
Radio-Astronomical Imaging on Graphics Processors

Bram Veenboer, John W. Romein

Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, The Netherlands
{veenboer, romein}@astron.nl

Abstract

Realizing the next generation of radio telescopes such as the Square Kilome-
tre Array (SKA) requires both more efficient hardware and algorithms than
today’s technology provides. The image-domain gridding (IDG) algorithm is a
novel approach towards solving the most compute-intensive parts of creating sky
images: gridding and degridding. It alleviates the performance bottlenecks of
traditional AW-projection gridding by applying instrumental and environmen-
tal corrections in the image domain instead of in the Fourier domain. In this
paper, we present a thorough performance analysis of this algorithm for an Intel
Xeon CPU, Intel Xeon Phi, and GPUs from AMD and NVIDIA. We show that,
by evaluating trigonometric functions in hardware, GPUs are both much faster
and more energy efficient than a CPU or Xeon Phi. Furthermore, on GPUs,
IDG is an order of magnitude faster and more energy efficient than traditional
AW-projection. IDG on GPUs is the ideal candidate imaging technique for the
SKA, as it meets the computational and energy constraints of the SKA Science
Data Processor system.

Keywords: Radio Astronomy, Imaging, Gridding, GPUs

1. Introduction

At the present time, the world’s largest radio telescope, the Square Kilome-
tre Array (SKA) [1], is being developed. It will consist of hundreds of dishes
and over 100,000 antennas. While it enables astronomers “to monitor the sky in
unprecedented detail” [1], it can “easily push computing requirements into the
exascale domain” [2]. However, even for existing telescopes such as the LOw-
Frequency ARray (LOFAR) [3], with in the order of 50,000 antennas grouped
into about 50 stations, data processing remains challenging – in particular, when
so-called direction-dependent effects (DDEs) have to be taken into account [4].
Only when the DDEs are corrected for, the high dynamic ranges imposed by
the high sensitivity and large fields of view of the new generation of radio inter-
ferometers are achieved [5].

Creating sky images is especially computationally intensive: both efficient
algorithms and processing methods are needed to meet the time and power
constraints of instruments such as the SKA [6]. According to a requirements

Preprint submitted to Astronomy and Computing March 26, 2020

analysis of a pipeline that creates sky images, the subparts of gridding and
degridding are the most dominant parts of the computation [2].

Presently, the most widely used algorithm for gridding or degridding is W-
projection [7]. This algorithm corrects for the so-called W-term in wide-field
imaging, which causes artifacts around sources away from the phase center.
The AW-projection [8] algorithm additionally corrects for DDEs (the A-term).
Especially the correction for DDEs makes AW-projection expensive. The Image-
Domain Gridding (IDG) [9] algorithm corrects for both the W-terms and the
A-terms, and addresses the limitations of traditional methods currently in use
by separating gridding from DDE correction. IDG is available as an open-
source library [10] and is already being used to process the data for various
radio telescopes, such as LOFAR [3] and the MWA [11].

We previously presented the first implementation of IDG in [12]: we analyzed
its performance and energy efficiency on a reference CPU platform and GPUs
from both AMD and NVIDIA. Although the performance on these GPUs was
bound by (shared) memory bandwidth, we showed that both GPUs were much
faster and more energy efficient than the CPU.

In this paper, we present the following new contributions: (1) we add an
optimized implementation for a fourth architecture: the Intel Xeon Phi Knights
Landing manycore processor; (2) we introduce our new GPU implementations
that are no longer bound by shared memory bandwidth and are optimized for
a wider variety of parameters. Consequently, IDG on GPUs now achieves even
better performance for widely-used imaging use-cases; (3) we introduce two
new execution schemes where both the CPU and the GPU are used to create
very large sky images; (4) we demonstrate superior performance and energy
efficiency of using this algorithm on GPUs over the traditional AW-projection
imaging approach; (5) we provide an analysis of the impact of IDG on the future
Square Kilometre Array radio telescope.

The rest of the paper is organized as follows: In Section 2, we provide the
necessary background on radio-astronomical imaging. After discussing related
work in Section 3, we describe the IDG algorithm in Section 4. In Section 5,
we describe how the algorithm is most efficiently mapped onto various devices.
In Section 6, we present experimental results, and uncover architectural and
other features that are most relevant to performance and energy efficiency. In
Section 7 we compare IDG to implementations of the W-projection and AW-
projection algorithms, and in Section 8 we analyze the implications of our results
for the SKA.

2. Background

A radio telescope detects electromagnetic waves that originate from radio
sources in the universe. The signals are used, among other things, to construct
a map of the sky containing the positions, intensity, and polarization of the
sources. In this paper we focus on interferometers such as LOFAR [3] where the
signals from separate receivers are combined to produce an image, thus not on
single-dish telescopes like FAST [13].

2

in
co
m
in
g
ra
di
o
w
av
es

baseline (pair of receivers)

receiver

× C I

correlation (1) calibration (2) imaging (3)

visibilities visibilities image

Figure 1: Incoming radio waves are received by a pair of receivers. Since the receivers are
spaced apart, the signal is out of phase. The visibilities – the correlations of these signals –
contain information on the amplitude and phase of the radio source.

As shown in Fig. 1, the creation of a sky image requires roughly three steps:
(1) the digitized signals from pairs of distinct receivers are correlated to produce
the so-called visibilities, (2) calibration is used to estimate and correct errors in
the data, and (3) an imaging step converts visibilities into a sky image. Each
visibility has an associated (u, v, w)-coordinate that depends on the location
of the receivers with respect to the observed sky. Due to earth rotation, the
(u, v, w)-coordinates of consecutive visibilities differ slightly. Therefore, every
pair of receivers (called a baseline) contributes a track of measurements in the
(u, v, w)-space, as detailed later in Fig. 9c.

Every antenna measures two orthogonal polarizations X and Y. Multiplying
and integrating (correlating) the signals of antenna q and r for a short period
of time (in the order of seconds) produces a single visibility for baseline (q, r).
A visibility contains all four combinations XX, XY , Y X and Y Y of a baseline,
hence V (q,r) ∈ C2×2. All relevant parameters for imaging are summarized in
Table 1.

The relation between visibilities and sky brightness, B(l,m) ∈ R2×2, is given

Name Symbol Additional information

observation time tobs ∈ R
receivers Robs ∈ N # elements in observation

baselines (q, r) Bobs ∈ N Bobs =
(Robs

2

)
time 1 ≤ t ≤ Tobs Tobs time steps
channel 1 ≤ c ≤ Cobs Cobs (data) channels
visibility V ∈ C2×2 Tobs × Cobs per baseline

integration time tint ∈ R tint = tobs
Tobs−1

Table 1: Imaging parameters.

3

by the following measurement equation [14]:

V pq =

∫
`

∫
m

Ap(`,m)B(`,m)AHq (`,m)
1

n
e−2πi(upq`+vpqm+wpq(n−1))) d` dm, (1)

where `,m ∈ R are the direction cosines of sky coordinates, n =
√

1− `2 −m2,
and Ap(`,m), Aq(`,m) ∈ C2×2 describe the aforementioned direction-dependent
effects (DDEs), see [8].

A sky image (a map of sky brightness) is reconstructed from the measure-
ment of many visibilities with distinct (u, v, w)-coordinates. In wide-field imag-
ing, the w-coordinate of the visibility has to be taken into account. Conse-
quently, there exists a three-dimensional Fourier-transform relation between the
sampled data and the image [15]. A sky image can be constructed by perform-
ing an non-uniform discrete Fourier transform from visibilities to image space.
This is a costly process, as the number of operations scales linearly with the
number of visibilities and quadratically with the number of pixels in the image.

By using W-projection, the three-dimensional samples can be projected onto
a uniform two-dimensional plane by gridding the visibilities [7]. In this operation
a convolution kernel is applied to each of the visibilities, see the top-right panel
of Fig. 3. In W-projection, gridding takes place in the frequency domain. After
gridding the visibilities, an inverse FFT is applied to the grid to get the image.

