA Read Request/Response pairs. A timer
based detection of message loss appears to be a viable so-390

lution to the problem, but is currently not implemented.
The extended SoftiWARP implementation runs on both

UDP and TCP and allows to select reliable connection
(RC) or unreliable connection (UC) services on a per con-
nection basis. For the UC service, the client side must first395

create a connection endpoint with an appropriate Open-
Fabrics service attribute, namely IBV QPT UC, which repre-
sents an Unreliable Connection Queue Pair. On the server
side a listener endpoint for the same service type must ex-
ist. If the client connects its endpoint with the listener,400

a new server side endpoint will result, which is associ-
ated with the connecting client endpoint. After connec-
tion setup, both sides can use the new RDMA association
for unreliable data transfer operations.

4. Experiments405

In this section we present in-depth tests of SoftiWARP
UDP and analyse how a software implementation of iWARP
standard is able to perform in terms of achieved bandwidth
and power consumption in comparison to standard TCP
and UDP sockets. Our test platform comprises two server410

machines equipped with Intel Xeon E3-1240 v3 CPUs run-
ning at 3.40 GHz, 16 GB RAM and Chelsio T5-580 40 Gb
RDMA-capable Ethernet cards. The machines are inter-
connected with a direct connection using a QSFP+ cable.
The tests have been performed with:415

• The Netperf3 benchmark tool with additional tests
implemented, which carry traffic over RDMA proto-
cols, both over TCP and UDP,

3http://www.netperf.org

• The LOFAR telescope traffic generator, which cre-
ates data packets at rates that correspond to that of420

a LOFAR telescope station. TCP and UDP Sockets
as well as TCP and UDP iWARP is supported for
data transport.

We use two measurement points in our experiments to pre-
cisely assess the energy consumption of the data transfers.425

Using the RAPL Technology [21] the values from Intel Pro-
cessor’s registers can be read and the power consumption
of the CPU and DRAM can be estimated in a very accurate
way. We use the Performance Application Programming
Interface (PAPI) library4 and the Likwid tool5 to read the430

power meters. We have also constructed a custom-made
power meter based on an Arduino board and voltage sen-
sors attached to the PCI-Express slot. Using this device
we can measure the power consumption of the NIC with an
accuracy of 1/100 Watt and 1 millisecond sampling rate.435

4.1. Power consumption of Chelsio T5

The power consumption of the Chelsio T5 NIC has
been measured using the power meter mentioned in the
previous section, under numerous different test scenarios.
The results of these tests are shown in Fig. 2 in a consecu-440

tive manner. The blue line presents the trace of power con-
sumption of the Chelsio T5 NIC. The value of 9 W shows
the idle state of the NIC and each peak of around 13.5 W
represents one test being carried out. Peaks 1 to 6 rep-
resent Netperf tests over different transport protocols in445

the following order: SoftiWARP TCP, sending side; Soft-
iWARP UDP, receiving side; TCP sockets, sending side;
TCP sockets, receiving side; Hardware iWARP, sending
side; Hardware iWARP, receiving side. Tests 7 and 8 rep-
resent 50 instances of the LOFAR traffic generator, first450

the sending side, then the receiving side.
We can see from Fig. 2 that the power consumption

of the NIC card is very similar in all cases and doesn’t
depend on the kind of transport protocol used. Further
tests have been performed with varying message sizes and455

all available transport methods, on sending and receiving
side. All of them have shown nearly identical results of
9 W for idle state and 13.5 W for full link speed. There-
fore, we can conclude that the power consumption of the
RNIC is very consistent and doesn’t show a dependency460

from the type of traffic. In the following sections we will
focus only on the CPU and DRAM power consumption,
as this is where all of the tested protocols show significant
differences.

