
Experiences with Fine-grained Distributed Supercomputing on a 10G Testbed

Kees Verstoep, Jason Maassen and Henri E. Bal
Dept. of Computer Science, Faculty of Sciences
Vrije Universiteit, Amsterdam, The Netherlands

{versto,jason,bal}@cs.vu.nl

John W. Romein
Stichting ASTRON

Dwingeloo, The Netherlands
romein@astron.nl

Abstract

This paper shows how lightpath-based networks can al-
low challenging, fine-grained parallel supercomputing ap-
plications to be run on a grid, using parallel retrograde
analysis on DAS-3 as a case study. Detailed performance
analysis shows that several problems arise that are not
present on tightly-coupled systems like clusters. In partic-
ular, flow control, asynchronous communication, and host-
level communication overheads become new obstacles. By
optimizing these aspects, however, a 10G grid can obtain
high performance for this type of communication-intensive
application. The class of large-scale distributed applica-
tions suitable for running on a grid is therefore larger than
previously thought realistic.

1. Introduction

Most computational grids are currently used to pro-
vide a combined, shared resource to run workloads of
single-cluster or even single-node jobs, also known as high
throughput computing. Runningchallenging, fine-grained
parallel applications has thus far largely remained the do-
main of traditional high-end, tightly-coupled supercom-
puters. Up until recently, wide area networks, certainly
as provided by the general purpose Internet, had insuffi-
cient capacity to fulfill the high demands posed by “grand
challenge”-style parallel applications. However, recently
lightpath-based Optical Private Networks (OPN) have been
introduced, both nationally and internationally, offering
wide area bandwidths of 10 Gbit/s and more [3].

Intuitively, computational grids with 10G wide area con-
nectivity should be suitable to run parallel applications that
are computation- and communication-intensive but latency-
insensitive. As a concrete example of this class, we will
study a retrograde analysis application (Awari) that can send
up to 10 Gbit/s but that is largely asynchronous.

As we will show, however, there still are a number of
important problems to be addressed to obtain good perfor-

mance on a 10G grid. First, the execution on a heteroge-
neous grid causes additional flow control issues. Second,
asynchronous communication must be implemented care-
fully, as the communication characteristics are no longer
identical between each host pair. Third, host-level com-
munication overheads become much more significant com-
pared to a highly tuned local interconnect. All these aspects
are relatively unimportant on a single, tightly-connected
cluster, but they prove to be essential for good performance
on a grid. The contributions of the paper are that we an-
alyze the impact of these performance problems, and de-
scribe optimizations that resolve these obstacles for an im-
portant class of fine-grained, distributed applications. For
Awari, we are able to achieve an efficiency improvement of
50%, with performance on a 10G grid close to that on a sin-
gle larger cluster using the same communication protocols.

The remainder of this paper is structured as follows. We
first discuss related work and introduce DAS-3, the hard-
ware platform used for our experiments. We then give an
overview of the parallel implementation of Awari and dis-
cuss initial cluster and grid performance of the application.
Next, we discuss the optimizations that were vital for im-
proving grid performance significantly. We then discuss our
findings and conclude.

2. Background and Related Work

Only occasionally researchers report about ambitious at-
tempts to use a grid as a distributed system to run truly fine-
grained, parallel applications efficiently [5]. Typically, this
means modifying the application itself, altering the com-
munication pattern to avoid wide-area communication at all
cost, often trading communication for additional computa-
tion [10].

Many parallel algorithms remain inherently difficult to
be run on a grid. These applications have a high communi-
cation/computation ratio, are largely immune to all known
optimizations in that respect, yet no alternative, more effi-
cient algorithms are known [9]. In this paper we focus on
one such application: retrograde analysis, which is a com-

monly used technique for analyzing games. Recently, the
game of Checkers has been solved by a combination of for-
ward search and retrograde analysis [12]. Other application
domains employ communication patterns that can benefit
from optimizations similar to the ones we describe. An im-
portant example is distributed model checking, which, like
retrograde analysis, searches huge state spaces [1].

