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Abstract—The Square Kilometre Array is a next-generation
radio-telescope, to be built in South Africa and Western Australia.
It is currently in its detailed design phase, with procurement
and construction scheduled to start in 2017. The SKA Science
Data Processor is the high-performance computing element of the
instrument, responsible for producing science-ready data. This is
a major IT project, with the Science Data Processor expected
to challenge the computing state-of-the art even in 2020. In
this paper we introduce the preliminary Science Data Processor
design and the principles that guide the design process, as well
as the constraints to the design. We introduce a highly scalable
and flexible system architecture capable of handling the SDP
workload.

I. INTRODUCTION

Handling the data flow from the future Square Kilometre
Array (SKA) radio telescope is one of the iconic IT challenges
of the next decade. Phase one of this instrument will challenge
the state of the art in high-performance computing (HPC) even
in 2020, while the far more ambitious second phase is likely
to be at the forefront of computing in the decades to come.
The Science Data Processor (SDP) for the SKA is generally
described as a large HPC system, but the requirements on
the SDP are quite different than those on a general-purpose
supercomputer. While some of these requirements are more
stringent and require careful attention, the very targeted nature
of the SDP system allows us to be much less generic in
our design, potentially saving money and reducing energy
consumption.

This paper starts with an analysis of the requirements and
contraints that bound the SDP design space. Based on these
constraints, we define four SDP-wide priorities that guide our
design work, and discuss some of the underlying principles for
our detailed design. In this paper we introduce a flexible but
workload-driven system design philosophy that allows us to
tune the SDP hardware to its specific set of tasks. The concept
of SDP Compute Islands, independent and self-sufficient units
that represent the basic building blocks of the Science Data
Processor, is introduced next. Finally, we introduce a software-
defined network to improve the flexibility and robustness of the
data flow system. To explain the workload-optimised system
design strategy, we first introduce and analyse the required
workload.
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A. The Square Kilometre Array

The SKA is a next-generation radio telescope, phase one
of which is to be built in South Africa and Western Australia
starting in 2017. This global project is currently in its detailed
design phase. When completed, the instrument will consist
of two distinct telescopes, optimised for low-frequency and
mid-frequency observations. For a detailed description of the
SKAI system, we refer to the SKA1 baseline design [6] and
the corrections thereof [8]. Here we suffice with a summary
of the characteristics of the SKA phase one telescopes as
shown in Table I. In March 2015, the SKA underwent a major
rebaselining [2], the consequences of which are still being
evaluated. We provide an initial estimate of the computational
requirements for this redesigned SKA, but these numbers are
still being refined by the SDP consortium.

The SKA, in addition to being one of the premier science
instruments of this century, is considered a major IT challenge.
Table I shows the input bandwidth expected into the SDP
facilities and the compute capacity required as indicated by
our initial parametric modelling efforts [7], [9]. The required
compute capacity is a work in progress and does not take
computational efficiency into account, which means that in
reality the installed system (peak) capacity needs to be several
times larger. We expand on this in section II-A.

Figure 1 gives a high-level overview of the SKAI system,
showing the two (distributed) telescope receivers, the Central
Signal Processor (CSP, see Section I-B) systems and the
Science Data Processors. This paper will concentrate on the
Science Data Processor.

B. The SKA Science Data Processor

The Square Kilometre Array is an astronomical radio in-
terferometer. Data from the antennas are transported to the
Central Signal Processor, where the correlator produces cross-
products for each antenna or station pair. These so-called
visibilities are transported to the Science Data Processor,
where they are calibrated and turned into sky images. In the
SKA Science Data Processor, bulk data is ingested from the
Central Signal Processor, located at the telescope sites in the
South African and Western Australian deserts several hundred
kilometres away. Meta data is provided by the Telescope
Manager, and merged into the bulk data stream at this stage,
making the SDP internal data products self-describing.



SKA1 mid

SKA1 low

Location
Number of receivers
Receiver diameter

South Africa
197 (133 SKA + 64 MeerKAT)
15 m (13.5 m MeerKAT)

Western Australia
131,072 (512 stations x 256 elements)
35 m (station)

Maximum baseline 150 km 80 km

Frequency channels 65,536 65,536

SDP input bandwidth 5.2 Tbps 4.7 Tbps

Req’d Compute capacity [7] 24 PFLOPS 5.7 PFLOPS
TABLE I
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Fig. 1. The Square Kilometre Array top-level system overview for phase one of the project. This figure is based on similar images by the SKA Office.

