
Radio-Astronomical Imaging: FPGAs vs GPUs

Bram Veenboer and John W. Romein

ASTRON (Netherlands Institute for Radio Astronomy)
{veenboer, romein}@astron.nl

Abstract. FPGAs excel in performing simple operations on high-speed
streaming data, at high (energy) efficiency. However, so far, their dif-
ficult programming model and poor floating-point support prevented a
wide adoption for typical HPC applications. This is changing, due to re-
cent FPGA technology developments: support for the high-level OpenCL
programming language, hard floating-point units, and tight integration
with CPU cores. Combined, these are game changers: they dramatically
reduce development times and allow using FPGAs for applications that
were previously deemed too complex.
In this paper, we show how we implemented and optimized a radio-
astronomical imaging application on an Arria 10 FPGA. We compare
architectures, programming models, optimizations, performance, energy
efficiency, and programming effort to highly optimized GPU and CPU
implementations. We show that we can efficiently optimize for FPGA
resource usage, but also that optimizing for a high clock speed is difficult.
All together, we demonstrate that OpenCL support for FPGAs is a leap
forward in programmability and it enabled us to use an FPGA as a viable
accelerator platform for a complex HPC application.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) have long been favoured as energy-
efficient platform for fixed-precision computations. Their floating-point perfor-
mance used to be sub-par, because floating-point units (FPUs) had to be as-
sembled from logic blocks, which is rather inefficient and consumes many FPGA
resources. Recent FPGAs, such as the Intel Arria 10, have hardware support
for floating-point operations, making them an interesting platform for high-
performance floating-point computing.

FPGAs are traditionally programmed using hardware description languages,
such as Verilog and VHDL, which is notoriously difficult, time-consuming, and
error-prone. FPGA manufacturers such as Intel (formerly Altera) and Xilinx
now support OpenCL as a high-level alternative. In this paper, we describe
how we use the Intel FPGA SDK for OpenCL to implement and optimize a
complex radio-astronomy imaging application for the Arria 10 FPGA, which
would have been a daunting task when using a hardware description language.
Radio-astronomical imaging is a computationally challenging problem and poses
strict performance and energy-efficiency requirements, especially for future exa-
scale instruments such as the Square Kilometre Array (SKA). We previously

2 Bram Veenboer and John W. Romein

demonstrated that imaging works particularly well on GPUs [11], so how does
the FPGA perform in comparison?

The main contributions of this paper are: (1) We explain how we use the Intel
FPGA SDK for OpenCL to build an efficient data-flow network for a complex
radio-astronomy application; (2) We compare our implementation on the Arria
10 FPGA to highly optimized CPU and GPU implementations and evaluate
performance and energy efficiency; (3) We discuss the differences and similarities
between FPGAs and GPUs in terms of architecture, programming model, and
implementation effort.

The rest of this paper is organized as follows: Section 2 provides background
information on radio-astronomical imaging. Section 3 explains how we imple-
mented and optimized the most critical parts of an astronomical imaging ap-
plication. In Section 4 we analyze performance and show energy efficiency mea-
surements. Section 5 describes the lessons that we learned while implementing
and optimizing the same application for both FPGAs and GPUs. In Section 6
we discuss related work and we conclude in Section 7.

The source code of the FPGA implementations discussed in this paper is
available online [1].

2 Radio-astronomical imaging

A radio telescope detects electromagnetic waves that originate from radio sources
in the universe, which are used to construct a map of the sky containing the
positions, intensity, and polarization of the sources. Radio telescopes (such as
LOFAR and the future SKA-1 Low telescope) comprise many receivers of which
the signals are combined using a technique called ‘interferometry’. Figure 1 shows
a simplified version of a radio-astronomical interferometer, where sky-images are
created in three steps: correlation, calibration, and imaging. Every receiver mea-
sures two signals, corresponding to two orthogonal polarizations. The signals
from a receiver pair (q, r) (called a baseline) are multiplied and integrated for
a short period of time (correlated) such that the resulting sample V(q,r) (called
a visibility) contains the 2×2 combinations of the (polarized) signals measured
by receiver q and r, hence V(q,r) ∈ C2×2. Visibilities have associated (u, v, w)-
coordinates that depend on the location of the receivers with respect to the
observed sky. Due to earth rotation, (u, v, w)-coordinates change over time and
every baseline contributes a track of measurements. During an observation, each
baseline collects TObs integration periods, where every sample consists of CObs

measurements in frequency. There exists a Fourier relation between the sampled
data and the observed sky. Therefore, in the imaging step, visibilities are first
placed onto a regular grid by an operation called gridding. This operation cor-
responds to applying a convolution to every visibility. After gridding, the grid is
Fourier transformed to obtain a sky image. Degridding is the reverse operation
where visibilities are computed taking a grid as input.