4.2. Radio astronomy data flow465

In this section we mimic the data flow from LOFAR,
an operational radio telescope with very similar charac-
teristics to the future SKA. A traffic generator is used to

4http://icl.cs.utk.edu/papi/
5https://github.com/RRZE-HPC/likwid

5

0

2

4

6

8

10

12

14

16

1
21

2
42

3
63

4
84

5
10

56

12
67

14

78

16
89

19

00

21
11

23

22

25
33

27

44

29
55

31

66

33
77

35

88

37
99

40

10

42
21

44

32

46
43

48

54

50
65

52

76

54
87

56

98

59
09

61

20

63
31

65

42

67
53

69

64

71
75

73

86

75
97

78

08

80
19

82

30

84
41

86

52

88
63

90

74

92
85

94

96

97
07

99

18

10
12

9
10

34
0

Po
w
er
	c
on

su
m
p-

on
	(W

)	

Time	(10	ms)	

Chelsio	T5	

Figure 2: Power consumption of Chelsio T5 during eight consecutive
tests using Netperf (tests 1-6) and the LOFAR traffic generator (tests
7-8).

emulate the data produced by a LOFAR Remote Station
Processing (RSP) board. This is a UDP/IP data stream,470

measuring approximately 760 Mb/s, transmitted in pack-
ets of 8 kB, which is a limit imposed by local memory on
the station FPGA boards. Each LOFAR antenna field pro-
duces four of these data streams, totalling slightly more
than 3 Gb/s per antenna field. LOFAR currently has 73475

antenna fields, 24 core stations which may be split into
two independent antenna fields, 18 remote stations and
7 international stations. Three more international sta-
tions are under construction, which brings the maximum
LOFAR input data rate to almost 230 Gb/s. We gener-

0	

10	

20	

30	

40	

50	

60	

1	 47
	

93
	

13
9	

18
5	

23
1	

27
7	

32
3	

36
9	

41
5	

46
1	

50
7	

55
3	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

UDP	Sockets	

CPU	 DRAM	
0	

10	

20	

30	

40	

50	

60	

1	 45
	

89
	

13
3	

17
7	

22
1	

26
5	

30
9	

35
3	

39
7	

44
1	

48
5	

52
9	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

TCP	Sockets	

CPU	 DRAM	

0	

10	

20	

30	

40	

50	

60	

1	 82
	

16
3	

24
4	

32
5	

40
6	

48
7	

56
8	

64
9	

73
0	

81
1	

89
2	

97
3	

Po
w
er
	C
on

su
m
p-

on
	(m

s)
	

Time	(ms)	

So9iWarp	UDP	

CPU	 DRAM	
0	

10	

20	

30	

40	

50	

60	

1	 82
	

16
3	

24
4	

32
5	

40
6	

48
7	

56
8	

64
9	

73
0	

81
1	

89
2	

97
3	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

So9iWarp	TCP	

CPU	 DRAM	

Figure 3: Power consumption of CPU and DRAM for receiving a
transfer of LOFAR-like traffic over TCP and UDP sockets.

480

ate 50 data streams in our experimental setup, which at
37.5 Gb/s corresponds to roughly 1

6 th of the total LOFAR
data flow. Preliminary designs of the SKA system data
flow make it likely that data transported between the CSP
and SDP will have very similar characteristics, albeit with485

much higher data rates at longer distances. Our genera-
tor is capable of transmitting the said data stream using
TCP and UDP sockets and also with TCP and UDP Soft-
iWarp. In Fig. 3 we show the power consumed by receiving
50 emulated LOFAR data streams using TCP Sockets on490

0	

10	

20	

30	

40	

50	

60	

1	 47
	

93
	

13
9	

18
5	

23
1	

27
7	

32
3	

36
9	

41
5	

46
1	

50
7	

55
3	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

UDP	Sockets	

CPU	 DRAM	
0	

10	

20	

30	

40	

50	

60	

1	 45
	

89
	

13
3	

17
7	

22
1	

26
5	

30
9	

35
3	

39
7	

44
1	

48
5	

52
9	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

TCP	Sockets	

CPU	 DRAM	

0	

10	

20	

30	

40	

50	

60	

1	 82
	

16
3	

24
4	

32
5	

40
6	

48
7	

56
8	

64
9	

73
0	

81
1	

89
2	

97
3	

Po
w
er
	C
on

su
m
p-

on
	(m

s)
	

Time	(ms)	

So9iWarp	UDP	

CPU	 DRAM	
0	

10	

20	

30	

40	

50	

60	

1	 82
	

16
3	

24
4	

32
5	

40
6	

48
7	

56
8	

64
9	

73
0	

81
1	

89
2	

97
3	

Po
w
er
	C
on

su
m
p-

on
	(W

)	

Time	(ms)	

