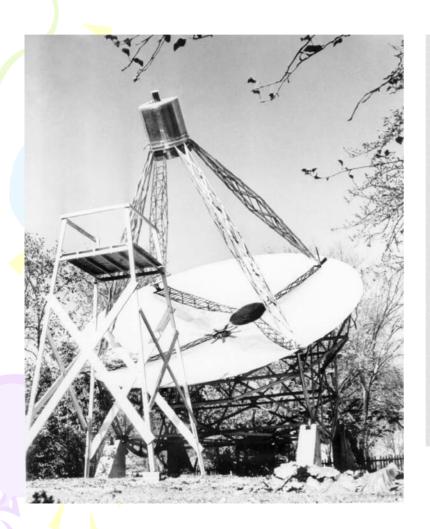
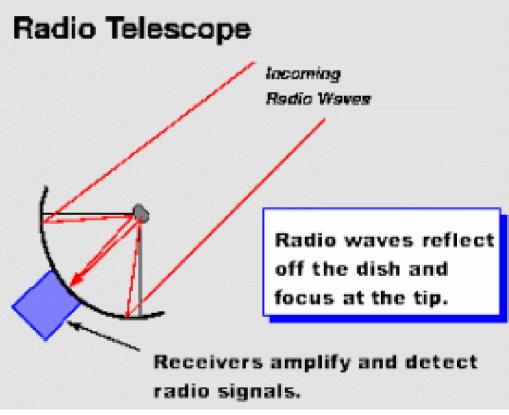
Lectures on radio astronomy: 2

Richard Strom NAOC, ASTRON and University of Amsterdam

Single element telescopes

How a parabolic reflector works is just geometry

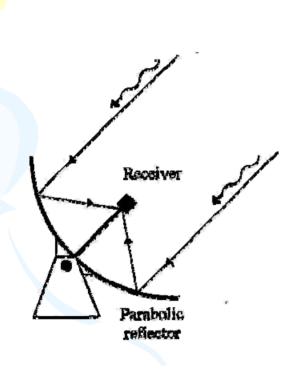


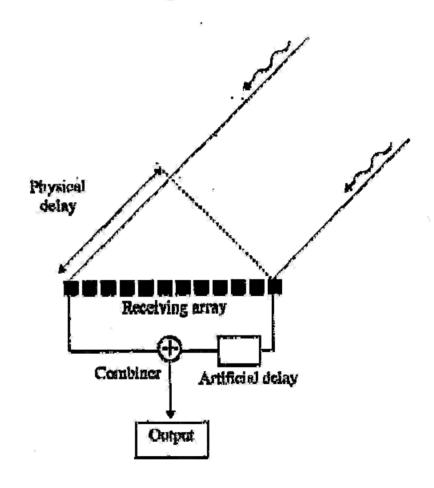


We need to understand how all antennas work

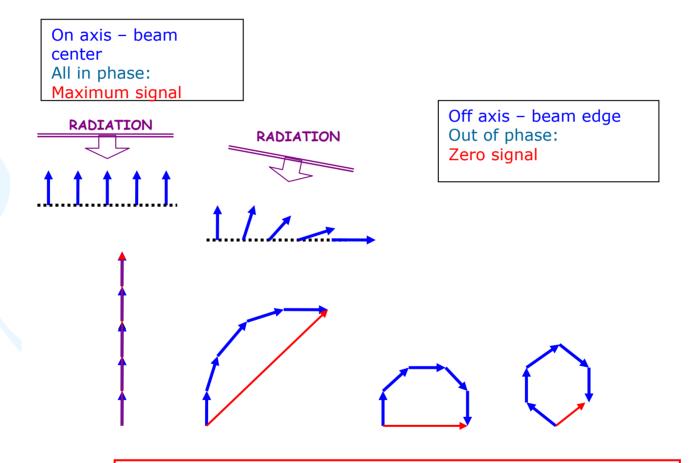


Imagine the antenna split up into several segments





This is what happens to beam response as we go off axis



The length of the vector as function of angle is $\sin \theta/\theta$ This is the Fourier transformation of the "top hat" – Π

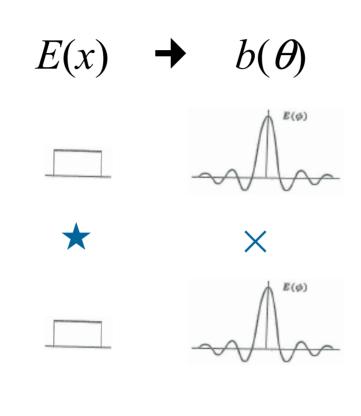
The response of an antenna

- Determined by the electric field distribution over the aperture, E(x)
- The beam is the Fourier transform [FT] of E(x): $b(\theta) = \int E(x) e^{2\pi i x \theta} dx$ or, $E(x) \rightarrow b(\theta)$ [\rightarrow = FT]
- $b(\theta)$ is the voltage beam The power beam $-b^2(\theta)$ - is found from the FT of the autocorrelation: $\int E(I) E(I+x) dI = E(x) \star E(x)$

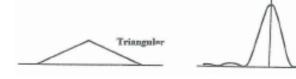
Aperture illumination and beam related through FT