Radio-Astronomical Imaging: FPGAs vs GPUs 3

gridding iFFT

degridding FFT

imagevisibilities

incom
ing

radio
w
aves

baseline (pair of receivers)

receiver

× C I

correlation calibration imaging

visibilities visibilities image

Fig. 1: In a radio-telescope, signals are received by pairs of receivers. The correlator
combines the signal into visibilities. After calibration of the visibilities, the imager
produces an image of the sky, using an imaging pipeline.

2.1 Image-Domain Gridding

Image-Domain Gridding (IDG [10, 11]) is a novel imaging technique where neigh-
bouring visibilities are first gridded onto so-called subgrids, after which the sub-
grids are Fourier transformed and added to the full grid. Subgrids are N×N pixels
in size and are positioned such that they cover T integration periods (each with
C frequency channels) and their corresponding convolution kernels. Algorithm 1
shows pseudocode for gridding.

By applying gridding in the image-domain, IDG avoids the use of convolution
kernels in traditional gridding. Furthermore, the computation of one subgrid (one
iteration of the loop on Line 2) is not dependent on the computation of another
subgrid, making IDG very suitable for parallelization. We will refer to Line 4
through Line 15 as the gridder. After this step, a-term correction, tapering and
a 2D FFT are applied. We will refer to these operations as post-processing.

Pixels of the subgrid are computed as a direct sum of phase-shifted visibil-
ities [10]. This shift takes both the position of the subgrid (the phase offset,
Line 5) and the position of the visibility in the subgrid (the phase index, Line 7)
into account. Furthermore, the phase index is scaled according to frequency
(Line 9).

The phasor term in Line 11 is a complex number that is computed by an
evaluation of cos(phase) and sin(phase) or in more common terms cis(phase)
where cis(x) = cos(x) + isin(x). cmul denotes a complex multiplication, which
comprises four real-valued multiply-add operations. Since P = 4, the loop on
Line 13 is typically unrolled. Thus for every iteration of the loop over frequency
channels in line 8, one sine, one cosine, and 17 multiply-add operations are
performed, one in the computation of phase in Line 10, and 16 in the complex
multiplication of phasor with visibilities and addition to the subgrid in Line 15.

The operations outside this critical loop (the offset computation on Line 5,
the index computation on Line 7, and post-processing steps) are described by
van der Tol et al. [10]. The grid can be several tens of GBs in size and is there-
fore typically stored on a CPU-based system, while the computationally most

4 Bram Veenboer and John W. Romein

1 #pragma parallel
2 for s = 1 . . . S :
3 complex<float> subgrid[P][N×N];
4 for i = 1 . . . N×N :
5 float offset = compute offset(s, i);
6 for t = 1 . . . T :
7 float index = compute index(s, i, t);
8 for c = 1 . . . C :
9 float scale = scales[c];

10 float phase = offset - (index × scale);
11 complex<float> phasor = {cos(phase), sin(phase)};
12 #pragma unroll
13 for p = 1 . . . P : // 4 polarizations

14 complex<float> visibility = visibilities[t][c][p];
15 subgrid[p][i] += cmul(phasor, visibility);

16 apply aterm(subgrid);
17 apply taper(subgrid);
18 apply ifft(subgrid);
19 store(subgrid);

Algorithm 1: Gridding pseudocode that is executed for every subgrid s of N×N
pixels in size. T×C visibilities are associated with a subgrid, where T and C denote
time and frequency channel, respectively. Typical values for these parameters are
N = 32, T = 128 and C = 16.

challenging gridding step is preferably performed on an accelerator (such as a
FPGA or a GPU).

3 Implementation

As we discuss in more detail later, FPGA applications are typically implemented
as a data-flow pipeline. We show the data-flow pipeline that we created for the
Image-Domain Gridding algorithm (Algorithm 1) in Figure 2. The floating-point
operations in this algorithm are implemented in hardware using DSP blocks.
Our design is scalable and optimizes both the number of DSPs used and the
occupancy of these DSPs such that every cycle, every DSP performs a useful
computation. Although the computations in gridding and degridding are similar,
the degridding data-flow network is different and not shown in Figure 2.