So9iWarp	TCP	

CPU	 DRAM	

Figure 4: Power consumption of CPU and DRAM for receiving a
transfer of LOFAR-like traffic over SoftiWarp TCP and SoftiWarp
UDP.

the left image and UDP sockets on the right one. The
energy consumption for receiving TCP traffic is measur-
ably higher than when using UDP due to the additional
overhead of the TCP/IP protocol stack. This is a clear
indication that reducing this protocol overhead will result495

in a smaller energy consumption. The average power con-
sumption for TCP in this experiment is 45.09 W and for
UDP it is 40.05 W. In Fig. 4 we present the power con-
sumption measurements obtained with the LOFAR traf-
fic generator using SoftiWarp TCP on the left image and500

SoftiWarp UDP on the right image. The power consump-
tion during transfers with software iWarp implementation
is clearly lower than in the case of TCP and UDP sock-
ets, presented in the previous image. The average value
for the TCP experiment was 32.38 W and for the UDP ex-505

periment it was 31.01 W. The power efficiency difference
between the TCP and UDP transfer in this case isn’t as
clear as with the sockets scenario, however the SoftiWarp
UDP transfers achieved a better bandwidth, which can be
seen on Fig. 5. We can explain this with the fact that the510

used message size in these transfers is relatively low (8kB)
and TCP-based protocol may have a problem achieving
full link speed. The UDP-based protocol is more likely
to achieve better speeds with smaller messages due to the
lower overhead of the unreliable protocol. We will look515

further into the matter of achieved bandwidth in the fol-
lowing sections and present more results on this subject.

4.3. Power consumption of SoftiWARP TCP

In this section we carry out a set of transfers with the520

Netperf tool for the Sockets- and RDMA-based protocols
with varying message size used. This will allow to observe
the behaviour of different transport methods in different
scenarios and allow to calculate the theoretical energy effi-
ciency for all the transport methods. The tests have been525

6

31	

32	

33	

34	

35	

36	

37	

38	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	
BW

	(G
bi
t/
s)
	

Time	(sec)	

Achieved	Bandwidth	LOFAR	SIW	UDP	

31	

32	

33	

34	

35	

36	

37	

38	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 45	

BW
	(G

bi
t/
s)
	

Time	(sec)	

Achieved	Bandwidth	LOFAR	SIW	TCP	

Figure 5: Achieved bandwidth of LOFAR-like traffic on the receiving
side using SoftiWarp TCP (left image) and SoftiWarp UDP (right
image).

performed with all of the offloading features of the NIC
switched off, which was done for two reasons: firstly, we
want to assess the direct effect of the transport protocol
on the power consumption when no hardware support is
available. Secondly, the offloading features available in530

modern NICs offer significantly more support for TCP pro-
tocol compared to UDP protocol, which means that with
the offloading turned on the solutions based on the UDP
protocol would be penalised. First we present the power
consumption traces of different protocols and in Sec. 4.5535

we present the complete set of numerical values and evalu-
ate the normalised power consumption per achieved band-
width. As mentioned before, we are interested in the power

0	

5	

10	

15	

20	

25	

30	

35	

1	 40
	

79
	

11
8	

15
7	

19
6	

23
5	

27
4	

31
3	

35
2	

39
1	

43
0	

46
9	

50
8	

54
7	

58
6	

62
5	

66
4	

70
3	

74
2	

78
1	

82
0	

85
9	

89
8	

93
7	

97
6	

10
15
	

10
54
	

10
93
	

11
32
	

11
71
	

12
10
	

12
49
	

12
88
	

13
27
	

13
66
	

Po
w
er
	c
on

su
m
p-

on
	(W

)	

Time	(ms)	

CPU	 DRAM	

Figure 6: Power consumption of CPU and DRAM for data transfer
over TCP sockets (first peak) and SoftiWARP TCP (second peak),
receiving side.

consumption on the receiving side of the connection, there-
fore we initially focus on these results. This is motivated540

by the fact that the receiving sides of the data transfers in
the SKA (CSP and SDP) will most likely be HPC systems,
so experiments such as ours can give a good indication on
the expected power consumption. Most of the sending side
devices, on the other hand, will be custom-built devices.545

Therefore their power consumption patterns will be sig-
nificantly different from a standard HPC system and the
problem of their power efficiency needs to be addressed on
their design level.