Voltage

Voltage

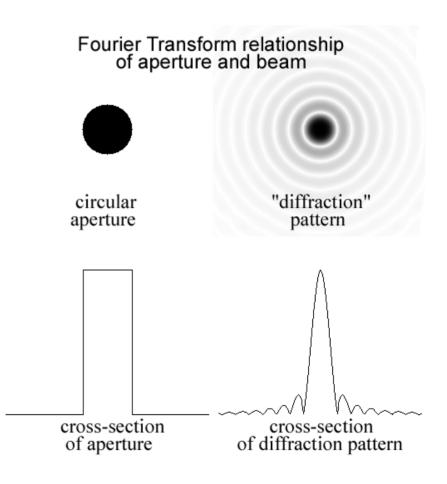


Power –
$$b^2(\theta)$$



So an antenna Fourier transforms the illumination

- When the vectors
 curl up to 0, one
 edge is 360° out of
 phase with other –
 this is first null.
- When vectors curl up twice, 2nd null
- See that beam size depends on D/λ



Illumination usually not uniform - can vary it, too

- ($\sin \theta$)/ θ is the voltage beam
- Power beam is $(\sin^2\theta)/\theta^2$
- Most feed systems taper illumination at edge
- Less spillover, lower sidelobes, but larger beam

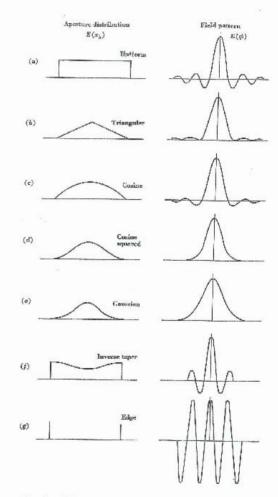
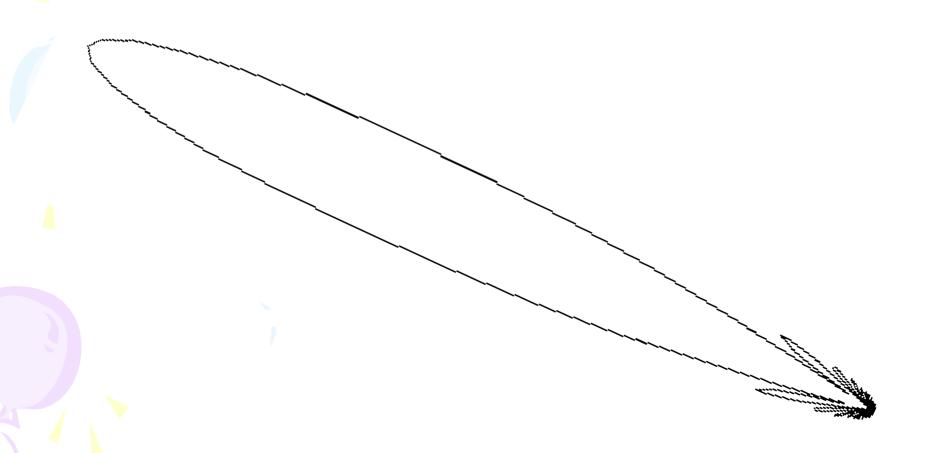


Fig. 6-9. Different aperture distributions with associated

Here's a telescope beam in angular coordinates



Observation: convolve the sky emission by the beam

- The power beam $-b^2(\theta)$ obtained from FT of autocorrelation of E(x): $\int E(I) E(I+x) dI = E(x) * E(x)$
- What an antenna actually "measures" is the convolution of the sky intensity distribution $I(\theta)$ with the beam pattern: $b(\theta) * I(\theta) = \int b(\varphi) I(\varphi \theta) d\varphi$
- The difference between convolution and correlation is the reversal of one function

Let's look more closely at convolution

- FT: $g(t) = \int G(f) e^{2\pi i f t} df$: $G(f) \rightarrow g(t)$
- Convolution:

$$g(t) * h(t) = \int g(x) h(t-x) dx$$

$$= \int g(x) \left[\int H(f) e^{2\pi i f(t-x)} df \right] dx$$

$$= \int \left[\int g(x) e^{-2\pi i f x} dx \right] H(f) e^{2\pi i f t} df$$

$$= \int \left[G(f) H(f) \right] e^{2\pi i f t} df$$

- so, $g(t) * h(t) \leftarrow G(f) \cdot H(f)$
- Often, take: convolution
 ≡ correlation