Astronomical observations are affected by variable gain effects that are broadly
classified as direction-independent effects (DIEs) and direction-dependent ef-
fects (DDEs) [8]. These gain effects can be estimated by a process known
as calibration. The gains due to direction-independent effects (such as beam-
patterns of the antennas) can be corrected for directly after calibration. The
time-dependent direction-dependent gain effects (the A-terms, such as variations
in the ionosphere) can only be corrected for during imaging.

In W-projection, the convolution kernels depend solely on the w-coordinate
associated with the visibility. For AW-projection, these kernels additionally
depend on time, frequency and baseline [8]. In practice, the convolution kernels
are precomputed on an oversampled grid to accurately map the non-uniform
visibilities onto a regular grid. The convolution kernels in W-projection and AW-
projection gridding form a potentially large multi-dimensional data structure
that scales quadratically in size with both the number of pixels in one dimension
of the convolution kernel and the oversampling factor.

In the imaging step (see Fig. 2), imaging (gridding and inverse FFT) and
prediction of visibilities (FFT and degridding) is typically repeated a couple of
times to construct a sky image using a variant of the CLEAN algorithm [16].

3. Related work

Currently, the most widely used gridding approach is known as W-projection [7].
This algorithm corrects for the W-term by means of a convolution in Fourier
space, but it does not correct for the DDEs (i.e., the A-terms). However, when

4

gridding iFFT CLEAN

FFTdegridding sky model

sky image

Fourier
grid

residual image

Fourier
grid model image

bright sources

measured
visibilities

model
visibilities

“imaging”

“predict”

Figure 2: Imaging is an iterative process, with image and predict typically being the most
time-consuming sub-parts of the pipeline. We implement the gridding and degridding steps
using the Image-Domain Gridding algorithm.

antennas are spaced far apart from each other (to resolve the high spatial fre-
quencies) and to observe large fields, the support of the W-terms can become
large, making this technique inefficient and memory intensive [17]. One ap-
proach to reduce the support of the W-terms is to split the image into facets [15].
Furthermore, W-projection gridding can be extended by W-stacking [18, 19] or
W-snapshots [18] to limit the support size of W-terms, at the cost of having to
sort the visibilities.

The computational challenge increases further when the correction for DDEs
is taken into account [17]. The correction of these so-called A-terms can be
done in a similar manner to the W-term correction – called A-projection. Ap-
plying both corrections results in the so-called AW-projection gridding [8]. AW-
projection is computationally expensive because the AW-terms have to be re-
computed frequently. This can be alleviated by combining DDE correction with
faceting such that a piecewise constant A-term is applied to each facet [20]. This
method has the disadvantage of taking DDEs into account in a discontinuous
manner in the image domain.

The Image-Domain Gridding (IDG) [9] algorithm corrects for both the W-
terms and the A-terms and addresses the limitations of traditional methods
currently in use by separating gridding from DDE correction. We presented the
first implementation of IDG for CPUs and GPUs in [12], and in [21], we showed
how we implemented IDG for an FPGA.

Most state-of-the-art imagers make use of one or more of the various grid-
ding algorithms and their implementations: e.g., CASA [22] and LOFAR’s AW-
Imager [5] use W-projection and AW-projection, while WSClean [19] uses W-
stacking only. We integrated IDG into WSClean such that all its features (data
handling, deconvolution, etc.) are maintained, while the existing inversion (grid-
ding) and predict (degridding) functionality are replaced by IDG.

The first efficient implementation of W-projection gridding on GPUs has
been reported in [23], and has been further improved since [24, 25]. To the
best of our knowledge IDG is currently the only GPU-accelerated imager that

5

W-projection gridding
using convolution kernels

Image-Domain gridding
using subgrids

subgrid

grid

visibility:
convolution:

subgrid:

channels

time

Figure 3: In traditional W-projection and AW-
projection gridding, visibilities are gridded using convo-
lutions in the frequency domain (top-right) as opposed
to correcting the W-term and A-term effects in the im-
age domain (bottom right). For the latter, neighboring
visibilities (indicated by thick dots) are gridded on small
‘subgrids’.

Vj : (1, C̄), (1, 1), (T̄ , 1), (T̄ , C̄)

subgrid

grid

Figure 4: A subset of visibilities (V,
black dots), including their associ-
ated AW-projection convolution ker-
nels (blue circles), is covered by a sub-
grid.

implements gridding and degridding with correction of DDEs.

4. Algorithm & Implementation

At the center of the Image-Domain Gridding (IDG) [9] algorithm are so-
called subgrids, which represent low-resolution versions of the sky brightness
for a small subset of visibilities, (see Figs. 3 and 4). IDG maps visibilities to
subgrids by performing a direct Fourier Transform at subgrid resolution. This
has the added benefit of allowing for cheap application of W-terms and A-terms.

4.1. The execution plan

Before gridding or degridding starts, an execution plan is generated that
specifies the subgrid locations and associated visibilities. The process of po-
sitioning the subgrids to cover all visibilities is implemented in the form of a
greedy algorithm that distributes the visibilities over subgrids. As depicted in
Fig. 4, not only the visibilities need to be covered by the subgrids, but also the
surrounding support of their associated AW-projection convolution kernels [9].
Thus, for each baseline, starting with the first integration period, and having
C̄ channels that can be covered by an N̄×N̄ subgrid, we include as many inte-
gration periods as possible (each with C̄ channels) until the support of the next
integration period is no longer covered by the subgrid. We use T̄ to denote the
number of integration periods on a subgrid.

We call each subgrid Sj (including its metadata such as its position in the
grid) together with its associated visibilities Vj , including (u, v, w)-coordinates,

6

1 complex<float> subgrid[P][N̄×N̄];
2 for i = 1..N̄×N̄ do
3 float offset = compute offset(s, i);
4 for t = 1..T̄ do
5 float index = compute index(s, i, t);
6 for c = 1..C̄ do
7 float scale = wavenumbers[c];
8 float phase = offset - (index × scale);
9 complex<float> phasor = cexp(phase);

10 for p = 1..P do
11 complex<float> visibility =

visibilities[t][c][p];
12 subgrid[p][i] += cmul(phasor, visibility);

13 end

14 end

15 end

16 end
17 apply aterm(subgrid);
18 apply taper(subgrid);
19 store(subgrid);

Algorithm 1: Gridding pseudocode that is executed for
every subgrid s in the gridder kernel.

gridding

gridder kernel gridder kernel

FFT FFT

adder kernel

image
subgrid

image
subgrid

Fourier
subgrid

Fourier
subgrid

visibilities visibilities

Fourier grid

Figure 5: The Image-Domain
gridding routine is a drop-in re-
placement for the gridding step
in Fig. 2. Subgrids are indepen-
dent of each other and can be
computed in parallel. The adder
kernel adds the subgrids onto the
grid.

a task. The set of all n tasks is called the work and is generated by an execution
plan.

4.2. Gridding and degridding

The work is processed by the gridder and degridder kernels in batches, using
Algorithm 1 and Algorithm 2 for every task, respectively.

A direct summation of visibilities to the subgrid is computationally feasible
as in practice the size of a subgrid N̄×N̄ is 4-6 orders of magnitude smaller than
the size of the grid N×N . After direct summation, A-term correction is applied
to each pixel of the subgrid. (The details of the A-term correction, which are
not critical for performance, can be found in [9].) Since we have performed
the corrections in the image domain, the subgrid has to be Fourier-transformed
before the result is added to the larger N ×N grid (i.e., four N̄ × N̄ FFTs per
subgrid, one for each of the four polarizations).

The entire process of gridding and degridding is illustrated in Figures 5 and 6,
respectively. Image-Domain Gridding consists of three steps: (1) the visibilities
are gridded onto subgrids by the gridder kernel, which applies Algorithm 1
for every subgrid s; (2) the subgrids are Fourier-transformed, this step will be
referred to as the subgrid-fft; (3) the transformed subgrids are added to the grid
by the adder kernel.