To implement gridding on the FPGA, we applied the following changes to
Algorithm 1: (1) we create a gridder pipeline that executes Line 5 through Line 15
to compute a single subgrid; (2) we move the computation of the index value
(Line 7) and the computation of offset (Line 5) into separate kernels to avoid
underutilization of the DSPs used to implement these computations; (3) we
unroll the loop over pixels (Line 4) to increase reuse of input data; (4) we replicate
the gridder pipeline by a factor φ to compute multiple subgrids in parallel; (5)
input data (such as the visibilities, Line 14) is read from DRAM in bursts in
separate kernels and forwarded to the gridder pipelines in a round-robin fashion.

Radio-Astronomical Imaging: FPGAs vs GPUs 5

read visibilities

read scales

read offset

read uvw

read lmn

write subgrid

repeat offset

compute index

iFFT

repeat index

apply taper

compute phase

reorder pixels

compute phasor

apply aterm

compute pixel

multiplexer

I/O kernels

gridder pipeline, replicated φ times

post-processing pipeline, not replicated

Fig. 2: All kernels in this design are single work-item kernels. The majority of the
computation takes place in the gridder pipeline, which is replicated φ times to compute
multiple subgrids in parallel. These subgrids are multiplexed and passed to the post-
processing pipeline, which applies a-term correction, tapering and a 2D FFT.

The remaining steps are implemented in the form of a post-processing pipeline
using as few resources as possible while still meeting throughput requirements
imposed by the gridder pipelines. A-term correction (Line 16) is implemented
as a series of two complex 2×2 matrix multiplications (one correction matrix
per receiver). Tapering (Line 17) is implemented as a scalar multiplication to
every pixel in the subgrid. The 2D FFT (Line 18) is based on the 1D Cooley-
Tukey FFT algorithm, which is applied to the rows and columns of the subgrid
to perform a 2D FFT.

3.1 The sine/cosine computations

The Intel FPGA OpenCL compiler recognizes the sine and cosine pair and uses
8 memory blocks and 8 DSPs to implement it by creating a so-called IP block
(cisip). In comparison, only a single DSP is used to compute the phase term
on Line 10, and 16 DSPs are used to implement the computation on Line 15.
To reduce resource usage for cis(x), we investigated how lookup tables can be
used as an alternative to the compiler-generated version. In the case of cis(x)
the input x is an angle and the output is given as a coordinate on the unit circle,
which opens opportunities to exploit symmetry. Our lookup table implementa-
tion (cislu) contains precomputed values for sin(x) in the range of [0 : 1

2π]. We
use one DSP to convert the input x to an integer index and then derive indices
for sin(x) and cos(x) using logic elements. We analytically determined that a
1024-entry table provides sufficient accuracy.

3.2 Optimizing for frequency

The OpenCL FPGA compiler gives feedback on resource usage by generating
HTML reports, which is highly useful when optimizing for resource usage. Op-
timizing for high clock frequencies is difficult though: apart from a few general

6 Bram Veenboer and John W. Romein

guidelines, there is little guidance, such as feedback on which part of a (large)
program is the clock frequency limiter. There are low-level Quartus timing re-
ports, but these are difficult to comprehend by OpenCL application program-
mers. Also, even though the FPGA has multiple clock domains, these are not
exposed to the programmer. The whole OpenCL program therefore runs at a
single clock frequency. Hence, a single problematic statement, possibly not even
in the critical path, can slow down the whole FPGA design.

We developed the following method to find clock-limiting constructs: we split
the OpenCL program into many small fragments, added dummy data generators
and sink routines (so that the compiler does not optimize everything away), and
compiled each of these fragments, to determine their maximum clocks. This way,
we found for example that a single, inadvertently placed modulo 13 operation
slowed down the whole application, something which was difficult to pinpoint
but easy to fix.

4 Results

We compare our gridding and degridding design on an Arria 10 FPGA to a GPU
in terms of performance and energy efficiency. We also add an optimized CPU
implementation for comparison. We use contemporary devices with a similar
theoretical peak performance and produced using a similar lithographical pro-
cess, see Table 1 for details. The imaging parameters are set as follows: N = 32,
T = 128 and C = 16. The FPGA designs are scaled up by increasing φ until the
maximum number of DSPs is reached.