Prominent projects in e-Science have recently begun pro-
cessing ever larger data sets produced by remote exper-
iments (e.g., CERN’s LHC in High-Energy Physics and
the Dutch LOFAR project in Astronomy). If all this data
would be routed across the national backbones, other Inter-
net traffic would be completely swamped. For this reason,
several NRENs (National Research and Educational Net-
works) worldwide have started to provide research institutes
with so-calledlambdas, i.e., dedicated wavelengths of light,
each typically providing 10 Gbit/s of bandwidth on an opti-
cal DWDM (Dense Wavelength Division Multiplexing) net-
work [3, 16]. How these lambdas can be employed most
effectively in areas like distributed computing, data mining
and visualization, is a major topic of research [8,13]. In this
paper, we focus on a concrete, communication-intensive ex-
ample application on an advanced optical grid, discussed
next.

3. DAS-3 and StarPlane

DAS-3 (the Distributed ASCI Supercomputer 3) is a het-
erogeneous five-cluster, wide-area distributed system for
Computer Science research in the Netherlands. As one of its
distinguishing features, DAS-3 employs adedicatedwide-
area interconnect based on lightpaths. Besides using the
ubiquitous 1 and 10 Gbit/s Ethernet, DAS-3 is exceptional
in that it employs the high speed Myri-10G networking
technology from Myricom both as an internal high-speed
interconnect as well as an interface to remote DAS-3 com-
puting resources.

Wide-area communication is supported by the fully op-
tical DWDM backbone of SURFnet-6 (the Dutch NREN).
The goal of theStarPlane[14] project, in which the Vrije
Universiteit (VU) and the University of Amsterdam (UvA)
collaborate, is to allow part of the photonic network infras-
tructure of SURFnet-6 to be manipulated by grid applica-
tions to optimize the performance of specific e-Science ap-
plications. Figure 1 shows the DAS-3 testbed and the Star-
Plane network as used in this paper. DAS-3 is heteroge-
neous: every cluster has AMD Opteron CPUs with differ-
ent clock speeds and/or number of CPU cores. All nodes
are dual-CPU SMPs, each CPU having either 1 or 2 cores,
giving 2 or 4 cores per compute node.

For this paper we used OpenMPI [4], which is able to
access the Myri-10G network in multiple ways. In single-
cluster runs, the most efficient protocol is Myri-10G’s na-

Multi−10G StarPlane

Myri−10G

Myri−10G

Myri−10G

10G Eth

UvA: 40x4 cores, 2.2 GHz

VU: 85x4 cores, 2.4 GHz

Leiden: 32x2 cores, 2.6 GHz
Delft: 68x2 cores, 2.4 GHz

UvA−MN:46x2 cores, 2.4 GHz

Figure 1. DAS-3 clusters interconnected by
StarPlane.

tive MX layer, which is directly supported by OpenMPI. For
grid-based runs, we cannot useMX but run the same appli-
cation with OpenMPI in TCP/IP mode, which uses the ker-
nel’s sockets interface to the same Myri-10G device. Open-
MPI is both efficient and versatile in that a specific network
can be selected at runtime; we used this feature frequently
during the optimization of our application.

The latencies between the DAS-3 clusters are determined
by both layer 1 layout (the physical topology of the DWDM
network) and layer 2 aspects: Ethernet’s standard Spanning
Tree Protocol running between the 10G switches over Star-
Plane reduces the logical ring back into to a tree. Due to
the proximity of the DAS-3 clusters in the Netherlands, this
results in low round-trip latencies of resp. 1.40 msec (VU–
Leiden), 1.26 msec (Leiden–UvA) and 2.64 msec (UvA–
VU). Still, these WAN latencies are orders of magnitude
higher than both the local MX latency (below 10µsec) and
the local IP latency (below 30µsec). The compute nodes
of DAS-3/Delft have no Myri-10G NICs. Therefore, this
cluster is not used in this paper.

4. Implementing Awari on DAS-3

Awari is an ancient two-player board game, originat-
ing in Africa. The game starts with a configuration of 48
stones evenly divided over 12 “pits”, 6 pits for each player.
Players can move and capture stones according to certain
rules [11]. The Awari application used for this paper com-
putes the best possible move forany given position using
a technique known as retrograde analysis [6]. The idea is
to gradually build up databases solving the complete game.
We start with the smallest databases for simple end-game
positions (i.e., the empty board, the ones with one stone,
two stones, etc.) and gradually reason backward, building

up more and more knowledge until for every position the
best possible move is known. During a phase with N stones
on the board, we need access to the previously computed
databases with up to N-2 stones due to the capturing moves
leading to positions already known.