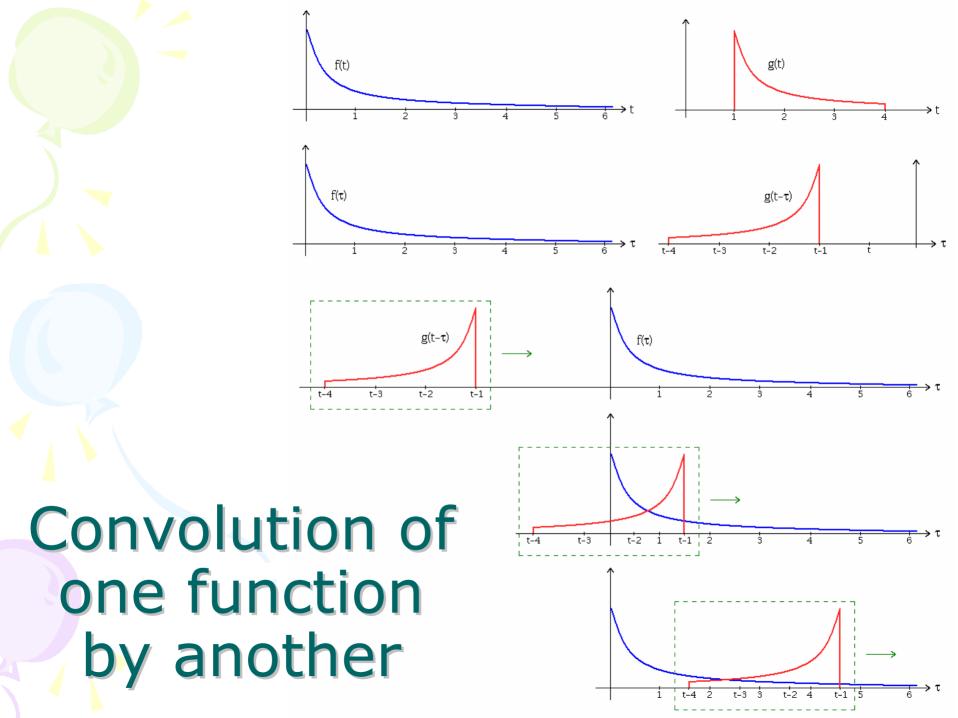


Illustration of the FT and image convolution relation

I(l,m) (a)	B(l,m) (b)	I(l,m)*B(l,m) (c)
Map	Beam	Dirty Map
V(u,v) (d)	S(u,v) (e)	V(u,v)S(u,v) (f)
Visibility	Sampling Function	Sampled Visibility

Observation: convolution of source by telescope beam

- This can also be seen as taking FT of source brightness (=visibility)...
- ...multiplying it by the FT of the telescope response (or beam)...
- ...and FT the result back to the image plane.
- May seem complicated, but fundamental to interferometers.
- We will return to this.

Derivation of the basic antenna equation for $S \& T_a$

Planck:
$$B = \frac{2hv^3}{c^2} (e^{-hv/kT} - 1)^{-1}$$
,

 $W m^{-2} Hz^{-1} sr^{-1}$

Rayleigh - Jeans : $h\nu \ll kT$ ("radio")

$$B \approx \frac{2hv^3}{c^2} \frac{kT}{hv} \left[\text{NB} : e^{-hv/kT} \approx 1 + \frac{hv}{kT} \right]$$

$$= \frac{2v^2kT}{c^2} = \frac{2kT}{\lambda^2} \qquad \left[\frac{v}{c} = \frac{1}{\lambda}\right]$$

Flux density :
$$S = \int B d\Omega = \frac{2kT\Omega}{\lambda^2}$$

Compact sources

Flux density:
$$S = \int B_s d\Omega = \frac{2kT_s}{\lambda^2} \Omega_s$$

Telescope beam:

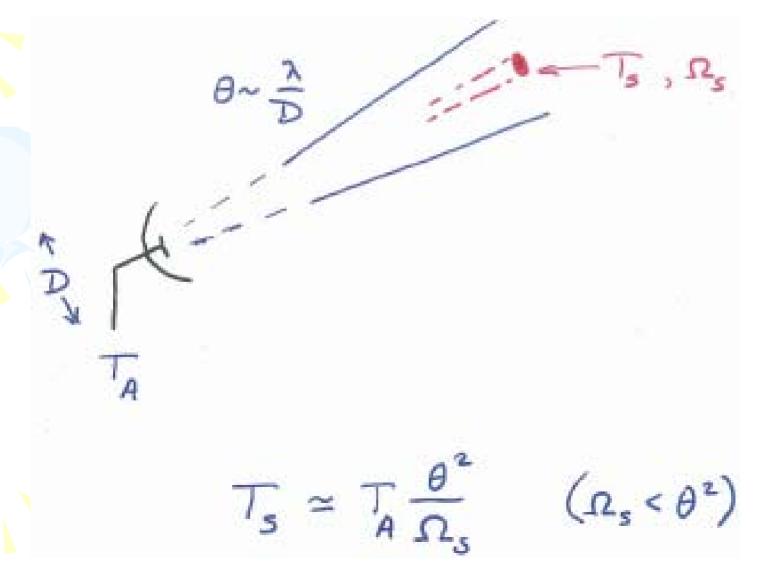
$$\begin{array}{c|c} \uparrow & & \sin \theta = \lambda / \ell \\ \hline \ell & & \theta \simeq \lambda / \ell \\ \hline \downarrow & & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & & & \\ \hline \downarrow & & & & \\ \downarrow & & & & \\ \hline \downarrow & & & & \\ \downarrow & & & & \\ \hline \downarrow & & & \\ \hline \downarrow & & & & \\ \downarrow & & & & \\ \hline \downarrow & & & \\ \hline \downarrow & & & \\ \hline \downarrow & & & & \\ \hline \downarrow & & & \\$$

2-D:
$$\theta^2 \simeq \lambda^2/\ell^2 \Rightarrow \Omega_a \simeq \lambda^2/A$$
beamwidth f cantenna avea

$$S = \frac{2kT_a}{\lambda^2} \Omega_a = \frac{2kT_a}{A} W m^{-2} Hz^{-1}$$

For many discrete sources: S~10-26 W m-2 Hz-1

Justification for replacing T_s and Ω_s by T_a and Ω_a



For a broad, uniform source, antenna size doesn't matter

Since
$$T_a = \frac{T_s \Omega_s}{\Omega_a}$$
, for $\Omega_s \ge \Omega_a$,

 $T_a = T_s$ (in a perfect antenna).