Each visibility represents a point in the Fourier plane of
the observed sky. Making sky images, and calibrating these,
involves Fourier transforming these back into the image plane
using a two-dimensional FFT, making sure the visibilities line
up on the FFT grid (gridding) and applying corrections to these
(convolution). A detailed discussion on the required processing
is well outside the scope of this paper. The interested reader is
referred to the wealth of information available on the subject,
in particular [9], [11].

The SKA SDP is responsible for receiving SKA data
products from the CSP and for processing these into science-
ready data products. Furthermore, the SDP is responsible for
the safekeeping of these data products for the lifetime of the
telescope and delivery of these to external entities. Finally SDP
needs to compute calibration parameters and feed these back
into the system.

One SDP instance will be built for each SKA telescope
system, one in Perth, Western Australia, and one in Cape
Town, South Africa. While the compute requirements and

input bandwidths are similar for both telescopes, as shown
in Table I, compute charateristics such as required memory
footprint and bandwidth may be different. However, to sim-
plify design and operations, we aim to provide a single unified
SDP design, which is shared between the SKA telescopes.

II. REQUIREMENTS AND CONSTRAINTS

The design of the Science Data Processor is bound by
three main constraints: science, power and capital. First and
foremost, the Science Data Processor is required to provide
the systems and tools needed to meet the science requirements.
The high-priority SKA science cases have been identified [14],
but these are only described in limited detail [13]. Although
much of the detailed information is missing, especially with
respect to the implications of these science priorities, we can
begin to sketch a requirements outline. The primary require-
ment on the Science Data Processor is that the system must be
capable of efficiently running the processing pipelines required
to reduce astronomical data. Models of the processing required



to produce science-ready data have been developed, using
current state-of-the-art algorithms, to estimate the required
compute power [7], [9].

The locations of the SDPs are likely to impose a hard limit
on the power that can be consumed without incurring very
significant additional cost. Although no exact numbers are
available yet, the SKA Office has indicated that these limits
are not likely to exceed 5 MW per site. Furthermore, the
operational budget for the SKA is bound to impose a limit on
the amount of money that can be spent on electricity consumed
by the SDP, which may translate into a lower soft limit on
power consumption, which may be averaged over time.

Finally, as with any major science instrument, capital con-
straints are a major issue. The SKA board has approved a
cost cap for the construction of the SKA1 of 650 million
Euros. It is expected that the Science Data Processor will
be allocated approximately 20% of this budget. This includes
both SDP facilities, one for each telescope, and all soft-
ware procurement and development needed, but excludes the
building, cooling and power delivery. Software from existing
precursor and pathfinder telescopes is not expected to scale
to SKA requirements, which means that the SKA software
will have to be rewritten almost entirely from scratch. This
software development is likely to dominate the SDP budget,
which means that it is expected that less than half the SDP
budget will be available for hardware. To ensure optimal use
of the hardware, and considering the software will need to be
developed in parallel with the evolving hardware design, we
will spend significant effort designing a system that provides
maximum useful computational performance for minimal cost.
The Science Data processor design needs to fit within at least
these three constraints.

A. Defining the required SDP capacity

The required aggregate compute capacity of the SDP
(Rspp), assumed to be in double precision' floating point
operations per second (FLOPS), is defined by:

Ibw q

E )
where I, is the input bandwidth which is given in the
baseline design [6]. ¢ is the computational intensity> of the
processing required in FLOP/byte, an estimate of which for
each pipeline component is given in our parametric mod-
els [9]. Finally, F/ is the computational efficiency of those
same algorithms in fraction of available peak performance
(Rpeak)- Of these, computational efficiency is arguably the
most difficult to estimate since it depends on many factors,
such as chosen implementation, programmer talent, target
platform and data access pattern. There is an element of
hardware dependency in computational efficiency. This makes
it almost impossible to give an accurate estimate for the SDP

Rspp =

I'This assumption, and the possibility of using mixed precision during some
of the processing steps, is subject to further investigation.

2Computational intensity is defined as the number of floating point opera-
tions per byte of data moved.

efficiency, the hardware of which will only be procured after
2020. There are no roadmaps, public or under NDA, that look
that far into the future. Consequently we cannot say with any
degree of certainty what hardware will be used for the SDP.
We can investigate computational efficiency of the most costly
algorithmic components, an estimate based on our current
undestanding of the required processing, on current day best-
of-breed hardware. This shows very poor efficiency of at most
20% of Rpeax [1], [10].