An important reason to use a parallel algorithm is the
very large state space of Awari: keeping a large fraction of
the almost 900billion board positions in main memory is
required to search efficiently, yet practically impossibleon
a single computer. On the other hand, the distribution of
states over multiple compute nodes causes computing the
optimal moves in the game to result in an extremely high
communication volume. To still achieve good performance,
asynchronouscommunication is used. We will first discuss
the parallel implementation of Awari and its performance
on a single DAS-3 cluster and focus on the aspects that are
relevant to understand the parallel performance.

Implementing Awari on a cluster

Board positions are represented as nodes of a directed
graph, linked through edges indicating the moves between
those positions. When building the Awari database for N
stones, all possible board positions with N stones are given
an index, which are evenly spread over the compute nodes.
Each compute node is thus responsible for an equally-sized
portion of the entire state space. A part of the state space can
be directly evaluated using only local information (e.g., if a
board position only depends on previously determined eval-
uations for capturing moves which are already computed),
but in general a large portion of the states depends on state
information residing elsewhere.

The communication pattern induced by the state distri-
bution is highly random, but also evenly spread. The paral-
lel performance is limited by the slowest participating com-
pute node, unless additional load balancing would be im-
plemented, e.g., by altering the state distribution function.
As mentioned above, an essential aspect of the efficient par-
allel implementation is that the resolution of interrelated re-
mote states is done completely asynchronously, thus mak-
ing it latency tolerant. Rather than directly fetching remote
state information using round-trip communication, job de-
scriptors regarding the evaluation of board positions are sent
over to other CPUs. Upon arrival, these jobs are resolved di-
rectly or pushed onward to other CPUs, should additionally
required information reside elsewhere. Another important
aspect is that these asynchronous jobs can be accumulated
into larger messages, thus allowing the grain size to be in-
creased, reducing communication overhead and improving
parallel efficiency significantly.

One complication is that for the larger databases, the
state space containing the evaluated scores of all positions
becomes so big that it can no longer be kept in core. Yet,

 10

 100

 1000

 10000

 100000

 20 25 30 35 40 45

T
im

e
(s

ec
)

Stones

Cluster MX/10G 72x1 cores
Cluster MX/10G 72x2 cores
Cluster MX/10G 72x4 cores

Figure 2. Performance of Awari on the
DAS-3/VU cluster with high speed Myri-10G
interconnect using MX.

for fast computation of the dependent states, all states need
to be present in main memory (as state accesses are ran-
dom, disk accesses would ruin performance). This issue is
resolved by computing the game-theoretical scores for all
states in severalphases, using an increasing bound on the
states’ score during each round [11]. Each phase ends with
a distributed termination detection algorithm to ensure that
all states are resolved. The updated state information is then
sequentially written to the local disks.

The parallel efficiency of Awari increases with problem
size: for problems up to 30 stones, it is already over 50% in
a 72-node dual-core configuration. For larger problems, ef-
ficiency is even higher, but sequential runs then quickly be-
come infeasible due to the limited amount of memory. Fig-
ure 2 shows the performance of the base implementation on
a single cluster using the Myri-10G interconnect with MPI
over MX. The 72-node dual-core configuration is a factor
1.9 faster than the 72-node, single-core configuration. The
72 node, 4-core configuration is about 30% faster still for
medium to large problem databases, but this advantage di-
minishes to only 14% for the larger database instances due
to local disk I/O contention, as the 4 cores share the same
disk (for small problems, higher synchronization costs due
to the larger total number of cores cause performance to be
lower still). Also, not all DAS-3 clusters have 4-core com-
pute nodes. We therefore use 72 nodes with dual CPU cores
(i.e., 144 CPU cores in total) as the base configuration in the
remainder of the paper. In all cases where the total number
of CPU cores on a compute node is higher than the num-
ber of Awari processes, the NUMA-aware scheduler of the
Linux kernel will allocate the processes on different CPUs,
and memory is allocated from memory banks most closely
attached to the CPU. The remaining cores on these CPUs
are left unused, so the performance comparison is fair.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500

T
hr

ou
gh

pu
t (

M
B

/s
)

Runtime (sec)

Cluster/MX

Figure 3. MX send/receive throughput per
core on DAS-3/VU for the 40 stones DB.