The cexp(phase) evaluation in Line 9 of Algorithm 1 comprises one evalua-
tion of cos(phase) and one evaluation of sin(phase). cmul denotes a complex
multiplication, which comprises four real-valued multiply-add operations. Thus

7

1 apply taper(subgrid);
2 apply aterm(subgrid);
3 complex<float> visibilities[T̄][C̄][P];
4 for t = 1..T̄ do
5 for c = 1..C̄ do
6 float scale = wavenumbers[c];
7 for i = 1..N̄×N̄ do
8 float index = compute index(s, i, t);
9 float offset = compute offset(s, i);

10 float phase = (index × scale) - offset;
11 complex<float> phasor = cexp(phase);
12 for p = 1..P do
13 complex<float> pixel = subgrid[p][i];
14 visibilities[t][c][p] += cmul(phasor,

pixel);

15 end

16 end

17 end

18 end
19 store(visibilities);

Algorithm 2: Pseudocode that is executed for every sub-
grid s in the degridder kernel.

degridding

degridder kernel degridder kernel

iFFT iFFT

splitter kernel

image
subgrid

image
subgrid

Fourier
subgrid

Fourier
subgrid

visibilities visibilities

Fourier grid

Figure 6: Degridding is the in-
verse operation of gridding, vis-
ibilities are computed taking a
grid as input.

for every evaluation of cexp(phase) in Line 9, 17 real-valued multiply-add op-
erations are performed, one in the computation of phase and 16 in the complex
multiplication of phasor with visibilities and addition to the subgrid in Line 12.
The offset (the position of the subgrid with respect to the center of the grid), the
index (the position of a pixel in the subgrid) and the wavenumber (frequency
dependent scaling factor) terms are used to compute a phase shift in Line 8. Be-
fore subgrids are stored (Line 19), correction for DDEs (Line 17) and a tapering
function (Line 18, to suppress aliasing, see [9]) are applied.

In IDG, these convolution kernels and the tapering function are two-dimensional
arrays where the size in number of pixels in one dimension is given by NW .
Consequently, the minimum number of pixels of the subgrid in one dimension
N̄ > NW . In practice, we use larger subgrids (e.g., N̄ = 32) so that multiple
visibilities and their associated AW-kernels are covered (see also Fig. 4).

The degridding step is similar to the gridding step, but proceeds in reverse
order: First, subgrids are extracted from the grid by the splitter kernel, then
every subgrid is Fourier transformed by an inverse FFT, and finally the asso-
ciated visibilities are predicted by the degridder kernel, which is similar to the
gridder kernel as shown in Algorithm 2.

4.3. Complexity

We now determine the complexity of Image-Domain Gridding. To this end
we first establish the complexity of the steps that are performed in the gridding
operation. The complexity of the gridder kernel for a single subgrid follows from

8

Algorithm 1:
Ogridder(T̄ C̄N̄2),

The complexity of a 2D FFT applied to a subgrid is:

Offt(N̄2logN̄2),

and the complexity of adding a subgrid to a grid is:

Oadder(N̄2).

If we assume an average of V̄ = T̄×C̄ visibilities per subgrid, the complexity of
gridding S subgrids is given by:

Ogridding(SN̄2(V̄ + logN̄2 + 1)).

We will refer to V̄ as the visibility density from now on. For a dataset with Vobs
visibilities, S is given by: S = Vobs × V̄ −1, therefore:

Ogridding(VobsN̄2(1 + V̄ −1logN̄2 + V̄ −1)).

The visibility density mostly depends on the size of the subgrid (N̄), the size
of the convolution kernel (NW) and the (u, v, w)-coordinates associated with the
visibilities.

The splitter kernel, 2D FFT, and degridder kernel in degridding have the
same complexity as the 2D FFT, adder kernel and gridder kernel in gridding, re-
spectively. The complexity of degridding is therefore the same as the complexity
of gridding:

Odegridding = Ogridding.

5. Implementation details

We demonstrated the first implementations of the IDG algorithm on an In-
tel Xeon CPU, as well as on GPUs from both AMD and NVIDIA in [12]. We
use well-known optimization techniques such as multi-threading, vectorization,
data-reuse, prefetching, memory-coalescing, latency hiding, and loop transfor-
mations. Since then we applied additional optimizations throughout, and added
optimized kernels for the Intel Xeon Phi architecture. In the remainder of this
section, we provide a high-level overview of the most important optimizations
and we will highlight significant changes and additions with respect to our pre-
vious work.

5.1. Single-precision gridding

It is not trivial to determine whether single-precision floating-point is suf-
ficiently accurate to obtain the maximum achievable dynamic range in a sky
image [26, 27, 28].

In a configuration as typically used in radio astronomy, IDG (using single-
precision) is shown to provide comparable accuracy to classical W-projection

9

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0

5

10

15

cores

T
h
ro
u
g
h
p
u
t

[M
V
is
ib
il
it
ie
s/
s]

Haswell Knl

Figure 7: On Haswell and Knl, subgrids are distributed over logical cores and are processed
in parallel. Throughput scales linearly with the number of physical cores used.

gridding [9]. Moreover, most compute architectures provide double the theoret-
ical peak performance when using single-precision arithmetic instead of double-
precision arithmetic. Therefore, we use single-precision floating-point operations
(flops) for the computations and data-structures in all our implementations and
omit the term “single-precision“ from here on.

5.2. Intel Xeon and Intel Xeon Phi

We implemented IDG for Intel Xeon CPUs (Haswell architecture) and for
the Intel Xeon Phi (Knights Landing) manycore processor in C++.

The Haswell architecture implements the AVX2 instruction set, which sup-
ports 8-element single-precision vector instructions, including fused-multiply
add (FMA). The Knights Landing architecture additionally supports the AVX-
512 instruction set, which doubles the vector length to 16 elements. The peak
floating-point performance for Haswell and Knights Landing is only achieved
when these vectorized FMA instructions are used. We therefore write the inner-
most loops of the gridder and degridder kernels in the form of a SIMD reduction
using the desired (vector) intrinsics.

The Haswell architecture has a three-level cache hierarchy combined with
DRAM, whereas Knights Landing has two cache levels and features 16 GB of
high-bandwidth MCDRAM next to DRAM. As we will show in Section 6.2, these
architectural differences do not significantly affect the performance of IDG.

On Knights Landing we found it beneficial for performance to reduce the
number of visibilities per subgrid when creating the execution plan. This exposes
more parallelism (more subgrids are created) so that the load can be better
balanced over all the cores in this many-core processor.

Both Haswell and Knight Landing support hyper-threading, which allows
multiple threads (two for Haswell, up to four for Knights Landing) to be exe-
cuted on the same physical core. We use the number of threads that gives the
best performance.

On both devices tasks (groups of subgrids with their associated visibilities)
are distributed over all logical cores (threads) using OpenMP. In other words,
each thread computes a subset of the subgrids. Given a sufficiently large number
of subgrids (which is typically the case), this method scales linearly with the
number of logical cores as we show in Figure 7.

10

5.3. GPU

We implemented IDG on GPUs in their native programming languages:
CUDA for NVIDIA GPUs [29] and OpenCL for AMD GPUs [30]. Apart from
differences in syntax and terminology, these programming languages offer the
same basic functionality. In the remainder of this paper we adhere to the CUDA
terminology.

GPUs have a number of Streaming Multiprocessors (SMs) with a number
of CUDA cores each. Every SM additionally contains a register file, load-store
units, dedicated caches and a software-managed cache (shared memory). We
used shared memory buffers throughout the gridder and degridder kernels to
process input data in batches. At this point, we also transpose the data to
optimize the memory access pattern.