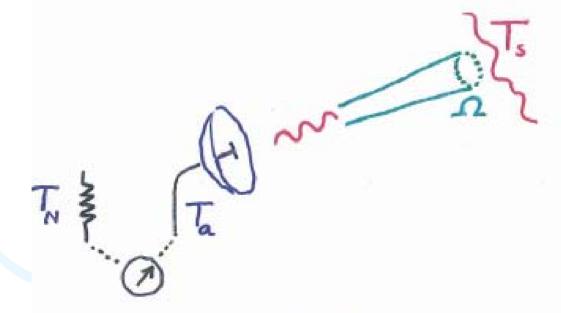
Moreover, note that $A\Omega_a$ (= λ^2) is constant, so increasing antenna area (A) will not increase signal power, P (= kT_a).

So for CMB detection, large & small horn gave same signal

R. H. Dicke and his colleagues calibrating a microwave radiometer using an ambient temperature absorber (Dicke is holding this panel, then referred to as a 'shaggy dog'. The photo dates from the mid-1940s. At about this same time (1946) Dicke *et al.* established an upper limit of 20 K on the cosmic background at microwave frequencies using similar apparatus.

Our telescope measures the sky temperature

Radio telescope as thermometer



$$T_a = \frac{SnA_{phy}}{2k}$$

calibration problem: 7 Apry = ?

Effective area and the system equivalent flux density (SEFD)

$$S = \frac{2 k T_{a}}{A} \quad (W \text{ m}^{-2} \text{ Hz}^{-1}) = 10^{26} \text{ J}$$

$$K = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

$$A \Rightarrow \text{ avea} = 490 \text{ m}^{2} \quad (25 \text{ m} \text{ dish})$$

$$A_{ply} = 490 \text{ m}^{2} \implies A_{ell} \cdot A_{ply}$$

$$-25 \text{ m} \implies A_{ell} \cdot A_{ply}$$

$$A_{eff} = \gamma A_{ply} = 0.4 \pm \gamma \pm 0.7$$

$$25 \text{ m} \text{ dish} : \frac{S}{T_{a}} = \frac{2 \times 1.38 \times 10^{-23}}{245 \text{ m}^{2}} = 11 \times 10^{-26} \approx \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{S/T}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

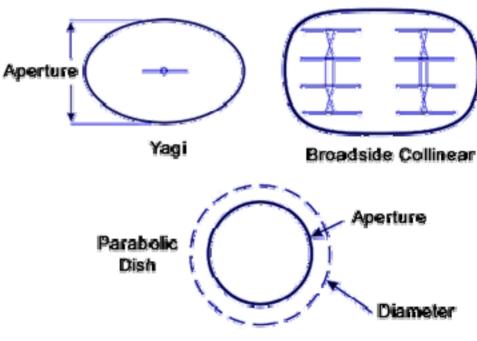
$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10 \text{ J}}{K}$$

$$\frac{Size}{25 \text{ m}} = \frac{10}{245 \text{ m}^{2}} = \frac{10}{245 \text{ m}^{2$$

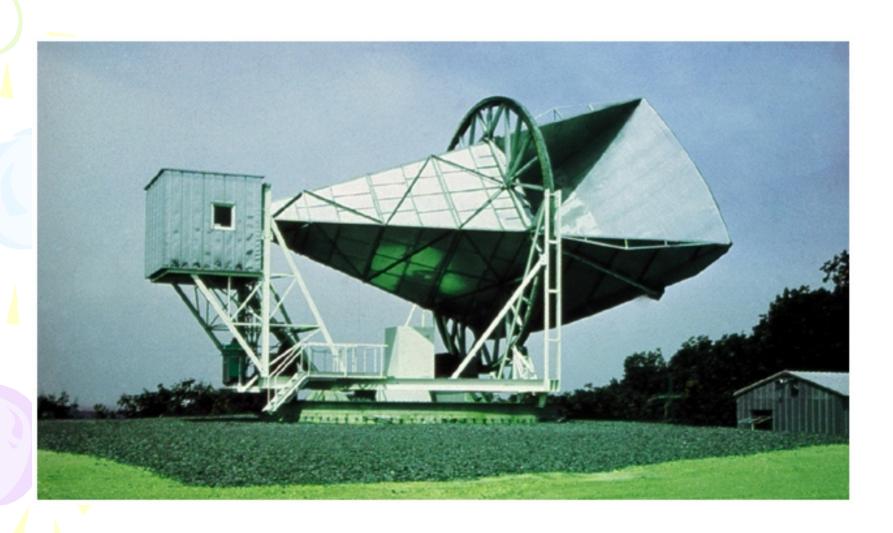
Collecting area? Might guess something like physical area

- For a parabola, the effective area (A_e) is always less than the physical area
- For a dipole, the effective area is roughly, $A_e = \lambda^2$
- Dipoles are most effective at long wavelengths!