Figure 3 shows the send/receive throughputs during the
computation of the 40-stone database of Awari on the
DAS-3/VU cluster with 72 dual-core nodes. The presence
of iterative computing phases with increasing bound, which
are also the most throughput-intensive ones, can be clearly
identified. Note that the per-core throughput is not itself
limited by the 10 Gbit/s peak bandwidth (as with almost any
realistic fine-grained application) but the cumulativesus-
tainednetwork throughput during a large portion of the total
runtime is 144 times 25 MByte/s, i.e., 28.8 Gbit/s!

Implementing Awari on a grid

Given the demanding communication pattern, it is an in-
teresting question how feasible it would be to run Awari on
a grid with high speed network links. The required wide
area bandwidth is certainly very high: on a grid with three
equally-sized clusters, two thirds of the data transfers will
go across wide area links.

As the base implementation of Awari was available with
an MPI communication module, it would seem the applica-
tion should almost immediately be able to run on the grid
using a TCP implementation of MPI. However, given the
heterogeneous nature of our DAS-3 grid – as is the case for
most grids – we need to make sure that the faster-running
CPUs will not overwhelm the slower ones with an almost
infinite stream of asynchronous work to be performed. We
found this quickly leads to unrestricted job queue growth,
eventually causing paging (thus reducing performance), un-
til compute nodes finally run out of memory.

Implementing an additionalpoint-to-pointflow control
mechanism is possible, but this would add complexity and
overhead to the parallel implementation. There are also sev-
eral subtleties: if a node simply tells others to back down
sending, these other nodes do need to keep on processing
incoming messages (still generating more work that has to
be held) to assure progress. But the congested node can

 10

 100

 1000

 10000

 100000

 20 25 30 35 40 45

T
im

e
(s

ec
)

Stones

Unoptimized Grid/TCP/1G-Internet
Unoptimized Grid/TCP/10G-StarPlane

Unoptimized Cluster/TCP/10G
Unoptimized Cluster/MX/10G

Figure 4. Performance of the unoptimized
version of Awari on DAS-3/VU and a grid of
three DAS-3 clusters.

only get out of this state by completing its current work
queue, again often generating more work for others (and po-
tentially for itself at a later time). Unless carefully designed
with these considerations in mind, point-to-point flow con-
trol could therefore easily lead to deadlock.

However, on DAS-3 the network latencies are suffi-
ciently moderate thatglobal synchronizations can be em-
ployed as a simple alternative. Adding these global syn-
chronizations to the various phases of the application (a
barrier each time after having processed a certain amount
of local states) turned out to be sufficient to avoid extreme
local congestion. An important reason why this approach
works well for Awari, is that the amount of processing is
well-balanced over the CPUs due to the random spread of
states and dependencies among them.

Figure 4 shows the performance of the base imple-
mentation of Awari on a DAS-3 grid consisting of three
clusters (24 nodes with 2 cores on each of DAS-3/VU,
DAS-3/Leiden and DAS-3/UvA) compared to a single-
cluster configuration (using MX on 72 nodes with 2 cores
at DAS-3/VU). For comparison, the figure also includes
Cluster/TCP performance (using TCP over Myri-10G on
DAS-3/VU), as that can be considered a baseline for DAS-3
Grid/TCP performance. Furthermore, the figure shows the
performance of Awari when using traditional 1 Gbit/s in-
terfaces on the compute nodes and coupling the sites over
the public Internet via the universities’ backbones. Several
conclusions can already be drawn from this:

• Traditional 1 Gbit/s Ethernet with regular 1 Gbit/s up-
links to the public Internet is clearly no match for this
application. We limited ourselves to smaller database
instances to avoid congesting links shared with regular
university traffic, but we already see over 300% slow-
down compared with faster private networks.

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t (

M
B

/s
)

Runtime (sec)

Cluster/TCP

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

T
hr

ou
gh

pu
t (

M
B

/s
)

Runtime (sec)

Grid/TCP

Figure 5. Unoptimized Cluster- and Grid/TCP
throughput per core for the 40 stones DB.