The Arria 10 GX 1150 FPGA (Arria) comes in the form of an PCIe ac-
celerator card and has two banks of 4 GB DDR3 memory. The FPGA runs a
so-called Board-Support Package (BSP) that is required to use the FPGA using
the Intel FPGA SDK for OpenCL. We use the min BSP, which exposes all 1518
DSPs present on the FPGA to the application and uses only one DDR3 mem-
ory bank. We tested various combinations of the Intel FPGA SDK for OpenCL
(versions 17.1, 18.0 and 18.1), recompiled each application with dozens of seeds,
and report the results for the version that achieves the best clock frequency.

The CPU that we use is part of a dual-socket system, of which we use only
a single processor (Haswell) and the corresponding memory. We use an Intel
compiler and the Intel Math Kernel Library (MKL) (both version 2019.0). The
GPU (Maxwell) uses the 396.26 GPU driver and CUDA version 9.2.88.

4.1 Resource usage

We refer to designs that use cisip as gridding-ip and degridding-ip, while the
gridding-lu and degridding-lu designs use our alternative implementation
with lookup tables (cislu). We report resource usage and the highest achieved
clock frequency (Fmax) of all designs in Table 2. In all four designs the num-
ber of DSPs used is very close to the 1518 DSPs available and we run out of
DSPs before we run out of any other resource (which is good). We provide a

Radio-Astronomical Imaging: FPGAs vs GPUs 7

Table 1: The Intel Haswell-EP CPU, Intel Arria 10 FPGA and NVIDIA Maxwell GPU
used in our experiments. We refer to these devices as Haswell, Arria and Maxwell.

FPUs Peak Bandwidth TDP Process

Intel Xeon E5-2697v3 224a) 1.39 TFlop/s 68 GB/s 145W 22nm (TSMC)
Nallatech 385A 1518 1.37 TFlop/s 34 GB/s 75W 20nm (TSMC)

NVidia GTX 750 Ti 640 1.39 TFlop/s 88 GB/s 60W 28nm (TSMC)

a) # cores × # vector units × vector length

Table 2: Resource usage of our gridding and degridding designs on Arria. Logic
(ALUTs or FFs) is counted in terms of thousand elements. The φ parameter is used
to scale up the design, see Fig. 2. The theoretical peak Fmax of Arria is 450 Mhz.

ALUTs FFs RAMs DSPs MLABs φ Fmax

gridding-ip 334 (43%) 487 (31%) 1514 (64%) 1439 (95%) 5317 (71%) 14 258
degridding-ip 364 (47%) 550 (35%) 1711 (72%) 1441 (95%) 6418 (78%) 14 254
gridding-lu 207 (27%) 490 (32%) 1448 (61%) 1498 (99%) 5921 (57%) 20 256

degridding-lu 252 (33%) 583 (38%) 1723 (73%) 1503 (99%) 7520 (69%) 20 253

breakdown of DSP resource usage in Figure 3 where we distinguish between
the DSPs used to implement various subparts of the algorithm. E.g. for grid-
ding (Algorithm 1): DSPfma (Line 15), DSPcis (Line 11) and DSPmisc for the post-
processing steps and miscellaneous computations, and similarly for degridding.
The implementation of computations outside of the critical path consume few
resources (DSPmisc). Since cislu uses fewer resources compared to cisip to im-
plement the sine/cosine evaluation, we are able to scale up gridding-lu and
degridding-lu further (by increasing φ from 14 to 20) than is possible with
gridding-ip and degridding-ip.

4.2 Throughput and energy efficiency

We compare throughput, measured as the number of visibilities processed per
second, in Figure 4a. The designs that use a lookup table to implement the
sine/cosine evaluation (cislu) achieve a higher throughput due to a larger number
of parallel gridder or degridder pipelines. Both Arria and Maxwell accelerate
gridding and degridding compared to Haswell by achieving more than double
the throughput.

On both the FPGA and GPU the visibilities (and other data) are copied to
and from the device using PCIe transfers. On Maxwell, we can fully overlap
PCIe transfers with computations, such that throughput is not affected by these
transfers. On Arria, we found that PCIe transfers overlap only partially: the
FPGA idles 9% of the total runtime waiting on PCIe transfers. This is probably
a limitation in the OpenCL runtime or Board Support Package. We see no fun-
damental reason why PCIe transfers could not fully overlap on the FPGA. In
Figure 4a we therefore only include the kernel runtime to determine throughput.