Compared to our previous GPU kernels (see [12]) we applied the following
additional optimizations: (1) in the gridder kernel, every thread now computes
multiple pixels at once so that every visibility loaded from shared memory is
used to update multiple pixels; (2) the loop over channels in the degridder kernel
(Line 5 in Algorithm 2) is unrolled, such that index and offset can be reused
multiple times; (3) applying the A-term and tapering function is moved to a
separate kernel. Although this requires an additional pass from and to device
memory, the number of registers used in the gridder and degridder kernels is
reduced which increases occupancy and improves performance.

The GPUs that we consider are connected to a host machine and have dedi-
cated device memory, we thus have to copy any input and output data between
host and device. We use double-buffering to overlap I/O and kernel execution.

5.4. Sine/cosine

The sine/cosine evaluation on Line 9 of Algorithm 1 (the gridder kernel) and
on Line 11 of Algorithm 2 (the degridder kernel) is the most important factor
that impacts gridding and degridding performance on the various architectures.

On both the Haswell and the Knights Landing architectures, the evalua-
tion of sine/cosine is performed in software. We use Intel’s Short Vector Math
Library (SVML) or Vector Math Library (VML), whichever is fastest. Alterna-
tives for the sine/cosine-computations, such as Libmvec (a open-source vector
math library [31]) or a custom lookup table (based on integer arithmetic and
configurable precision), perform less well.

On NVIDIA GPUs, the streaming multiprocessors contain a number of
special-function units (SFUs) that implement the computation of both tran-
scendental functions and interpolation in hardware [32]. The SFU provides fast
approximations for sine/cosine with a maximum error of 2 units in the last place
(ulps) [33]. In contrast, on AMD GPUs, the sine/cosine evaluations are per-
formed by the same ALUs that also compute the FMAs, at a quarter of the rate
while the maximum error is implementation-defined [34, 35]. Both NVDIAs and
AMDs native instructions provide sufficient accuracy for IDG.

11

5.5. Scaling to large images

We implemented three distinct imaging schemes: GPU-only, hybrid, and
unified.

In the GPU-only scheme, all operations are performed on the GPU. It sup-
ports images that fit in device memory. Every pixel requires 32 bytes (4 po-
larizations × 8 bytes for every complex floating-point number). An image of
40,000× 40,000 pixels, for instance, thus is about 48 GB in size, which is more
than most GPUs currently available provide.

The hybrid imager performs the gridder and subgrid-fft on the GPU and
the addition to the grid on the host. As the image is kept in host memory, the
maximum size of the image is not bound by the size of the device memory.

NVIDA GPUs from the Pascal generation and newer support Unified Mem-
ory, which provides a single memory address space between any processor (CPU
or GPU) in the system. This is implemented using on-demand page migration.
When the GPU addresses a memory page that is not resident in device memory,
a page fault is generated and the corresponding page is migrated from host to the
device, possibly evicting another page. The grid is allocated on the host, while
the adder kernel is executed on the GPU. Instead of having to explicitly copy
the parts of the grid accessed in the adder kernel, the pages are automatically
migrated on demand.

This mechanism is an excellent match for the irregular yet localized memory
accesses encountered when adding subgrids onto the grid. There is no need to
keep track in software which parts of the grid are being updated and should
be copied to or from GPU memory, as this is all transparently resolved by the
CUDA Unified Memory runtime greatly simplifying the application. We will
refer to the implementations that use this feature as the unified imager. We use
a tiled memory layout for the grid such that pixels that are close together in the
grid are also close together in memory, reducing the number of pages migrated
when accessing the pixels corresponding to a subgrid, see also Fig. 8.

6. Performance analysis

In this section, after describing the experimental setup, we analyze the per-
formance of our implementation of the IDG algorithm (called Idg subsequently)
for each architecture in detail.

6.1. Experimental setup

All experiments were executed using the hardware listed in Table 2. We
refer to this hardware as Haswell (a dual-socket system with Intel Haswell-EP
processors), Knl (a system with one Intel Xeon Phi Knights Landing processor),
Vega (an AMD Vega Frontier Edition GPU) and Pascal (an NVIDIA Tesla
P100 GPU). Vega is hosted by a dual-socket Haswell-EP system, where the
GPU is connected using PCIe 3.0. Haswell, Knl and Vega are part of the
DAS-5 cluster [36]. Pascal is hosted by a Minksy system that is part of the

12

grid

pages

(a) Unified Memory (default)

grid

tile

(b) Unified Memory with tiling

Figure 8: With on-demand page migration, the Unified Memory subsystem copies pages of
memory (indicated in red) between CPU and GPU memory. In the default setting (on the
left), pixels that are (vertically) close together in the grid are covered by different pages. This
leads to inefficient use of the migrated pages as many pixels are not used. By tiling the grid,
pixels that are close together in the grid are also close together in memory. Therefore, the
number of page migration required for accessing neighboring pixels (e.g. in a tile, indicated
in green), is significantly lower than in the default setting.

Table 2: The Intel Haswell-EP CPU, Intel Knight Landing Xeon Phi, AMD Vega GPU
and NVIDIA Pascal GPU used in our experiments. We refer to these device as Haswell,
Knl, Vega and Pascal

Model Architecture Peaka) Mem size Mem bw TDP
(TFlop/s) (GB) (GB/s) (W)

Intel Xeon E5-2697v3 Haswell-EP 2.60 ≤1536 136 290
Intel Xeon Phi 7210 Knight Landing 5.32 ≤384 102 215
NVIDIA Tesla P100 Pascal 10.6 16 732 300
AMD Vega FE Vega 13.1 16 483 300

a) Single-precision floating-point performance, turbo-mode enabled.

13

Parameter Value

Robs 120
Bobs 7,140
Tobs 8,192
Cobs 16
tint 0.9

(a) Observation parame-
ters.

Parameter Value

NW 9
N̄ 32
N 8,192

(b) Imaging parameters.

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

u [km]

v
[k
m
]

(c) SKA-1 Low (u, v, w)-coverage.

Figure 9: We use (u, v, w)-data generated using a subset of proposed SKA1-Low station
coordinates [41]. Every baseline (pair of stations) contributes one track in this plane. The
resulting (u, v)-plane is filled with both ‘short baselines’ and ‘long baselines’ and therefore
representative for a wide range of imaging use-cases.

JURON cluster [37]. A Minsky system is based on the IBM Power 8 architecture,
and supports the high-bandwidth NVLink bus between the CPU and the GPU.

For Haswell and Knl, we used Intel’s compiler (version 19.0) together with
MKL (version 2019.0); for Vega, we used the AMD APP SDK 3.0 OpenCL
runtime and GPU driver version 2527.4; for Pascal, we used CUDA 9.2.88 and
GPU driver 410.48.

We use LIKWID [38] to measure the energy usage of both the package (CPU
cores and caches) and the DRAM for Haswell and Knl. For Vega, we mea-
sure the energy consumption of the full PCIe device, using PowerSensor [39].
Pascal uses a mezzanine connector unsuitable for PowerSensor and we therefore
resort the NVIDIA Management Library (NVML) to measure energy consump-
tion.

The (u, v, w)-coordinates in a dataset determine the subgrid configuration,
and hence the number of visibilities per subgrid and the total number of sub-
grids. We created a representative benchmark using proposed antenna coordi-
nates for the SKA1-Low telescope – the phase 1 subset of the SKA covering
the low frequency spectrum [40]. We use the dataset and imaging parameters
as shown in Table 9a and 9b, respectively. The (u, v)-plane for this dataset is
illustrated in Fig. 9c. The A-terms (in this benchmark, all set to identity) are
updated every 256 time steps. Therefore, dT̄ e = 256. We reduce T̄ when this
increases performance. Furthermore, C̄=C.

6.2. Performance comparison

For a single imaging cycle shown in Fig. 2 we present, respectively, the exe-
cution time for all kernels and overall throughput (measured in MVisibilities/s

14

Haswell Knl
0

50

100

150
R

u
n
ti

m
e

[s
ec

o
n
d
s]

gridder subgrid-ifft adder grid-fft
splitter subgrid-fft degridder

Pascal Vega
0

5

10

(a) Runtime distribution.