• TCP protocol overhead compared with highly opti-
mized MX over Myri-10G appears to be significant,
considering the roughly 70% percent increase in run-
time when using MPI over TCP on a single cluster,
even though the same Myri-10G NICs are used in both
cases.

• On the larger problem sizes, for which Awari spends
a significant fraction of its time in the compute- and
communication intensive stages, the performance over
StarPlane follows the single-cluster performance over
TCP with 10 Gbit/s at a stable distance, but there still
is an additional factor 2.1 performance loss to be ac-
counted for.

Figure 5 shows the send and receive throughput per CPU
core, monitored over the runtime of Awari for the 40-stone
database on the DAS-3 grid. For comparison, we also in-
clude the single-cluster DAS-3/VU throughput when using
TCP. Clearly, average throughput is much reduced com-
pared with the performance over Myri-10G usingMX. Of
the average throughput of 13.5 MByte/s per CPU core, two
thirds is sent to other clusters, resulting in an accumulated
WAN throughput of 9.0∗ 48 = 432 MB/s. This is almost
70% of the 5 Gbit/s bandwidth available between each clus-
ter pair (the WAN links are shared due to the spanning tree
topology, as explained in Section 3). Yet, reduced through-
put is only a partial explanation of the overall increase in
runtime. In fact, on the grid most time is spent on the less
communication intensive phases. This is surprising, as the
network is mostly uncongested during these phases, and the

 20 25 30 35 40

F
ra

ct
io

n
tim

e
sp

en
t

Stones

post
sync

busy
prep

init

Figure 6. Split up of Awari’s work phases in
the Grid/TCP version.

application is also designed to be latency tolerant.

5. Optimizing Awari for the Grid

To further investigate these performance issues, we in-
strumented Awari with timers around MPI calls. After an-
alyzing the results we applied several optimizations to the
communication sublayer which we will discuss next. Most
of these optimizations are quite general and will apply to
many other parallel applications on the grid.

Do not just look at peak performance

Considering the huge slowdown for the smaller prob-
lems, we plotted accumulated times for the various phases
of the application; see Figure 6. The most important phases
are “init” (reading previous databases), “busy” (process-
ing the current database), and “sync” (processing during
the distributed termination detection phase). Clearly, for
the smaller problems the issue with reduced performance
is not so much inability to transfer large volumes of data ef-
ficiently while processing states: the busy phase takes only
a fraction of the time. The overheads induced by synchro-
nization and sending and receiving smaller messages were
much more important here. Similar effects were seen for
the larger databases, during the later phases.

It is important to note the relevance of the LogP model
for parallel applications here [7]. Often, an implicit as-
sumption is made that a parallel application will perform
well on a “low latency” and/or “high throughput” network,
while in reality the host-leveloverheadof sending the data
across the network is frequently a much more determining
factor [15].

MPI primitive Cluster Cluster Grid
MX TCP TCP

MPI Isend 6.8 18.3 17.8
MPI Recv 5.3 7.3 7.2
MPI Iprobe (failed) 2.3 60.6 59.3
MPI Iprobe (success) 4.7 3.8 3.9

Table 1. Average MPI overhead in µs on the
DAS-3/VU cluster and a DAS-3 grid.

As shown in Table 1, the send, receive and polling
overhead (i.e., the number of compute cycles spent in the
host-level network protocol layers) differ significantly for
TCP/IP and Myri-10G’s nativeMX (for Cluster/TCP and
Grid/TCP they are almost identical). The “failed” MPI
probes are in fact places where the OpenMPI implemen-
tation performs work related to asynchronously posted send
or receive operations – a simple reduction of the amount of
MPI probes causes this overhead to be shifted to other invo-
cations of the single-threaded MPI layer. Also, in the case
of TCP, much of the work for a succesful Iprobe may ac-
tually have been done in a previously unsuccessful Iprobe.
On the grid, each CPU core sends and receives more than
1200 messages a second, averaged over the entire runtime
of Awari; the polling rate is a multiple of that, depending
on the data intensity of the application phase. In total, 14.8
billion messages with an average size of 2.0 KB are trans-
ferred for the largest database. Host-level overhead is thus
indeed a significant factor explaining the overall difference
in performance.