Fig. 6 shows the system power trace on the receiving550

side during data transfer with TCP sockets (first peak)

and then SoftiWARP TCP (second peak). The blue line
represents the power consumption of the CPU whereas the
red line shows the DRAM power consumption. We per-
formed six tests for both TCP sockets and SoftiWARP555

TCP and compared them to confirm that the power con-
sumption follows very similar patterns in all cases. The
data bandwidth achieved during the tests shown in Fig. 6
is 25.1 Gb/s for TCP sockets and 27.85 Gb/s for SIW TCP.
As we can see, neither protocol is able to achieve the full560

link speed when the offloading features are switched off and
we are communicating between just two instances of the
testing application. However, already we can note that
the bandwidth achieved when using SoftiWARP TCP is
slightly larger and the power consumption is smaller. The565

average power consumption from six TCP socket tests is
17.4 W and for SoftiWARP the average is 15.89 W.

4.4. Power consumption of SoftiWARP UDP

0	

5	

10	

15	

20	

25	

30	

35	

1	 39
	

77
	

11
5	

15
3	

19
1	

22
9	

26
7	

30
5	

34
3	

38
1	

41
9	

45
7	

49
5	

53
3	

57
1	

60
9	

64
7	

68
5	

72
3	

76
1	

79
9	

83
7	

87
5	

91
3	

95
1	

98
9	

10
27
	

10
65
	

11
03
	

11
41
	

11
79
	

12
17
	

12
55
	

12
93
	

13
31
	

Po
w
er
	c
on

su
m
p-

on
	(W

)	

Time	(ms)	

CPU	 DRAM	

Figure 7: Power consumption of CPU and DRAM for data transfer
over UDP sockets (first peak) and SoftiWARP UDP (second peak),
receiving side.

Similarly to Sec. 4.3 we have performed the compar-
ison between UDP sockets and SoftiWARP UDP. Fig. 7570

presents the system power trace during the execution of
two Netperf tests: first peak shows the test using UDP
sockets and the second one presents a SoftiWARP UDP
test. It is clearly visible that in this case the power con-
sumption difference between standard sockets and Soft-575

iWARP is significant. The average energy consumption
in the UDP socket-based tests is 24.21 W and 13.72 W
for SoftiWARP-based tests. Furthermore, the near-full
link speed of the connection is achieved in both cases:
39.37 Gb/s for the UDP stream test and 38.24 Gb/s for580

SoftiWARP.

4.5. Comparison of power efficiency

In order to quantify and directly compare the power
efficiency of different transport protocols we performed a
set of experiments in which we measured the power con-
sumption used by the entire data transfer, including the
CPU, DRAM and the NIC. Then we have calculated the

7

Table 1: Results of power consumption tests with the offloading
features of the NIC disabled.

Send Send Recv Recv
BW CPU DRAM CPU DRAM

TCP sock 24.63 13.44 6.53 15.29 5.61
UDP sock 39.55 24.14 9.59 23.35 7.09
SiwTcp read 17.23 10.77 5.58 23.59 5.66
SiwTcp write 28.83 26.02 7.42 16.15 6.06
SiwUdp read 26.24 14.55 6.64 23.70 6.40
SiwUdp write 38.83 26.58 8.03 13.34 6.98

Table 2: Results of power consumption tests with the offloading
features of the NIC enabled.

Send Send Recv Recv
BW CPU DRAM CPU DRAM

TCP sock 39.35 24.15 7.07 23.19 7.33
UDP sock 39.59 23.96 9.54 23.39 7.12
SiwTcp read 39.41 19.77 8.21 15.64 5.41
SiwTcp write 32.48 22.02 7.01 15.03 6.38
SiwUdp read 39.13 21.57 6.63 24.34 5.29
SiwUdp write 38.79 26.57 8.05 13.64 6.96

normalised power efficiency, which we define as follows:

E =
BW

P
(1)

[E] =
Gb/s

W
(2)