Haswell Knl Pascal Vega
0

100

200

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

gridding degridding

(b) Throughput comparison.

Figure 10: Distribution of runtime for one imaging cycle and comparison of throughput for
gridding and degridding.

= 106 Visibilities/s) in Fig. 10a and Fig. 10b.
For Haswell and Knl we additionally show in Fig. 7 that throughput scales

linearly with the number of cores used. On Haswell, hyper-threading has a
negligible impact on performance. On Knl, we use two threads per core as this
gives the highest throughput.

Both GPUs complete the task roughly an order of magnitude faster than
Haswell and Knl. For all architectures, runtime is dominated by the gridder
and degridder kernels (in all cases, more than 90% of the runtime). Since the
impact on the execution time of all other kernels is limited, we focus on the
gridder and degridder kernels for the remainder of this analysis.

6.3. Roofline analysis

In Fig. 11 we show roofline plots [42], where an operation (an op) is defined
as one of the following: +,−, ∗, sin(), cos(). The dashed lines correspond to the
upper bound for peak performance for the instruction mix of 17 FMA instruc-
tions and 1 sine/cosine evaluation as found in the gridder and the degridder
kernels, see [12] for details.

Both the kernels on Haswell and Knl, given the limitations of hardware
and the supporting mathematical library, achieve close to optimal. Furthermore,
since Knl is compute bound, we found no advantage of using high-bandwidth
MCDRAM over DRAM.

For our GPU implementations, unrolling over pixels (in the gridder) and
over visibilities (in the degridder) (see Section 5.3) increases the operational
intensity. In contrast to the results shown in [12], the GPU kernels are therefore
no longer bound by the bandwidth of shared memory. For Vega, the limiting
factor, like on the Haswell and Knl is the evaluation of sine and cosine.

Only on Pascal the measured performance approaches the theoretical peak
performance: 85% and 80% for the gridder and degridder kernel, respectively.
The difference between measured performance and theoretical peak performance

15

2 4 8 16 32 64 128 256 512 1024

0.1

1

10

H
as
we

ll

K
nl

Pa
sc
al

Ve
ga

gridderdegridder

gridder degridder

Operational intensity [Op/Byte]

P
er
fo
rm

a
n
ce

[T
O
p
/
s]

Pascal Vega Knl Haswell

Figure 11: Roofline analysis: one operation is +,−, ∗, sin() or cos(). Peak performance is only
achieved if non-masked FMA instructions (two operations) are used exclusively. While the
operation count is known exactly, the data movement is measured.

is mainly due to memory latencies that are not (fully) hidden. These laten-
cies are the result of a suboptimal memory access pattern for the A-terms and
(u, v, w)-coordinates. This effect is more pronounced in the degridder kernel,
where (u, v, w)-coordinates are not shared between threads. The occupancy in
the gridder and degridder kernels is too low to hide all memory latencies, but
the high register usage prevents the GPU from achieving a higher occupancy.

While the performance of the gridder and degridder kernels on Haswell,
Knl and Vega is bound by sine/cosine evaluations, on Pascal it is pretty
close to the theoretical peak and mostly limited by memory latencies. These
results indicate that Pascal is a very suitable architecture for IDG as it offers
a balanced mix of floating-point units, SFU units and shared-memory.

6.4. Energy efficiency

The total energy consumed during the execution of a single imaging cycle is
shown in Fig. 12a. As most of the time is spent in the gridder and degridder
kernels (Fig. 10a), the bulk of the energy is correspondingly spent in these ker-
nels. Thus, also in terms of energy efficiency, both GPUs outperform Haswell
by more than an order of magnitude. Knl proves to be more energy-efficient
than Haswell, by consuming 30% less energy in this task.

In Fig. 12b we present the energy efficiency of the individual kernels. Pas-
cal is the most energy-efficient GPU: for the gridder and degridder kernels,
it achieves about 53 GFlops/W. Second, but still with about 25 GFlops/W for
both kernels, comes Vega. The other architectures lag far behind the GPUs.
Haswell achieves only about 2.5 GFlops/W, while Knl is slightly more effi-
cient with about 4.1 GFlops/W.

6.5. Scaling to large images

As depicted in Fig. 2, both gridding and degridding are performed in or-
der to execute an imaging cycle. Therefore, we define imaging throughput as

16

Haswell Knl
0

5

10

15
E

n
er

gy
co

n
su

m
p
ti

o
n

[k
J
]

gridder subgrid-ifft adder grid-fft
splitter subgrid-fft degridder

Pascal Vega
0

1

2

3

(a) Energy-consumption distribution.

Haswell Knl Pascal Vega
0

20

40

E
n
er

g
y

effi
ci

en
cy

[G
F

lo
p
/
W

]

gridder degridder

(b) Energy-efficiency comparison.

Figure 12: Distribution of energy-consumption for one imaging cycle and comparison of
energy-efficiency for the gridder and degridder kernels.

the throughput for gridding and degridding combined. We show results for
our Hybrid and Unified imagers in Fig. 13, and compare them to GPU-only
imaging.

Up to grid sizes of about 16,000×16,000 pixels the entire grid fits in GPU
memory. The GPU-only imager achieves 235 and 230 MVisibilities/s for grid-
ding and degridding, respectively, resulting in an imaging throughput of 116 MVis-
ibilities/s. For the largest images that the GPU-ony imager can create, we have
to reserve the majority of the device memory to store the grid. Consequently,
the amount of memory available for other data (e.g. visibilities and subgrids) is
limited and this causes a minor performance degradation as this is not sufficient
to keep all SMs occupied all the time.

For images that do not fit in GPU memory we need to use either the hybrid
or the unified imaging scheme. We observe that the hybrid imaging scheme
performs lower than the GPU-only scheme. This can be attributed to the adder
and splitter kernels that run slower on the CPU than on the GPU, as we show
in Fig. 14a: in all cases the computation on the CPU takes longer than the
computation on the GPU.

There is a minor performance difference between the GPU-only and the
unified imaging routines for grid sizes up to 16,000×16,000 pixels. Since the
page migrations are overlapped with computation, the performance impact is
low. These results demonstrate that the performance of CUDA Unified Memory
and NVLink is excellent.

For larger images, not all parts of the grid covered by subgrids fit in device
memory. Consequently, the Unified Memory runtime spends more time moving
pages from and to GPU device memory than for the smaller grids – resulting in
a loss of performance that scales with the size of the image. We take a closer
look at the runtime distribution for the Unified imaging in Fig. 14b.

17

4096 8192 16384 32768 65536

40

60

80

100

120

12%
16%

32% lower

Grid size [N×N]

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

GPU-only imaging
Unified imaging
Hybrid imaging

Figure 13: Throughput for the Hybrid and Unified imagers. While the Unified imager
achieves almost identical throughput to the GPU-only imager, it also allows for larger images
at a modest throughput decline (about 12% for 40,000 × 40,000 pixel images). The Hybrid
imager performs about 32% lower than Unified, this is mainly due to the kernels that run on
the host, see also Fig. 14a.

8,1922 16,3842 32,7682
0

5

10

15

20

Grid size [N×N]

R
u
n
ti

m
e

[s
ec

on
d
s]

gridder subgrid-ifft adder
degridder subgrid-fft splitter

(a) Hybrid runtime distribution.

8,1922 16,3842 32,7682
0

5

10

15

20

Grid size [N×N]

R
u
n
ti

m
e

[s
ec

on
d
s]

gridder subgrid-ifft adder
degridder subgrid-fft splitter

(b) Unified runtime distribution.

Figure 14: In Hybrid gridding (Fig. 14a), the gridder and subgrid-ifft are executed on the
GPU, while the host in the meantime executes the adder, and vice versa for degridding. For
both gridding and degridding, the computation on the host takes longer than the computation
on the GPU and thus limits throughput. In the case of Unified (Fig. 14b), the runtime for
the adder and splitter kernels increases for larger images, as more tiles of the grid have to be
migrated between host and device memory. For both imagers, the throughput is affected by
a reduced visibility density for large images.