Implement scalable global synchronization

The original implementation used a ring to synchronize
all CPUs. Upon arrival of a synchronization message, a
compute node would also flush its message buffers to other
nodes in a straightforward fashion. This simple approach
worked very well on a single cluster with low-latency inter-
connect and native flow control.

However, this turns out to cause several problems on the
Grid/TCP and on the Cluster/TCP implementation. First,
the increased latency over a TCP/IP network causes syn-
chronization rounds to last much longer, during which time
only some of the compute nodes are truly active processing
and sending messages. Furthermore, flushing messages to
other nodes using a fixed order triggered by synchronization
causes slowdown due to flow control issues and receiver
overrun. Also, as explained above, for the heterogeneous
grid implementation, more synchronizations are needed to
prevent overrunning (slightly) slower CPUs, so the impact
of synchronization costs is even higher.

We improved the performance of global synchroniza-

tions in two ways. First, in the communication module we
implemented a scalable, tree-based synchronization primi-
tive that is used for both barriers and distributed termina-
tion detection. Second, the termination detection phase it-
self was modified. The optimized version no longer flushes
messages upon receiving synchronization messages. In-
stead, while the application moves to a synchronization
phase, the flushing of (incomplete) message buffers is done
autonomouslyby the compute nodes themselves. After a
certain number of MPI polls (which are done continuously
while the application is synchronizing), the communication
module now automatically flushes a certain fraction of the
largest pending messages. As a result, compute nodes are
no longer dependent on the timely arrival of synchroniza-
tion messages. This also conveniently spreads the traffic
over the network due to the random distribution of pending
outgoing message sizes.

Make communication really asynchronous

The original version of Awari was already written using
asynchronous communication primitives: message transfers
were initiated usingMPI Isend, and the resulting descriptors
were put into a circular buffer so that they could be recycled
later. This indeed performs well, provided communication
is evenly spread. Regarding data volume this is the case
for Awari, but on the grid not all communication has iden-
tical performance: part goes to nodes on the local cluster
(via a switch with a very high bandwidth backplane), but
the remaining data also needs to be transferred over wide
area links. These links do have high bandwidth, but still
lower than the switch backplane. Also, the limited amount
of buffering at the 10 Gbit/s WAN ports of the Myri-10G
switches will on average induce more TCP-level retrans-
missions with steeply increasing timeouts (due to standard
TCP congestion protocols).

The effect is that asynchronous remote transfers are
sometimes pending so long that they cause new transfers
to otherdestinations to stall, because an oldMPI Isend call
must first be completed at that point. It is hard to predict
how large the MPI descriptor ring should be made to avoid
the described effect. Instead we resolved this by using a
descriptor ringper destinationrather than a shared global
one. Pending remote transfers no longer block other ones,
unless the network congestion is so severe that a ring be-
comes completely filled with uncompleted send requests.

Polling messages is not free

As the Awari application involves a huge amount of ran-
dom communication that is initiated asynchronously, the
question is when and how this data should be received.
Overall, every node sends about as much data as it receives,

so a reasonable first-order strategy is to poll for incoming
messages each time a compute node sends a message of its
own. However, this is not enough: due to CPU speed differ-
ences, network congestion, etc., occasionally data will be
available while the node is not sending for a while or vice
versa. For that reason, the main computation loops of the
application also frequently poll themselves, with good per-
formance for the Cluster/MX configuration.

However, analysis of the MPI statistics showed that for
the TCP-based configurations, performance washighly de-
pendent on the polling rates during the various phases. As
shown in Table 1, the polling overhead is noticeably higher
for TCP than forMX (e.g., due to system calls involved with
TCP sockets). Polling too frequently therefore results in
low throughput due to polling overhead (since many polls
will be unsuccessful), while not polling frequently enough
will result in reduced throughput due to MPI-level flow con-
trol. Note from Figure 5 that data volume in the first phases
of the application is much higher than in the later ones. This
also influences the required polling rate. In the optimized
version the polling rates are tuned accordingly, with notable
reduction in overhead.