From (1) it can be seen that our metric, the normalised
power efficiency (E), is defined as the data bandwidth
(BW) divided by the total power consumption (P), ex-585

pressed in Gigabits per second per Watt (2). With this
metric we are able to provide a good comparison on how
much power is needed by specific transport protocols in a
manner that is independent from the variations in band-
width in different experiments. We perform six experi-590

ments for each value, using message sizes in the range of
8 kB to 2 MB. The tested transport services include: TCP
sockets, UDP sockets, SoftiWARP TCP and SoftiWARP
UDP – both using RDMA Read and RDMA Write opera-
tions. The UDP sockets have only been tested for message595

sizes up to 64 kB as such size is the largest supported by
this transport protocol. As before, during the first tests all
of the offloading features of the NICs have been turned off.
However, this time we have also performed tests with the
following offloading features enabled: rx and tx checksum-600

ming offloading, generic receive offload (GRO) and generic
segmentation offload (GSO). This was done to see the im-
pact of such features on the results and compare them with
the no-offload scenario.

Tables [1] and [2] show example results with hard-605

ware offloading features disabled and enabled, respectively.
Both tables present results for the following message sizes:
256 kB for TCP-based protocols and 64 kB for the UDP-

based protocols. At these values the given protocols have
achieved their maximum bandwidth.610

The tests performed without hardware offloading demon-
strate that the processing of the full TCP stack is a signif-
icant load for the CPU. Even a relatively modern system
is unable to achieve full link speed using a single core.
Only the UDP-based protocols have been able to achieve615

the near-full link speed, however with UDP sockets this
was coupled with significant power consumption on the
sending and receiving sides. On the other hand, the SIW
UDP tests using RDMA Write have been able to achieve
38.79 Gb/s bandwidth with only 13.64 W of average power620

consumption on the receiving end. The power consump-
tion on the sending side remains among the highest in the
above table, but this is not a crucial issue for radio astron-
omy applications as the sending side will most likely not
be a standard computer but rather a custom-built FPGA625

unit, designed specifically to issue RDMA Write opera-
tions. Therefore, the power consumption of the sending
side is a research topic on its own and cannot be evaluated
using experiments similar to those presented in this paper.

The results presented in Tab. 2 confirm our assump-630

tions from Sec. 4.3, namely that the TCP-based protocol
family receives significantly more support of hardware of-
floading. In the second set of tests almost all protocols
achieved full link bandwidth, except for SIW TCP RDMA
Write. The plain UDP Socket test didn’t receive any sup-635

port from the hardware offloading features, achieving the
same bandwidth and power consumption. The SIW UDP
RDMA Read test has achieved the full link speed due to
the Receive Offload and Segmentation Offload features.
Finally, it is important to notice that the SIW UDP Write640

test still offers the lowest power consumption on the receiv-
ing side of all the protocols, even when competing with the
hardware-supported TCP sockets or SIW TCP.

0	

5	

10	

15	

20	

25	

30	

35	

40	

Ba
nd

w
id
th
	(G

b/
s)
	

Message	size	

TCP	Sock	 UDP	Sock	 SIW	TCP	 SIW	UDP	

0	

5	

10	

15	

20	

25	

30	

35	

40	

Po
w
er
	C
on

su
m
p;

on
	(W

)	

Message	size	

TCP	Sock	 UDP	Sock	 SIW	TCP	 SIW	UDP	

Figure 8: Bandwidth (left panel) and power consumption (right
panel) results for tests with varying message sizes.

Fig. 8 depicts how individual bandwidth values (left
panel) and power consumption (right panel) correspond645

to varying message sizes. These charts allow for visual-
ising the trends and optimal values for specific protocols.
The achieved bandwidth, but also the resulting power con-
sumption, increases with increasing message size for all
protocols. The optimal value is around 512 kB for the650

8

TCP protocols and around 64 kB for the UDP protocols.
UDP sockets are the highest consumer of energy of all pro-
tocols, but also they are the only ones that achieve the best
link speed without hardware support. SIW UDP is able
to achieve very similar results with regard to bandwidth,655

but shows much lower power consumption, therefore its
achieved power efficiency is higher.