B. Preliminary timeline

While the SKA phase one project starts its construction
phase immediately after finalising the detailed design, an
analysis of the required compute capacity over time shows
that building the SDPs for both telescopes can be postponed.
Considering the blistering pace of developments in computing
hardware, buying as late as possible has obvious advantages.
In addition, this avoids having massive amounts of expensive
operational hardware being idle. To support commissioning of
the receivers and early science, we introduce the concepts of
milli- and centi-SDPs. These are quite literally ﬁ and ﬁ
the size of a full SDP and will be designed and built not for
efficiency but for convenience. It is important to note that the
size of these initial SDP installations does not allow testing of
our software at scale. Figure 2 shows the preliminary timeline
for the SDP roll-out for the three systems.

III. SDP DESIGN PRIORITIES AND PRINCIPLES

The scale of the SDP surpasses that of all existing major
science instruments. We take a pragmatic approach to ensure
the feasibility of the SDP. In order, the Science Data Processor
as a whole prioritises the following characteristics:

1) Scalability

2) Affordability

3) Maintainability

4) Support current state-of-the art algorithms
To ensure the feasibility of the SDP, we will first and foremost
focus on designing a scalable system. We will prioritise this
even over an affordable system, since there is no use in having
an affordable system if it cannot scale to the required size.
Maintainability is a key challenge in this system, since it will
be orders of magnitude larger than anything done before in
radio astronomy. There are examples of similar sized systems,
in terms of numbers of nodes, in HPC and cloud environments,
but these have radically different requirements to SDP, which
we will explore in more detail in the next section. Finally,
we need to support, and more importantly size our system
based on, current state-of-the-art algorithms. In other words,
we cannot count on future developments in algorithm design to
solve our problems. Note that these priorities are not limited to
the hardware design, but span the entirety of the SDP design.

A. SDP top-level design considerations

Taking into account the design principles introduced above,
we make some key observations. The SKA SDP will be
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Fig. 2. Preliminary roll-out schedule for both SDP systems, based on the preliminary roll-out schedule of the antennas.

an integral part of an operational instrument, not a general-
purpose HPC system, handling massive amounts of signal
processing tasks. Some of these tasks will work on streaming
high bandwidth data, some on buffered data. There is a near
real-time component, handling the streaming data, and in
general the instrumental nature of the system brings with it
different reliability requirements compared to either HPC or
cloud environments.

This fact can also be leveraged. Since we don’t need to
support all workloads, the SDP can be designed to exactly
match the limited set of applications that it is required to run
most effectively. Furthermore, experience with pathfinder and
precursor instruments, LOFAR in particular [12], has taught
us that the vast bulk of SDP-like processing is embarrassingly
parallel in frequency and communication between tasks can
be limited by parallelising in that dimension. In our system
design we exploit this characteristic by designing a workload-
optimised system.

We also observe that the scale of the SDP will greatly
exceed that of existing large science instruments, such as the
Large Hadron Collider. Since the SDP is an integral part of
an operational system, hardware failures, and the associated
loss of scientific data, may have an impact on science quality.
A flexible data flow system that allows data to be easily
redirected from failed SDP components is therefore essential
to avoid having these disrupt operations.

IV. DATA FLOW MODEL

The defining characteristic of the SKA Science Data Pro-
cessor is the data flowing through the system. The streaming
nature of data into the system from the CSP correlator, and
indeed the bandwidth involved, is unprecedented. While the
computational challenges faced by the Science Data Processor
are significant, the data flow and relatively low computational
intensity of the processing involved, make the problem partic-
ularly hard to solve. Since the data flow defines the SDP, it is
logical to use the data flow, and in particular minimising this,
as a key design priority. Data transport systems, in contrast to
compute capacity, have the tendency to scale super-linearly in
cost and energy consumption, which supports this decision.

Moving large volumes of data is expensive, in time, energy
and required hardware. We therefore make use of the em-
barrassingly parallel nature of the SDP data flow and design

the SDP system to minimise the (inherently large) flow of
data. Data flow is directed such that all subsequent processing
requires little or no additional (long-range) communication.
The SDP is divided into numerous independent components,
the Compute Islands described in section VI, that are sized
to support end-to-end processing of the data directed to them.
Figure 3 shows a high-level overview of the SKA SDP data
flow.