The optimal grain size is network dependent

The grain size of the Awari application is determined by
the amount of message combining applied before sending.
The original version used 4 KByte buffers for this, but on
10 Gbit/s Ethernet the use of 8 KByte buffers results in bet-
ter performance. The reason is two-fold: since the 10G
network supports “jumbo” packets (with an MTU of 9000
rather than 1500 bytes), the packet rate, and hence inter-
rupt rate goes down, and also the per-packet MPI send and
receive overheads are reduced. Often, increasing the grain
size comes with the risk of increasing load imbalance. In
this particular application this does not happen due to the
random spread of states and their dependencies. Also, an
8 KByte grain size is still extremely small compared to the
overall state space for the larger databases.

Optimized Awari grid performance

Figure 7 shows the performance of the optimized imple-
mentation. Clearly, the application now runs much more
efficiently on all problem sizes: on the grid it is on aver-
age over 50% faster than the original version; some of the
optimizations in fact also help single-cluster performance,
especially the TCP version, albeit to a smaller extent. The
grid performance is now also much closer to the perfor-
mance on a single large cluster using TCP. The remaining
performance difference (mostly below 15%) is largely ex-
plained by the heterogeneous nature of our computational
grid: each CPU core currently has the same amount of work

 10

 100

 1000

 10000

 100000

 20 25 30 35 40 45

T
im

e
(s

ec
)

Stones

Unoptimized Grid/TCP/10G
Optimized Grid/TCP/10G

Unoptimized Cluster/TCP/10G
Optimized Cluster/TCP/10G

Unoptimized Cluster/MX/10G
Optimized Cluster/MX/10G

Figure 7. Performance of the optimized Awari
on DAS-3/VU and a DAS-3 grid.

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000

T
hr

ou
gh

pu
t (

M
B

/s
)

Runtime (sec)

Figure 8. Optimized send/receive throughput
per core for the 40 stones DB on a DAS-3 grid.

to do, irrespective of its speed. Additional load balancing
while assigning states to nodes would diminish this effect.

To further assess the impact of the optimizations, we re-
computed a medium-sized problem on the grid with only
subsets of the five optimizations enabled. The addition
of the two scalable global synchronization optimizations
turned out to have the largest impact, accounting for re-
spectively 30 and 45% of the performance improvement.
The asynchronous communication optimization had a rel-
ative impact of another 15%, while the polling and grain
size optimizations gave smaller improvements of about 5%
each. Figure 8 shows the throughputs of the final imple-
mentation with all five optimizations enabled. Note that,
compared to Figure 5, the overall throughput has indeed
increased somewhat, but the largest reduction in runtime
is due to the significant shrinking of the application’s later
work phases, which are much less data intensive.

6. Conclusions and Future Work

In this paper we discussed our experiences with run-
ning a very demanding, fine-grained parallel application on
a computational grid interconnected with 10G lightpaths.
With the important trend of using Optical Private Networks
specifically to support grids, important new application do-
mains now become feasible that were previously commit-
ted to traditional supercomputers or large, tightly-connected
clusters. However, simply providing a huge amount of re-
liable, sustainable bandwidth to a parallel application de-
veloped for a controlled homogeneous platform will often
turn out to be insufficient. As clearly illustrated by Awari,
application- or runtime-system-specific optimizations, us-
ing truly asynchronous and latency-tolerant communication
patterns with low overhead, will still be required to obtain
good parallel efficiency on the grid.

For future work, we are planning to investigate several
further topics in distributed application performance using
lightpaths; Awari can then be used as a benchmark. Awari
itself has ample possibilities for further optimization that
can be investigated. For example, making use of MPI-2’s
one-sided operations may be beneficial to further reduce the
receive and polling overhead. Furthermore, auto-tuning the
most effective polling rate is conceivable by taking the tim-
ing and success of recent polls into account.

Awari’s 10G wide-area link utilization is already quite
high when using a distributed 144 CPU core configura-
tion. If we further increase the amount of CPU cores, 10G
WAN link capacity would become a limiting factor. How-
ever, with DAS-3 we have the option to employ the LACP
Link Aggregation protocol (supported by the Myri-10G
switches), allowingmultiple10G links between two DAS-3
sites. Application-specific dynamic link management like
this is a major topic of the StarPlane project [14].