The above results are used to calculate the normalised
values of the power efficiency as expressed by (1) and (2).
The calculated values are depicted in the efficiency chart660

shown in Fig. 9. Comparing the TCP and UDP groups,
the former one is less efficient, which can be explained by
the low bandwidth achieved by TCP protocols as shown
in Fig. 8 left. Comparing SoftiWARP protocols to plain
sockets, both over TCP and UDP, we can see that SIW665

is more power efficient in both cases. In all of the ex-
periments SIW TCP performs better than TCP sockets
and SIW UDP better than UDP sockets. This advantage
results from the design of the SoftiWARP receive path im-
plementation: after receiving iWARP packets into kernel670

memory, SoftiWARP directly copies their content into the
target application buffers. Making use of the one-sided
semantics of RDMA communication this final data place-
ment does not involve the scheduling of the receiving side
application process.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

8KB	 16KB	 32KB	 64KB	 128KB	 256KB	 512KB	 1MB	 2MB	

Po
w
er
	e
ffi
ci
en

cy
	

Message	size	

TCP	Sock	 UDP	Sock	 SIW	TCP	write	 SIW	UDP	write	

Figure 9: Power efficiency (in Gigabits per second per Watt) of 10 s
Netperf tests, receiving side. X axis - message size, Y axis - Power
efficiency.

675

Although these results are still based on software proto-
type of SoftiWARP UDP, we can already confirm that the
reduced data touching and the decreased overhead from
the OS lead to very desired characteristics and promising
results. The power consumption of SoftiWARP is lower680

than TCP or UDP sockets in all cases and the achieved
bandwidth is at least as good.

4.6. Behaviour in case of packet loss

Finally, we wanted to assess the behaviour of all the
tested protocols in case of significant packet loss. We have685

done this by emulating packet loss using the Netem net-
work emulation tool6 in the range of 0.1% to 10%. The

6https://wiki.linuxfoundation.org/networking/netem

1.4402E+12
1.4402E+12
1.4402E+12
1.4402E+12
1.4402E+12

0(

5(

10(

15(

20(

25(

30(

35(

40(

45(

0.10%(0.50%(1%(3%(5%(10%(

Ba
nd

w
id
th
)(G

b/
s)
)

)

Introduced)packet)loss)

TCP(Sockets(SIW(TCP(read(

UDP(Sockets(SIW(UDP(read(

SIW(TCP(write(SIW(UDP(write(

Figure 10: Achieved bandwidth with introduced packet loss.

achieved bandwidths can be seen in Fig. 10. The difference
between TCP-based and UDP-based protocols is signifi-
cant. The former tend to sustain their original bandwidth690

in the initial part of the tests as all the lost packets are
re-transmitted. However, with larger packet loss the net-
work is no longer capable to keep up with re-transmission
and the bandwidth gets significantly reduced. The UDP-
based protocols do not rely on the retransmission-based695

reliable communication implemented by the TCP proto-
col and are able to maintain the transfers on the same
level, regardless of the problems occurring along the link.
The only decrease in bandwidth is the actual amount of
packets that have been dropped. As we can see in the700

chart, this doesn’t hold true for the results of SIW UDP
RDMA Reads, which - as discussed earlier - are not yet
fully supported in our implementation. The protocol does
not yet recover from completely lost RDMA READ re-
quest/response pairs, which results in transfer breakdown705

as soon as the packet loss reached 3%.
The above results show that the use of a protocol that

relies on two-way communication and tries to provide full
reliability on the transport level, such as the TCP, can be
infeasible for a scenario such as the SKA. It is true that710

the introduced packet loss in our experiments was very
high, but the tests were performed for a short, local con-
nection. In the case of the SKA, where the connections
spread over hundreds of kilometres in length, we would
see a much more drastic influence of packet loss on the715

achieved bandwidth. This result confirms another reason
for the choice of an unreliable transport protocol for our
purposes. The power consumption in different packet loss
scenarios didn’t show any noteworthy behaviour. It corre-
sponded to what we have seen in our previous experiments,720

namely that with growing packet loss the energy consump-
tion was lower, because the achieved bandwidth was also
lower.