Effective aperture (area) for different antenna types

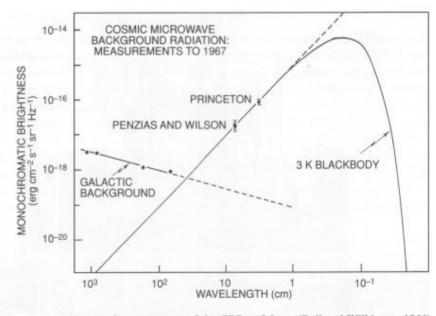


In fact, only horns have $A_e \approx \text{physical area}$



Absolute flux density determinations are difficult

- This is why CMB measurement didn't happen sooner
- Horns usually used at high frequencies
- Dipoles are usually used at the lower frequencies



A second measurement of the CBR at 3.0 cm (Roll and Wilkinson, 1966) confirms the discovery of a thermal background and refines the value for T_0 .

From the SEFD and system noise, derive observing time

The SEFD gives
$$T_a = \frac{S\eta A}{2k}$$
, $(\eta A = A_e)$

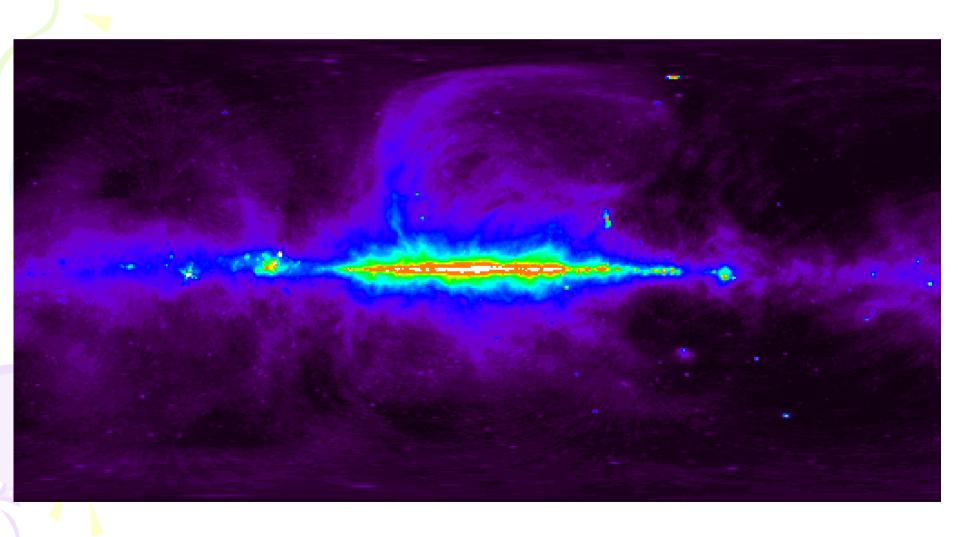
From the system noise, T_N , can calculate bandwidth $(\Delta \nu)$ and integration time (τ)

needed:
$$\sigma = \frac{T_N}{\sqrt{\tau \cdot \Delta \nu}}$$
. Usually want $T_a > 5\sigma$

Must remember that sky noise also contributes to T_N

- First there is emission from space:
 - The 2.7 K background
 - Diffuse emission from the Galaxy
 - Emission from the source itself
- 2.7 K is usually insignificant
- Galactic emission important at low frequencies (dominant noise source for v < 200 MHz)

The sky at 408 MHz



The atmosphere has an effect at short λ (<10 cm)

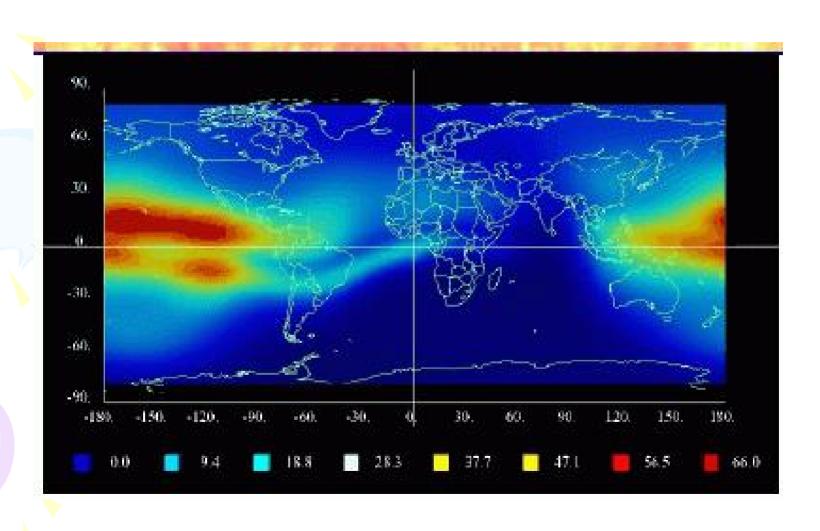
- 1. Part of signal absorbed: $S' = Se^{-\tau}$
- 2. More important, sky emission will

be picked up:
$$T' = T_{skv} (1 - e^{-\tau})$$

Example: for $\tau = 0.1$, S will be reduced

by 10%, and T_N will increase by $\approx 25 \text{ K}$

And at long wavelengths (>10 m), role of ionosphere



Rayleigh distance (or "near field" and "far field")