Finally, although DAS-3 is heterogeneous, in this pa-
per we have only explored that aspect to a limited extent.
Very recently, a 10G lightpath has become operational be-
tween DAS-3 and the French Grid’5000 system, allowing
for experiments with compute clusters co-allocated in both
the Netherlands and France. Given the additional hetero-
geneity aspects and higher WAN latency, efficiently run-
ning highly demanding parallel applications like Awari on
this European-scale grid will be a challenging follow-up
project [2].

Acknowledgments

This work is part of the StarPlane project, which is
funded by the Netherlands Organization for Scientific Re-
search (NWO). We thank SURFnet and Nortel for their ef-
forts to provide DAS-3 with a state-of-the-art Optical Pri-
vate Network. We also thank Cees de Laat, JP Velders,

Paola Grosso and Li Xu at the UvA for their help in setting
up the StarPlane network. DAS-3 is funded by NWO/NCF,
the VL-e project (the Virtual Laboratory for e-Science), and
the participating organizations.

References

[1] J. Barnat, L. Brim, and I.̌Cerná. Cluster-Based LTL Model
Checking of Large Systems. InFormal Methods for Compo-
nents and Objects, volume 4111 ofLNCS, pages 259–279,
Nov. 2005.

[2] F. Cappello and H. E. Bal. Toward an International ”Com-
puter Science Grid” (keynote). In7th IEEE Int. Symp. on
Cluster Computing and the Grid (CCGrid), pages 3–12, Rio
de Janeiro, Brazil, May 2007.

[3] T. DeFanti, C. de Laat, J. Mambretti, K. Neggers, and B. S.
Arnaud. TransLight: A Global-Scale LambdaGrid for E-
Science.Commun. ACM, 46(11):34–41, Nov. 2003.

[4] R. L. Graham, T. S. Woodall, and J. M. Squyres. Open
MPI: A flexible high performance MPI. InProc. 6th Ann.
Int. Conf. on Parallel Processing and Applied Mathematics,
pages 228–239, Poznan, Poland, Sept. 2005.

[5] T. Kielmann, H. E. Bal, J. Maassen, R. van Nieuwpoort,
R. Veldema, R. Hofman, C. Jacobs, and K. Verstoep. The
Albatross Project: Parallel Application Support for Compu-
tational Grids. InProc. 1st European GRID Forum Work-
shop, Poznan, Poland, Apr. 2000.

[6] T. Lincke and A. Marzetta. Large Endgame Databases with
Limited Memory Space. ICGA Journal, 23(3):131–138,
2000.

[7] R. P. Martin, A. Vahdat, D. E. Culler, and T. E. Anderson.
Effects of Communication Latency, Overhead, and Band-
width in a Cluster Architecture. InProc. 24th Int. Symp. on
Comp. Arch. (ISCA), pages 85–97, 1997.

[8] Phosphorus project. http://www.ist-phosphorus.eu.
[9] A. Plaat, H. E. Bal, and R. F. H. Hofman. Sensitivity of

Parallel Applications to Large Differences in Bandwidth and
Latency in Two-Layer Interconnects. InProc. 5th Int. Symp.
on High Performance Comp. Arch. (HPCA), pages 244–253,
Orlando, FL, Jan. 1999.

[10] J. W. Romein and H. E. Bal. Wide-area transposition-driven
scheduling. InProc. 10th IEEE Int. Symp. on High Perfor-
mance Distributed Computing (HPDC), pages 347–355, San
Francisco, CA, 2001.

[11] J. W. Romein and H. E. Bal. Solving Awari with Parallel
Retrograde Analysis.IEEE Computer, 36(10):26–33, Oct.
2003.

[12] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto,
M. Müller, R. Lake, P. Lu, and S. Sutphen. Checkers is
Solved.Science, 317(5844), Sept. 2007.

[13] L. L. Smarr, A. A. Chien, T. DeFanti, J. Leigh, and P. M.
Papadopoulos. The OptIPuter.Commun. ACM, 46(11):58–
67, 2003.

[14] StarPlane project. http://www.starplane.org.
[15] K. Verstoep, R. A. F. Bhoedjang, T. Rühl, H. E. Bal, and

R. F. H. Hofman. Cluster Communication Protocols for
Parallel-Programming Systems.ACM Trans. on Computer
Systems (TOCS), 22(3), Aug. 2004.

[16] VIOLA testbed. http://www.viola-testbed.de.