18

2 4 6 8 10 12 14 16

6

7

8

9

10

channels

P
er
fo
rm

a
n
ce

[T
F
lo
p
/
s]

gridder degridder

(a) Kernel performance.

2 4 6 8 10 12 14 16

100

150

200

250

channels

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

gridding degridding

(b) Routine throughput.

Figure 15: The gridder and degridder performance is relatively consistent for all values of
C̄. The degridder kernel on average performs about 7% lower than the gridder kernel. For
large values of C̄, throughput is mostly determined by the time spend in the gridder and
degridder kernels (see Fig. 10a). For small values of C̄, the time spend in the other kernels
(e.g. the subgrid-fft and the adder kernel for gridding) negatively affects throughput. In case
of spectral-line imaging (where C̄ = 1), throughput is reduced to about 60% of the throughput
for cases where C̄ is larger.

6.6. Imaging a different number of channels

So far, we have shown results for C̄ = 16, but the gridder and degridder
kernels also achieve good performance for different settings of C̄, as we show for
Pascal in Fig. 15a. This is an appealing property, for instance for spectral-line
imaging, where C̄ = 1. As shown in Fig. 15b, throughput is affected for small
values of C̄. As we showed in the complexity analysis of IDG in Section 4.3,
this can be explained by looking at the visibility density (V̄): for small values
of C̄, the runtime becomes dominated by the time spent in the subgrid-fft and
in the adder kernel (for gridding) or splitter kernel (for degridding).

With a fixed setting of N̄ and Cobs > C̄, not all Cobs channels might fit on
a single subgrid. In this case IDG will create multiple subgrids with at most
C̄ channels each to cover all Cobs channels. The throughput for processing of
Cobs channels will therefore be comparable to the throughput for processing C̄
channels. For large values of Cobs, the dataset is typically split into multiple so-
called subbands that are processed independently, possibly even using multiple
machines.

7. A comparison with AW-projection

In this section, we compare Idg with the W-projection implementation in-
troduced in [23]. The aim of this comparison is to estimate how IDG performs
in comparison with traditional W-projection. We provide background in sec-
tion 7.1 and refer to it as Wpg from now on. One of the distinguishing features
of IDG is the support for direction-dependent corrections (A-term correction)
and we would like to compare its performance to AW-projection. However, as

19

no efficient AW-projection implementation was available, we extended Wpg to
include A-term correction to make a complete comparison. We refer to this code
as AWpg.

7.1. Background

The minimum size of the W-kernels NW×NW is determined by the observa-
tion settings (the instrument, the field of view, the target location, etc.) [8, 5].
Furthermore, the size of the W-kernel depends on the baseline length. For LO-
FAR, the W-kernel can be as large as 500×500 pixels for the longest baseline. In
practice, W-stacking is used to limit NW to small values in all situations (e.g.,
NW ≤ 16) [18, 19].

7.2. Experimental setup

In order to implement AWpg, we modified Wpg taking the following prop-
erties for AW-projection gridding into account: (1) The AW-kernel is different
for every baseline; (2) the AW-kernel changes after a (fixed) number of time
steps; (3) the AW-kernel is constructed by combining the W-kernel with the
A-term; (4) the A-term, like in Idg, is provided in the image domain; (5) a
Fourier transformation is performed to get the AW-kernel into the Fourier do-
main. With these properties in mind, we modify Wpg to create AWpg.

In the original Wpg code, the W-kernel is generated only once for the entire
observation. Due to modifications (1) and (2), this is not possible for AWpg.
The amount of (device) memory required for the full AW-kernel is prohibitively
large and we therefore interleave the computation of the AW-kernel with grid-
ding. We implement the computation of the AW-kernel according to property
(4) and (5), a Fourier transformation of the AW-kernel is performed before the
gridder kernel is executed. Pseudocode for AWpg is shown in Algorithm 3. Like
in Idg, the FFT is performed using an FFT library (e.g. using FFTW or Intel
MKL). For the GPU implementation of AWpg, the Fourier transformations are
performed on the GPU, using cuFFT.

20

8 16 32 64
1

10

100

1,000

W-kernel size NW

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

IDG
Wpg
AWpg

(a) CPU throughput

8 16 32 64
1

10

100

1,000

W-kernel size NW

T
h
ro
u
gh

p
u
t
[M

V
is
ib
il
it
ie
s/
s]

IDG
Wpg
AWpg

(b) GPU throughput

Figure 16: On Haswell, Wpg is the fastest gridder (but does not correct for DDEs). Idg
performs similar to AWpg for large kernel sizes. On Pascal, Idg outperforms both AWpg
and Wpg, for all kernel sizes.

1 for bl = 1..Bobs do
2 for ts = 1..Tobs..T̄ do
3 int NW = compute kernel size(bl, ts);
4 complex<float> wkernel = compute wkernel(NW);
5 complex<float> awkernel = compute awkernel(bl, ts, NW , wkernel);
6 awkernel = apply 2d fft(awkernel);
7 for t = 1..T̄ do
8 for c = 1..Cobs do
9 for k = 1..(NW×oversampling)2 do

10 complex<float> weight = awkernel(k);
11 for p = 1..P do
12 int idx = compute index(bl, t, c, k);
13 complex<float> visibility = visibilities[t][c][p];
14 grid[p][idx] += cmul(weight, visibility);

15 end

16 end

17 end

18 end

19 end

20 end
Algorithm 3: This pseudocode for AWpg illustrates two main difference between AWpg
and IDG: (1) in AWpg kernels are computed prior to gridding, while IDG computes them
on-the-fly; (2) AWpg grids each visibility directly onto NW×NW pixels in the grid, while
IDG grids onto subgrids of N̄×N̄ pixels. In this pseudocode T̄ denotes the length of a
timeslot for which the same A-term is applied. Like in [23], we use an oversampling rate
(oversampling = 8).

7.3. Performance comparison

With the above in mind, Fig. 16a and 16b show the performance on Haswell
and Pascal respectively for various values of NW .

On Haswell, Wpg outperforms Idg by quite a large margin, for all kernel
sizes, but recall that Wpg does not correct for DDEs (affecting image quality).

21

8 16 32 64
0.001

0.01

0.1

1

10

W-kernel size NW

E
ffi

ci
en

cy
[M

V
is

ib
il
it

ie
s/

J
]

IDG
Wpg
AWpg

(a) CPU efficiency

8 16 32 64
0.001

0.01

0.1

1

10

W-kernel size NW

E
ffi

ci
en

cy
[M

V
is

ib
il
it

ie
s/

J
]

IDG
Wpg
AWpg

(b) GPU efficiency

Figure 17: In relative terms, these energy-efficiency results match the throughput results in
Fig 16. On Haswell, Wpg is the most energy-efficient gridder. Idg is more energy efficient
than AWpg for large kernel sizes. Furthermore, also in terms of energy efficiency, on Pascal,
Idg is more energy efficient than both Wpg and AWpg.

Both curves show a decline in throughput as the size of the kernel (and hence
the amount of computations per visibility) increases. The throughput of AWpg
is about 2−3× lower than the throughput of Wpg. This is mainly caused by the
additional time spend in the Fourier transformation to compute the AW-kernel.
The performance of the FFT is highly sensitive to the size of the transformation.
Therefore, we use a larger kernel size when this increases overall throughput.
We observe that on Haswell, Idg is faster than AWpg for larger values of
NW . On Pascal, Wpg on average performs about 4× better than AWpg.
The highest overall throughput is achieved on Pascal using Idg. On Pascal,
IDG outperforms AWpg by almost an order of magnitude.

Improvements to the GPU implementation of Wpg can increase its perfor-
mance twofold from roughly 28% of the peak floating-point performance (which
we measured in our tests) to 55% in the best case [25]. This implementation of
W-projection is available at [43]. Even if Wpg and AWpg on Pascal would
be twice as fast, they would still be outperformed by Idg.