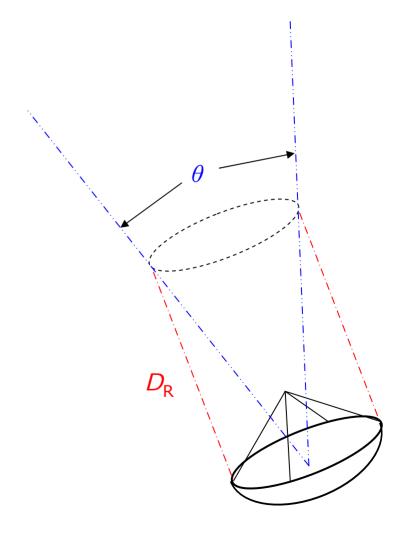
$$\theta \approx \frac{\lambda}{D}$$
; & $D_R \approx \frac{D}{\theta} \approx \frac{D^2}{\lambda}$

Example: $D = 25 \text{ m}, \lambda = 10 \text{ cm}$

$$\Rightarrow D_R \approx 6.25 \text{ km}$$

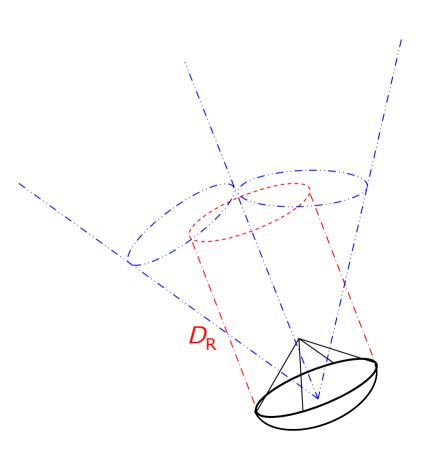
Only in *far field* (distance $> D_R$) do you have a true beam.

 \therefore Source distance $>> D_R$ (this is sometimes a problem with planets at short wavelengths). Also problem when measuring with transmitter.



At short wavelengths, can put 2 feeds in one dish

- These 2 beams pass through almost the same atmosphere.
- We can point one beam at source, other on empty sky.
- By switching between them, we can "switch out" sky signal.



Types of parabola feed systems – 1. prime focus

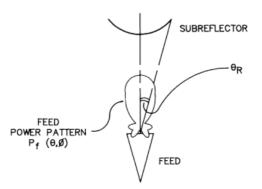
- Advantages are simplicity, cost, low blockage, wind loading, easy illumination
- Disadvantages are spillover, lower efficiency, space available

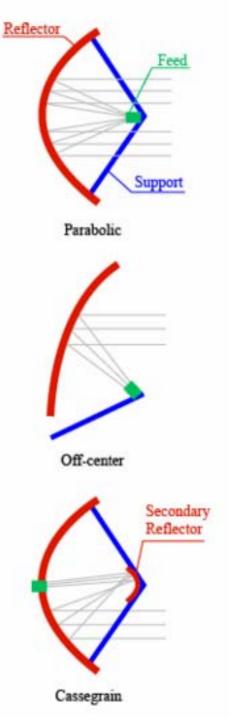
2. Secondary focus: Cassegrain or Gregorian

[Gregorian: concave mirror.]

- Advantages are lower spillover, better illumination (also "shaped"), more space.
- Disadvantages are wind loading, long λ feed (are short λ dishes), cost.

Some of the basic types of reflector and feed system combinations used with radio telescopes