5. Conclusions and Future Work

In this paper we presented the data transport require-725

ments of the world’s largest radio telescope, the Square

9

Kilometre Array (SKA). We proposed a solution to meet
these requirements, namely an unreliable, datagram-based
iWARP protocol implementation. We have then presented
a prototype of such a protocol, called SoftiWARP UDP,730

and evaluated its performance and power efficiency to-
gether with those of TCP and UDP sockets. We have con-
firmed that UDP is a very good choice for long distance
transfer of astronomical data. The protocol overhead is
lower, which leads to lower power consumption. Further-735

more, the use of a reliable transport protocol is not feasi-
ble in a scenario such as the SKA, as it (1) leads to higher
power consumption, and (2) the data transfer quality soon
becomes unacceptable in case of non-negligible data packet
loss.740

Our software prototype of SoftiWARP UDP is already
capable of outperforming TCP and UDP sockets in terms
of power efficiency. This is a very desired result, however
we expect a much higher improvement of the power effi-
ciency with implementation of the SoftiWARP UDP pro-745

tocol in hardware, e.g. with FPGAs, which we leave for
future work on this subject. In typical RDMA solutions all
four lower network layers are handled in hardware. This
means that the efficiency of SoftiWARP UDP can be in-
creased significantly, reaching or even surpassing the effi-750

ciency of today’s hardware RDMA implementations.
Finally, our tests show that the DRAM power con-

sumption has a significant impact on the total consump-
tion and solutions for its reduction should be explored.
For this we will look into using flash storage technology755

instead of DRAM for data ingress, which is energy effi-
cient and offers high bandwidth and low-latency access.

Acknowledgment

This work is conducted in the context of the joint AS-
TRON and IBM DOME project and is funded by the760

Netherlands Organisation for Scientific Research (NWO),
the Dutch Ministry of Economic Affairs (EL&I), and the
Province of Drenthe.

References

[1] M. P. van Haarlem, M. W. Wise, A. W. Gunst, G. Heald, J. P.765

McKean, et al., LOFAR: The LOw-Frequency ARray, Astron-
omy & Astrophysics 556. arXiv:1305.3550.

[2] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, T. J. L. W. Lazio,
The Square Kilometre Array, Proceedings of the IEEE 97 (2009)
1482–1496. doi:10.1109/JPROC.2009.2021005.770

[3] J. W. Romein, P. C. Broekema, J. D. Mol, R. V. van Nieuw-
poort, The LOFAR Correlator: Implementation and Perfor-
mance Analysis, in: ACM Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP’10), Bangalore, India,
2010, pp. 169–178.775

[4] J. Romein, J. Mol, R. van Nieuwpoort, P. Broekema, Processing
LOFAR Telescope Data in Real Time on a Blue Gene/P Super-
computer, in: URSI General Assembly and Scientific Sympo-
sium (URSI GASS’11), Istanbul, Turkey, 2011.

[5] K. Yoshii, K. Iskra, H. Naik, P. Beckman, P. C. Broekema, Per-780

formance and Scalability Evaluation of Big Memory on Blue

Gene Linux, International Journal of High Performance Com-
puting Applications 25 (2011) 148–160, first published online
on May 12, 2010. doi:doi:10.1177/1094342010369116.

[6] P. C. Broekema, R. V. van Nieuwpoort, H. E. Bal, Exascale785

high performance computing in the square kilometer array, in:
Proceedings of the 2012 Workshop on High-Performance Com-
puting for Astronomy Date, Astro-HPC ’12, ACM, New York,
NY, USA, 2012, pp. 9–16. doi:10.1145/2286976.2286982.
URL http://doi.acm.org/10.1145/2286976.2286982790

[7] P. C. Broekema, R. V. van Nieuwpoort, H. E. Bal, The Square
Kilometre Array Science Data Processor Preliminary Compute
Platform Design, Journal of Instrumentation 10 (07) (2015)
C07004.
URL http://stacks.iop.org/1748-0221/10/i=07/a=C07004795

[8] J. L. Jonas, MeerKAT - The South African Array With Com-
posite Dishes and Wide-Band Single Pixel Feeds, Proceedings of
the IEEE 97 (8) (2009) 1522–1530. doi:10.1109/JPROC.2009.

2020713.
[9] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.800

Seitz, J. N. Seizovic, W.-K. Su, Myrinet: A gigabit-per-second
local area network, IEEE micro (1) (1995) 29–36.

[10] G. F. Pfister, An introduction to the infiniband architecture,
High Performance Mass Storage and Parallel I/O 42 (2001) 617–
632.805

[11] H. Subramoni, P. Lai, M. Luo, D. K. Panda, RDMA over Ether-
netA preliminary study, in: Cluster Computing and Workshops,
2009. CLUSTER’09. IEEE International Conference on, IEEE,
2009, pp. 1–9.