7.4. Energy efficiency comparison

We measured the energy consumption for Wpg, AWpg and IDG on Haswell
and Pascal and found some notable differences, see Fig. 17. On Haswell,
Wpg consumes the most energy, followed by Idg (6% lower) and AWpg con-
sumes the least amount of energy (12% lower than Wpg). However, Wpg
offsets this higher energy consumption with its throughput. In terms of visibil-
ities processed per Joule consumed, on Haswell, Wpg is therefore the most
energy-efficient imager. On Pascal, the instantaneous energy consumption of
Wpg and IDG approaches the Thermal Design Power (TDP) of the device,
while AWpg consumes about 30% less energy. This is due to the FFTs that
AWpg performs, which consume significantly less energy in comparison to the
gridder kernel. Overall, IDG on Pascal is the most energy-efficient imager.

22

8. Impact on the Square Kilometre Array

The SKA will require a large amount of computational power at high energy
efficiency [44]. To meet these requirements, we need better energy efficiency
and compute capabilities than current technology provides: as discussed in [6],
simply waiting for the next generation of hardware alone will not be sufficient.
A co-design between compute hardware and algorithms is needed to meet these
demands. As we demonstrated in Section 6, the IDG algorithm runs highly
efficient on an NVIDIA GPU. Furthermore, in Section 7 we showed that on this
GPU, IDG outperforms an imager based on the AW-projection algorithm by
roughly an order of magnitude. With these results in mind, we investigate the
impact of this work on the SKA.

In the following sections, we first determine the rate at which visibilities need
to be imaged for the high-priority science objectives (HPSOs) identified in [45].
Secondly, we analyze whether this data rate can be processed using IDG.

8.1. Required data rates

The SKA community uses a parametric model [46] to analyze processing
requirements for the SDP compute platform. This model is available online
at [46]. We use the numbers from the “2019-06-20-2998d59 hpsos.csv” analysis
of imaging HPSOs to establish an estimated imaging visibility rate of around
1264 MVis/s. If we consider an average of 10 imaging cycles (see [47] for why
this is needed) and take into account that SKA1 Low might only be doing
imaging observations half the time [45], the required processing rate becomes
6.3 GVisibilities/s.

This data rate does not take baseline-dependent averaging (BLDA) into ac-
count. Using BLDA, the overall number of visibilities could reduce by an order
of magnitude. This could lead to having few visibilities per subgrid for the
shortest baselines. The results in Section 6.5 suggest that this has a negative
effect on the throughput of IDG. For the remainder of this discussion we use
the aforementioned processing rate without BLDA and assume that the nega-
tive impact on throughput in case of BLDA will be offset by the lower overall
visibility rate.

8.2. Science Data Processor (SDP)

The SKA consortium plans to build two main SDP systems, one for SKA-1
Low and one for SKA-1 Mid. According to the most recent plans, these pro-
cessing facilities will initially provide a total double-precision peak performance
of 50 PFlop/s [48]. The compute power will be distributed equally among the
two sites and will later be extended to a combined 260 PFlop/s. The power cap
for the final system will be 5 MW per site.

Gridding and degridding is estimated to contribute about 13% to the total
SDP computation [49]. This implies that 0.13 × 50 PFlop/s ≈ 6.5 PFlop/s of
the total SDP compute budget is available for gridding and degridding and that
these operations may consume up to (50

260)× 5 MW× 0.13 ≈ 125 kW per site.

23

In this analysis, we use the performance and energy-efficiency results of the
NVIDIA Tesla P100 GPU (Pascal). By the time that the SKA will be build,
we assume that the latest generation of GPUs will be used. These will likely be
faster and more energy-efficient compared to the GPUs available today. Since
the theoretical peak-performance in double-precision for Pascal is 5.3 TFlop/s,

6,500 TFlop/s
5.3 TFlop/s ≈ 1226 Tesla P100 GPUs would be needed to provide 6.5 PFlop/s

of compute power. Next, we use the measured throughput for IDG on Pascal
to estimate how many GPUs are needed to process the data rate of 6.3 GVisi-
bilities/s.

8.3. IDG for SKA

The average throughput for Unified on Pascal for large images (40,000×
40,000 pixels) is about 0.20 GVisibilities/s (see Fig. 13). Since both gridding
and degridding have to be performed every imaging cycle, the combined imaging
throughput is 0.10 GVisibilities/s. The average GPU power consumption in this
setting is 255 W.

This means that approximately 6.3/0.1 = 63 Tesla P100 GPUs are needed
to process all input data, only a fraction of the 1226 GPUs available. The total
power consumption for all these GPUs adds up to 63× 255W = 16 kW, which
is well within the power budget of 125 kW per site.

Even given that imaging throughput is about halved for spectral-line imaging
(see Fig. 15a), and taking more imaging cycles and/or unforeseen bottlenecks in
other parts of the imaging pipeline into account, there is headroom to still meet
the constraints. Moreover, future generation GPUs will likely be faster and
more energy-efficient than Pascal, which will make it even easier to remain
within the compute and power constraints.

Next, we extrapolate our results for AWpg on Pascal from Section 7. On
Pascal, IDG gridding on average is about an order of magnitude faster and
almost 7× more energy-efficient than AWpg gridding. Under the assumption
that AWpg is extended to support degridding (with degridding about as fast
as gridding) and that support for large images (e.g. 40,000 × 40,000 pixels) is
added to AWpg, the number of GPUs required for SKA would be approximately
9.6/0.01 = 960. The power consumption of these GPUs would be about 960×
175 = 168 kW. While AWpg meets the SKA requirements in terms of GPUs
needed, the power consumption would be excessive given the power budget of
125 kW.

Idg runs much more efficiently than 10% of the peak performance generally
considered for SDP processing [46]. Our analysis reveals that even in the worst
case (for spectral-line imaging) an imager based on IDG using NVIDIA Tesla
P100 GPUs would meet SKA compute and power budget.

These results indicate that IDG solves the most demanding parts of imaging
(gridding and degridding with A-term correction), bringing us a big step closer
towards making imaging for the SKA a reality.

24

9. Conclusions

We demonstrated our implementation of the IDG algorithm on four distinct
architectures: Intel Xeon (Haswell), Intel Xeon Phi (Knights Landing), NVIDIA
Pascal and AMD Vega. In particular for the latter two, the graphics processors,
the IDG algorithm maps elegantly onto the underlying hardware. Due to hard-
ware support for sine/cosine evaluations, on NVIDIA GPUs, our code achieves
up to 85% of the floating-point peak performance and an energy efficiency of
over 50 GFlop/W.

The comparison with a traditional imaging algorithm illustrates that IDG
on GPUs exceeds the performance and energy-efficiency of the simpler W-
projection gridding, while providing the functionality of the more challenging
AW-projection gridding.

By efficiently mapping the IDG algorithm onto GPUs, we have addressed
the largest computational challenge in the imaging pipeline of the modern ra-
dio telescopes: our results show that IDG meets the performance and energy
efficiency requirements needed for the future Square Kilometre Array.

25

Acknowledgements

This work is supported by the Dutch Ministry of EZ and the province of
Drenthe through the ASTRON-IBM Dome grant, the EU FP7 under grant no
ICT-610476 (DEEP-ER), the EU Horizon 2020 research and innovation pro-
gramme under grant no 754304 (DEEP-EST) and by the NWO through NWO-
M (DAS-5 [36]) and Open Competition (617.001.204) grants. The European
Commission is not liable for any use that might be made of the information
contained in this paper. The authors would like to thank Bas van der Tol,
André Offringa and Matthias Petschow for their support.

References

[1] The SKA Organisation, Square Kilometre Array,
https://www.skatelescope.org/ (2018).

[2] R. Jongerius, et al., An End-to-End Computing Model for the Square Kilo-
metre Array, IEEE Computer 47 (9) (2014) 48–54.

[3] M. P. van Haarlem, et al., LOFAR: The LOw-Frequency ARray, Astron.
Astrophys. 556 (2013).