Cassegrain and Gregorian reflector systems illustrated

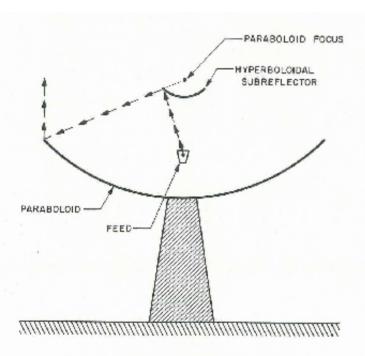
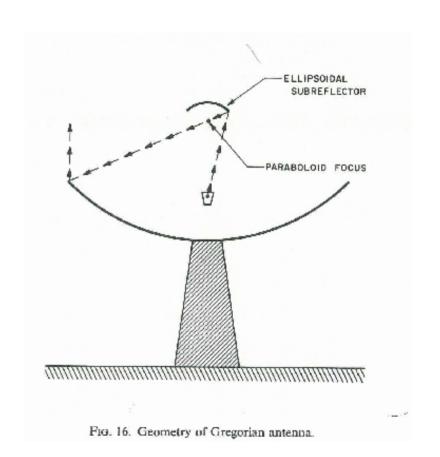
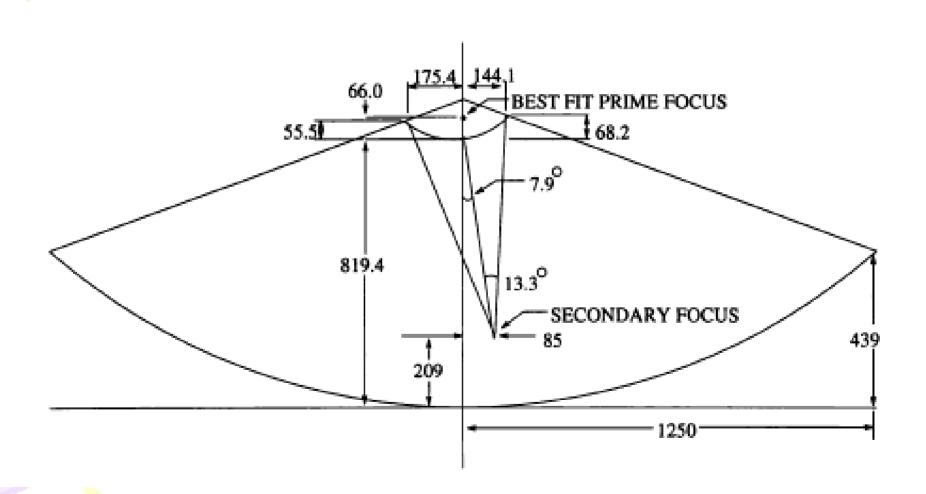


Fig. 15. Geometry of Cassegrain antenna.

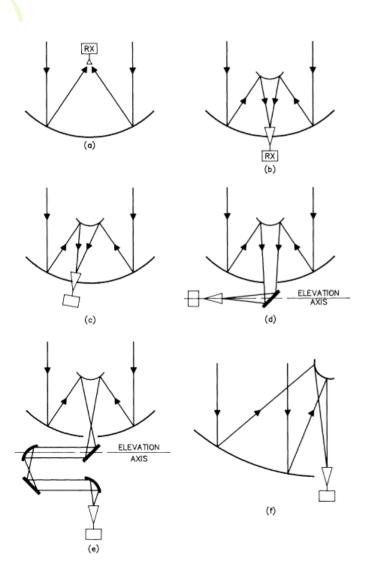


Sub-reflector and secondary off-axis foci in VLBA dish

Sketch of VLBA configuration

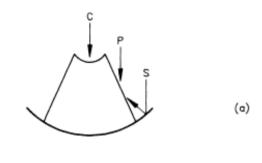


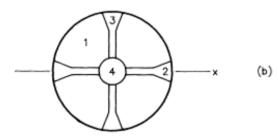
Location of focus: many variations are possible

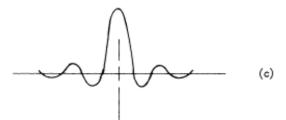


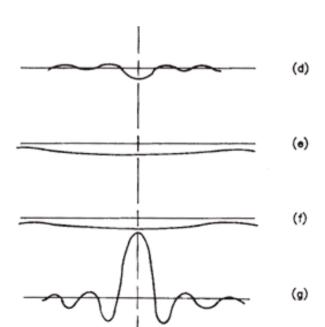
- a. Prime focus
- b. Cassegrain
- c. Off-axis Cassegrain
- d. Naysmith
- e. Beam waveguide
- f. Offset Cassegrain

The effects of blockage (a,b) on beam (c) can be modelled (d-g)

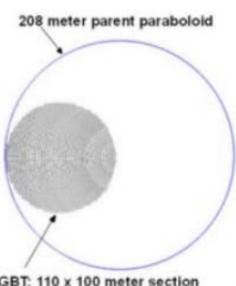








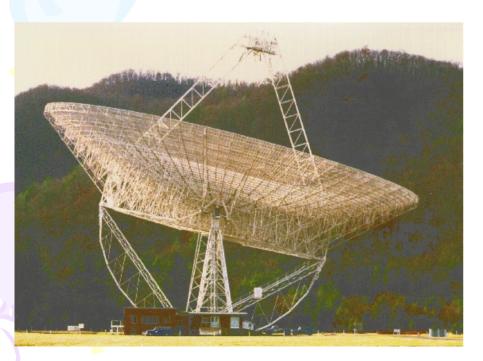
Offset secondary: no blockage or standing waves (but expensive)



GBT: 110 x 100 meter section

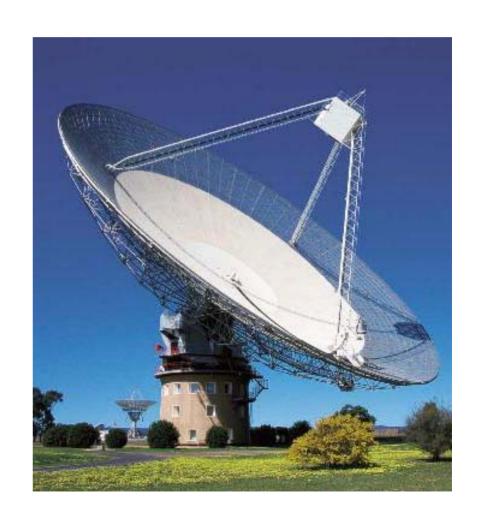
Building large surface and moving it is challenging and expensive

Greenbank 91 m telescope: meridian transit Inexpensive, "temporary" structure, but very useful as a survey instrument.
Unfortunately, one night...