[12] M. Beck, M. Kagan, Performance evaluation of the RDMA over810

ethernet (RoCE) standard in enterprise data centers infrastruc-
ture, in: Proceedings of the 3rd Workshop on Data Center-
Converged and Virtual Ethernet Switching, International Tele-
traffic Congress, 2011, pp. 9–15.

[13] T. Gross, D. R. O’Hallaron, iWarp: anatomy of a parallel com-815

puting system, Mit Press, 1998.
[14] M. J. Rashti, A. Afsahi, 10-Gigabit iWARP Ethernet: compara-

tive performance analysis with InfiniBand and Myrinet-10G, in:
Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, IEEE, 2007, pp. 1–8.820

[15] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu,
D. Buntinas, P. Wyckoff, D. K. Panda, Performance compar-
ison of MPI implementations over InfiniBand, Myrinet and
Quadrics, in: Supercomputing, 2003 ACM/IEEE Conference,
IEEE, 2003, pp. 58–58.825

[16] M. J. Rashti, A. Afsahi, 10-Gigabit iWARP Ethernet: compara-
tive performance analysis with InfiniBand and Myrinet-10G, in:
Parallel and Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, IEEE, 2007, pp. 1–8.

[17] J. Liu, J. Wu, D. K. Panda, High performance RDMA-based830

MPI implementation over InfiniBand, International Journal of
Parallel Programming 32 (3) (2004) 167–198.

[18] D. Dalessandro, A. Devulapalli, P. Wyckoff, Design and Imple-
mentation of the iWarp Protocol in Software, in: Proceedings of
Parallel and Distributed Computing and Systems 2005, ACTA835

Press, 2005.
[19] D. Dalessandro, A. Devulapalli, P. Wyckoff, iWarp protocol ker-

nel space software implementation, in: Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International,
2006, pp. 8 pp.–. doi:10.1109/IPDPS.2006.1639565.840

[20] F. Neeser, B. Metzler, P. Frey, SoftRDMA: Implementing
iWARP over TCP kernel sockets, IBM Journal of Research and
Development 54 (1) (2010) 5:1–5:16. doi:10.1147/JRD.2009.

2036396.
[21] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, E. Weiss-845

mann, Power-Management Architecture of the Intel Microarchi-
tecture Code-Named Sandy Bridge, Micro, IEEE 32 (2) (2012)
20–27. doi:10.1109/MM.2012.12.

10

http://arxiv.org/abs/1305.3550
http://dx.doi.org/10.1109/JPROC.2009.2021005
http://dx.doi.org/doi:10.1177/1094342010369116
http://doi.acm.org/10.1145/2286976.2286982
http://doi.acm.org/10.1145/2286976.2286982
http://doi.acm.org/10.1145/2286976.2286982
http://dx.doi.org/10.1145/2286976.2286982
http://doi.acm.org/10.1145/2286976.2286982
http://stacks.iop.org/1748-0221/10/i=07/a=C07004
http://stacks.iop.org/1748-0221/10/i=07/a=C07004
http://stacks.iop.org/1748-0221/10/i=07/a=C07004
http://stacks.iop.org/1748-0221/10/i=07/a=C07004
http://stacks.iop.org/1748-0221/10/i=07/a=C07004
http://stacks.iop.org/1748-0221/10/i=07/a=C07004
http://dx.doi.org/10.1109/JPROC.2009.2020713
http://dx.doi.org/10.1109/JPROC.2009.2020713
http://dx.doi.org/10.1109/JPROC.2009.2020713
http://dx.doi.org/10.1109/IPDPS.2006.1639565
http://dx.doi.org/10.1147/JRD.2009.2036396
http://dx.doi.org/10.1147/JRD.2009.2036396
http://dx.doi.org/10.1147/JRD.2009.2036396
http://dx.doi.org/10.1109/MM.2012.12

	Introduction
	The Square Kilometre Array
	RDMA, iWARP and SoftiWARP
	Implementation of iWARP in software
	SoftiWARP
	Implementing an unreliable connected SoftiWARP service

	Experiments
	Power consumption of Chelsio T5
	Radio astronomy data flow
	Power consumption of SoftiWARP TCP
	Power consumption of SoftiWARP UDP
	Comparison of power efficiency
	Behaviour in case of packet loss

	Conclusions and Future Work