[4] R. J. van Weeren, et al., LOFAR facet calibration, The Astrophysical Jour-
nal Supplement Series 223 (1) (2016) 2.

[5] C. Tasse, et al., Applying full polarization A-Projection to very wide field
of view instruments: An imager for LOFAR, Astron. Astrophys. 553 (2013)
A105.

[6] E. Vermij, et al., Challenges in exascale radio astronomy: Can the SKA ride
the technology wave?, International Journal of High Performance Comput-
ing Applications 29 (1) (2015) 37–50.

[7] T. J. Cornwell, K. Golap, S. Bhatnagar, The Non-coplanar Baselines Effect
in Radio Interferometry: The W-projection Algorithm, IEEE J. Sel. Topics
Signal Process. 2 (5) (2008) 647–657.

[8] S. Bhatnagar, et al., Correcting direction-dependent gains in the deconvo-
lution of radio interferometric images, Astron. Astrophys. 487 (1) (2008)
419–429.

[9] S. van der Tol, B. Veenboer, A. R. Offringa, Image-Domain Gridding: a
fast method for convolutional resampling of visibilities, Astronomy & As-
trophysics 616 (2018) A27.

[10] ASTRON Netherlands Institute for Radio Astronomy, Image-Domain Grid-
ding, GitLab: astron-idg/idg (2019).

[11] S. J. Tingay, et al., The Murchison Widefield Array: The Square Kilometre
Array Precursor at Low Radio Frequencies, Publications of the Astronom-
ical Society of Australia 30 (Jan. 2013).

[12] B. Veenboer, M. Petschow, J. W. Romein, Image-Domain Gridding on
Graphics Processors, in: 2017 IEEE International Parallel and Distributed
Processing Symposium, IEEE, 2017, pp. 545–554.

[13] R. Nan, et al., The five-hundred-meter aperture spherical radio telescope
(FAST) project, Int. J. Mod. Phys. D 20 (06) (2011) 989–1024.

26

[14] O. M. Smirnov, Revisiting the radio interferometer measurement equation,
Astronomy & Astrophysics 531 (2011) A159.

[15] T. J. Cornwell, R. a. Perley, Radio-interferometric imaging of very large
fields - The problem of non-coplanar arrays, Astronomy and Astrophysics
261 (1992) 353–364.

[16] U. Rau, et al., Advances in Calibration and Imaging Techniques in Radio
Interferometry, IEEE Proceedings 97 (2009) 1472–1481.

[17] A. Scaife, SDP Memo: The SDP imaging pipeline, Tech. rep., SKA Science
Data Processor Consortium (2016).

[18] T. J. Cornwell, M. A. Voronkov, B. Humphreys, Wide field imaging for the
Square Kilometre Array, Proc. SPIE 8500 (Aug. 2012).

[19] A. R. Offringa, et al., WSClean: an implementation of a fast, generic wide-
field imager for radio astronomy, Mon. Not. R. Astron. Soc. 444 (1) (2014)
606–619.

[20] C. Tasse, et al., Faceting for direction-dependent spectral deconvolution,
Astronomy & Astrophysics 611 (2018) A87.

[21] B. Veenboer, J. W. Romein, Radio-Astronomical Imaging: FPGAs vs
GPUs, in: Euro-Par 2019: Parallel Processing, Springer International Pub-
lishing, 2019, pp. 509–521.

[22] S. Jaeger, The Common Astronomy Software Application (CASA), in:
R. W. Argyle, P. S. Bunclark, J. R. Lewis (Eds.), Astronomical Data Anal-
ysis Software and Systems XVII, Vol. 394 of ASP Conference Series, 2008,
pp. 623–627.

[23] J. W. Romein, An efficient work-distribution strategy for gridding radio-
telescope data on GPUs, in: Proceedings of the 26th ACM international
conference on Supercomputing, 2012, pp. 321–330.

[24] D. Muscat, High-Performance Image Synthesis for Radio Interferometry,
Master’s thesis, University of Malta (2014).

[25] B. Merry, Faster GPU-based convolutional gridding via thread coarsening,
Astron. Comput. 16 (2016) 140–145.

[26] A. Griffin, A. Ensor, End-to-end Modelling of the Imaging Pipeline in Radio
Astronomy, in: 2018 IEEE 10th Sensor Array and Multichannel Signal
Processing Workshop (SAM), Vol. 8, IEEE, 2018, pp. 480–484.

[27] A. Griffin, A. Ensor, SDP Memo: Numerical Precision, Tech. rep., SKA
Science Data Processor Consortium (2018).

[28] S. Salvini, SDP Memo: On the Precision Required in SDP Pipelines, Tech.
rep., SKA Science Data Processor Consortium (2018).

[29] D. Luebke, CUDA: Scalable parallel programming for high-performance sci-
entific computing, in: 2008 5th IEEE international symposium on biomed-
ical imaging, 2008, pp. 836–838.

[30] J. E. Stone, D. Gohara, G. Shi, OpenCL: A parallel programming standard
for heterogeneous computing systems, IEEE Comput. Sci. Eng. 12 (1-3)
(2010) 66–73.

[31] C. Lauter, A new open-source SIMD vector libm fully implemented with
high-level scalar C, in: 2016 50th Asilomar Conference on Signals, Systems
and Computers, IEEE, 2016, pp. 407–411.

27

[32] S. Oberman, M. Siu, A High-Performance Area-Efficient Multifunction In-
terpolator, in: 17th IEEE Symposium on Computer Arithmetic, 2005, pp.
272–279.

[33] NVIDIA Corporation, NVIDIA CUDA C programming guide (2018).
[34] M. Drobot, Low Level Optimizations for GCN (May 2014).
[35] S. Lagarde, Inverse trigonometric functions GPU optimization for AMD

GCN architecture, https://seblagarde.wordpress.com (Dec. 2014).
[36] H. Bal, et al., A Medium-Scale Distributed System for Computer Science

Research: Infrastructure for the Long Term, IEEE Computer 49 (5) (2016)
54–63.

[37] Jülich Supercomputing Centre, JURON (IBM-NVIDIA pilot), https://hbp-
hpc-platform.fz-juelich.de (2016).

[38] J. Treibig, G. Hager, G. Wellein, LIKWID: A lightweight performance-
oriented tool suite for x86 multicore environments, Proceedings of the In-
ternational Conference on Parallel Processing (2010) 207–216.

[39] J. W. Romein, B. Veenboer, PowerSensor 2: a Fast Power Measurement
Tool, 2018 IEEE International Symposium on Performance Analysis of Sys-
tems and Software (2018) 111–113.

[40] B. Mort, A simple interferometer baseline coordinate generator, GitHub:
SKA-ScienceDataProcessor/uvwsim (2015).

[41] SKA Engineering Change Proposal, https://skaoffice.atlassian.net (2017).
[42] S. Williams, A. Waterman, D. Patterson, Roofline: An Insightful Visual

Performance Model for Multicore Architectures, Communications of the
ACM 52 (4) (2009) 65–76.

[43] Spectral-line imager for MeerKAT, GitHub: SKA-SA/katsdpimager (2020).
[44] R. Nijboer, et al., Parametric models of SDP compute requirements, Tech.

rep., ASTRON Netherlands Institute for Radio Astronomy, SKA SDP PDR
deliverable (2015).

[45] B. R., et al., SKA1 Level 0 Science Requirements, Tech. rep., The SKA
Organisation (2015).

[46] SDP parametric model, GitLab: SKA-ScienceDataProcessor/sdp-par-
model (2019).

[47] R. Braun, et al., SKA1 science priority outcomes, Tech. rep., ASTRON
Netherlands Institute for Radio Astronomy, SKA design document (2014).

[48] The SKA Organisation, Designing the Square Kilometre Array,
https://cdr.skatelescope.org/ (2018).

[49] A. P., et al., SDP System Module Decomposition and Dependency View,
Tech. rep., SKA Science Data Processor Consortium (2015).

28