The scale of the SDP means hardware failures will be a
regular occurence. A flexible data flow system is essential to
redistribute and redirect data flows around failed components
in the Science Data Processor. On a high level, SDP com-
ponents can be seen as subscribing to data flows from CSP
correlator entities. Every CSP entity produces a number of data
streams, each representing a fixed chunk of visibility space.
Each SDP component is responsible for a subset of visibility
space by subscribing to these CSP streams, directed by the
SDP local monitoring and control system.

V. TOP-LEVEL NETWORK DESIGN

The top-level SDP network architecture is shown in Figure
4. Three distinct networks are shown:

« the bulk data network, handling data ingress from CSP

o low-latency network, handling potential data reordering
and intra-island communication

« science archive network, handling data egress to the world
outside of SKA SDP

While these are shown as distinct entities, they may share hard-
ware resources. However, this must not impact performance
of in particular the bulk data network, since the data stream
from CSP is an unreliable UDP/IP based stream that does not
support retransmission of lost packets. On the other hand, the
ingress and egress networks are both used almost exclusively
in one direction each, making sharing of hardware resources
an obvious and attractive cost-saving option. A small-scale
prototype will determine if this is indeed a feasible design
option.

A. Software-defined networking in the SKA SDP

Experience with Ethernet-based precursor instruments, such
as LOFAR, has shown that such infrastructures are static
and fairly difficult to maintain [4]. The classic split between
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Fig. 3. The SDP top-level data flow. Data flows into the SDP switches from CSP, where it is directed to the subscribed SDP component(s). After ingest and
optional reordering of data through the Compute Island switch, identified by a X, data are buffered for iterative batch processing. Science ready outputs are

stored in the science archive and exported to the world outside of SKA SDP.

network and compute systems, in design, procurement, and
maintenance, does not fit well in our data flow driven design
philosophy. Since the data flow is the defining characteristic
of the SKA Science Data Processor, network and compute
systems must both be considered integral parts of one and the
same system.

In addition to this, a classic Ethernet-based network imposes
a very strong coupling between sending and receiving peers,
in this case the CSP-based correlator, and SDP ingest. Any
change in the data flow needs to be carefully negotiated
between sender and receiver, which may be hundreds of
kilometres apart. This contrasts with our desire for a flexible
data flow environment to effectively handle failures in the SDP.

We therefore propose to build a software-defined network
(SDN) infrastructure, which will become an integral part of the
SDP dataflow, and will fall under the direct control of the SDP
monitoring and control system. This means that the network is
no longer a static piece of infrastructure, but may dynamically
change configurations to suit the work flow requirements.
Such a software-defined network also allows an effective
decoupling of sending and receiving nodes. In this model, the
sending peers, the CSP correlator nodes, effectively send to
a virtual receiving node, which may or may not physically
exist. Receiving nodes subscribe to data flows from the CSP,
as directed by the data flow manager. A software network
controller directs physical data flows by having switches
modify Ethernet headers in transit to match receiving peers:
a classic publish-subscribe model, implemented in a network.
Support for these technologies is currently available in many
newer Ethernet switches from a variety of vendors. However,
this is a novel approach to building a sensor network, that
needs to be prototyped. A more in-depth discussion on the
relative merits of this approach is given in a recent SDP
memo [4].

VI. COMPUTE ISLANDS

In this paper we introduce the concept of a Compute Island,
a self-contained, independent collection of compute nodes, as

the basic replicable unit in the SKA SDP. Compute Islands
are sized such that they need only to processes data that is
contained in the island itself and intercommunication between
islands is limited. Some applications, such as multi-frequency
synthesis, require a number of gathers to be performed before
end-products can be combined. However, at this stage data
volumes are greatly reduced and a limited intra-island inter-
connect is sufficient to support this.

Figure 5 shows an overview of the Compute Island concept.
Note that although a Compute Island is represented by a single
rack of hardware in this figure, this is only illustrative. The
actual size of the Compute Island may span multiple racks,
or be limited to a fraction of a rack, depending on various
parameters discussed in more detail in section VII.