Solid surface? Or mesh? Mainly question of cost

- Mesh can be good reflector, if holes have size « λ
- Mesh lighter, less wind loading
- Fixes shortest λ, some leakage
- Some dishes use mesh & solid

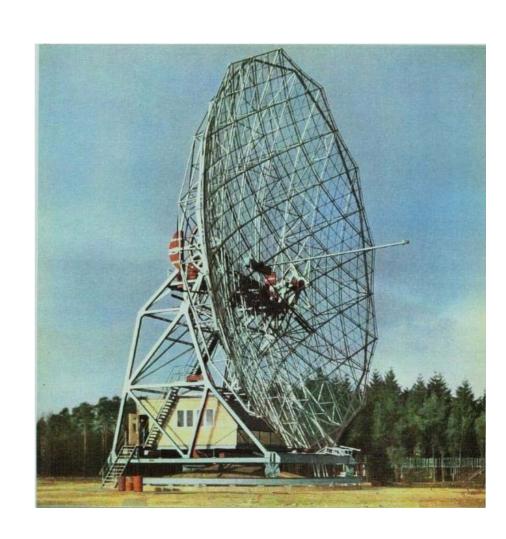


Reflector surface also affects antenna efficiency

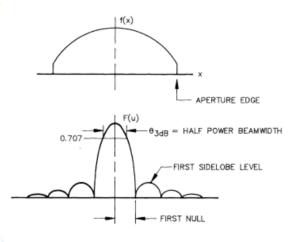
As λ shortens to near surface limit:

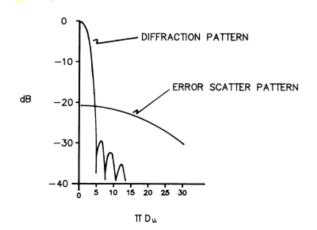
- because of mesh size, and/or
- because of surface irregularities

Efficiency, η , will decrease, lowering A_e (advantage of solid surface: no leakage)



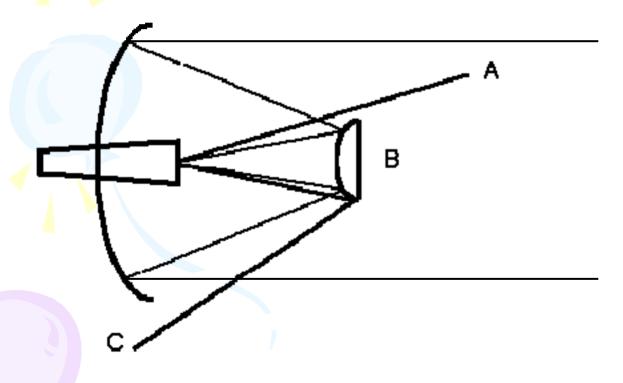
Surface irregularities give scatter sidelobes





- The beam pattern is determined by FT of illumination
- Irregularities of size λ/16 produce error scatter
- True beam pattern
 is sum of diffraction
 + scatter patterns

Why is A_e always $< A_{phy}$ in (parabolic) reflectors?

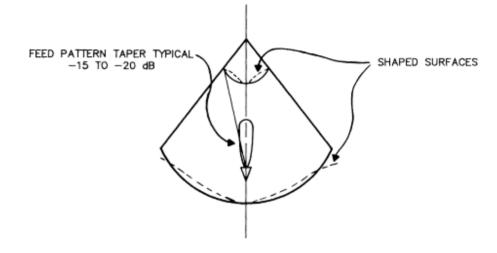


Main factors:

- Spillover
- Blockage of primary
- Surface imperfections
- Ohmic-losses
- Non-uniform illumination

We can use "shaped" dish to increase A_e (VLBA)





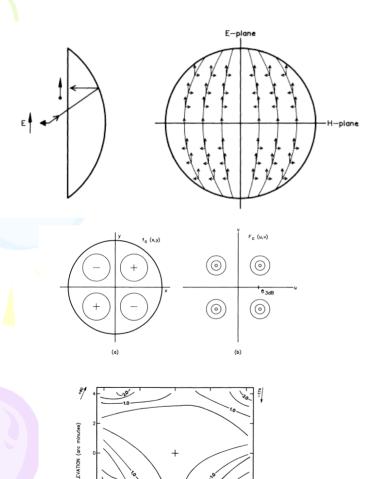
With one polarization, we lose half of the signal!

Most radio sources are weakly polarized (<10%).

To receive all of the emission, need to use 2 receivers.

Feeds should pick up orthogonal polarizations.

What is polarization response of parabolic dish?



- The *E*-field induced in the dish shows "barrel" distortion
- This gives unwanted components of E
- These are symmetrical and cancel on-axis
- But off-axis, we see apparently polarized emission

Next lecture we will look at interferometers