A Compute Island consists of a number of interconnected
Compute Nodes and associated infrastructure and facilities,
such as master and management nodes, networks and filesys-
tems. This makes each Compute Island self-sufficient and
largely independent of the rest of the system. The character-
istics of the Compute Nodes, in terms of compute resources,
memory and storage resources, are defined by the application
pipelines expected to run on them. In Figure 5 we show
a current state-of-the-art host and accelerator system as a
candidate Compute Node design, in which the CPUs handle
the near real-time ingest processing and the accelerators the
non real-time batch processing. Note that all components in
the Compute Island are currently expected to be commercial
of-the-shelf (COTS), both to reduce cost and to avoid lock-
in. Most of the infrastructure will be similar between the two
SDPs, but it is conceivable that the size of an island (e.g. the
number of compute nodes within an island) or the compute
node design itself differs between SDPs.

Within a Compute Island, a fully non-blocking interconnect,
with a per node bandwidth far in excess of the per node ingest
rate, is provided. This is primarily used for reordering data
between processing steps, ideally within a single island. The
same interconnect facilitates communication between islands
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Fig. 4. The SDP top-level network design

for inter-island reordering or global processing, but in this case
bandwidth will be much more limited and end-to-end transfers
may require several hops.

VII. SDP SCALING

While the total useful capacity of the Science Data Proces-
sor depends on many components, we identify three defining
characteristics that we will use to scale the system:

« Total computational capacity
o Computational capacity per Compute Island
¢ Characteristics per compute node.

The total computational capacity of a SDP, the aggregate
peak performance ([2,cax) expressed in PFLOPS, is defined
by the number of Compute Islands that make up the Science
Data Processor, a parameter that is freely scalable due to the
Compute Islands’ independent nature, and the capacity per
Compute Island. While this number is a useful way to express
the size of the system, its usefulness is limited since it does not
take computational efficiency into account. Ideally, the total
capacity of the system would be defined by the science or
system requirements, but considering the constraints discussed
above, it is more likely that total capacity will be defined by
the available budgets (energy, capital or operational).

Capacity per Compute Island is defined by the number of
compute nodes per Island, and the performance characteris-
tics of these nodes. This capacity is expressed in terms of
peak computational capacity, i.e. TFLOPS, but it is likely
that computational capacity will not drive the sizing of the
Compute Islands. Island capacity is defined by the most
demanding application, in terms of required memory (capacity
or bandwidth), network bandwidth, or compute capacity that
requires a high-capacity interconnect.

The basic building block of a Compute Island is the Com-
pute Node. The characteristics of these nodes are defined by
the design equations in [9] but within these bounds a vast
number of valid node designs can be identified. Considering
the timeframe of the SDP roll-out, which extends well beyond
the available industry roadmaps, the node definition is perhaps
the least well-understood component of the SDP design. The
SDP parametric model defines a number of ratio rules that de-
scribe suitable node designs. Within the bounds of these rules,
cost, energy efficiency and maintainability are considerations
that may be used to select optimal node implementations.

There is one key requirement that a compute node needs to
satisfy: if used to ingest data, only a very small percentage of
that data may be lost. In other words, these nodes need to be
scaled such that they comfortably satisfy the ingest real-time
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requirements and a sufficient number of these nodes need to
be available to receive all data from the CSP.

One interesting consideration is whether or not both SDPs
will be standardised on a single node design. Answering this
question requires a trade-off between the standardisation of
components on the one hand, and workload optimisation of
those same components on the other hand. Operational costs,
in particular energy versus deployment and maintenance cost,
will also play a key role in this decision. It is clear that this
decision cannot be made until more information is available
on the likely technology options available for nodes.

VIII. CONCLUSION AND DISCUSSION

In this paper we present an overview of the design consid-
erations and constraints for the SKA Science Data Processor.
This paper analyses the design constraints put on the SDP
hardware and identifies a number of key design priorities that
guide the design process. We present an initial, highly scalable,
preliminary design for the SDP which should both be suitable
and scalable while minimising procurement and operational
costs.

The preliminary design, presented in this paper, satisfies all
of these constraints. The independent and self-sufficient nature
of the Compute Islands make the design extremely scalable.
This modular approach also aids maintainability, since it
allows for easy replacement of failed components. Our flexible
data flow model, thanks to the software-defined network, is
also tailored specifically to account for failures. The focus on
hardware/software co-design and COTS components make for
a system that is as affordable as possible.

Although we are confident in the suitability of our design,
the detailed design is still in flux. Our timeline for construction
of the full systems in 2021 is well beyond any industry

roadmap, which makes technology selection difficult. This
also makes the scale of the SDP very difficult to estimate,
since computational efficiency is very hardware dependent.
However, the preliminary design presented in this paper is
scalable to such a degree that we feel confident that it can act
as a good basis for the detailed design during the next couple
of years.
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