8 Bram Veenboer and John W. Romein

0 200 400 600 800 1000 1200 1400

Gridding-IP

Degridding-IP

Gridding-LU

Degridding-LU

1518

DSPfma DSPcis DSPmisc

Fig. 3: Breakdown of DSP resource usage

0 5 10 15 20 25 30

Haswell

Maxwell

Arria-IP

Arria-LU

Throughput [MVisibilities/s]

gridding
degridding

(a) Throughput comparison

0 0.2 0.4 0.6 0.8 1

Haswell

Maxwell

Arria-IP

Arria-LU

Energy efficiency [MVisibilities/J]

gridding
degridding

(b) Energy efficiency comparison

Fig. 4: Throughput (the number of visibilities processed per second, MVis/s) and energy
efficiency (the number of visibilities processed per Joule, MVis/J).

To asses energy-efficiency, we use PowerSensor [8] to measure energy con-
sumption of the full PCIe device in case of Arria. On Maxwell we use NVML
and on Haswell we use LIKWID [9]. Our measurements in Figure 4b indicate
that both accelerators are much more energy-efficient then Haswell by pro-
cessing about an order of magnitude more visibilities for every Joule consumed.

4.3 Performance analysis

Despite their almost identical theoretical peak performance, there is quite a
large disparity between the achieved throughput on the various devices. As we
illustrate in Figure 5, these differences are mainly caused by how sine/cosine
(cis(x)) is implemented. On Haswell we use MKL to evaluate cis(x) in software
by issuing instructions onto the FPUs. In the operations mix found in IDG (17
FMAs and one evaluation of cis(x)) 80% of the time is spent in the sine/cosine
evaluation [11]. On Maxwell, Special Function Units (SFUs) evaluate cis(x)
in hardware in a separate processing pipeline, such that FMAs and sine/cosine
evaluations can be overlapped. Similarly, the distinct operations (fma, cis and
misc) also overlap on Arria, since these are all implemented using dedicated
DSPs. However, unlike Maxwell, these operations compete for resources. On
Haswell and Maxwell the miscellaneous operations contribute negligibly to

Radio-Astronomical Imaging: FPGAs vs GPUs 9

0 20 40 60 80 100 120 140 160

Maxwell

Arria-IP

Arria-LU

Haswell

Runtime [s/GVis]

timefma

timecis
timemisc

Fig. 5: Breakdown of gridding runtime for FMA operations (timefma), sine/cosine eval-
uations (timecis) and all other operations (timemisc). On Haswell, 80% of the time
is spend in sine/cosine evaluations. On Maxwell and on Arria, the sine/cosine eval-
uations are performed concurrently with the FMA operations.

4 8 16 32 64 128 256 512
0.1

1

H
as
w
el
l

instruction mix

A
rr
ia

350 Mhz

255 Mhz

450 Mhz

M
ax
w
el
l

Arria-IP

Arria-LU

Maxwell

Haswell

90%

90%
63%

Operational intensity [Flop/Byte]

P
er
fo
rm

an
ce

[T
F
lo
p
/s
]

gridding degridding

Fig. 6: The implementation of sine/cosine evaluations in software imposes an upper
bound on performance on Haswell. Maxwell performs sine/cosine operations con-
currently with FMA operations and performs close to the theoretical peak. On Arria,
the performance is bound by the clock frequency.

the overall runtime. On Arria, the misc operations are implemented using as
few DSPs as possible (and shared by multiple gridder pipelines) to minimize
underutilization.

We analyze the achieved floating-point performance by applying the roofline
model [12], see Figure 6. In this analysis, we only include all +, − and × floating-
point operations in the operation count (e.g. Flopsfma + Flopsmisc), while we
exclude all cis(x) operations (e.g. Opscis). According to the operational intensity,
the performance of gridding and degridding is compute bound on all devices. As
we illustrated in Figure 5, on Haswell the Flops and Ops are both executed
on the FPUs and the performance is therefore bound by the performance of the
cis(x) implementation, e.g. Intel MKL (for which the bound is indicated with
the blue dashed line). A lookup table does not improve performance over using

10 Bram Veenboer and John W. Romein

the Intel MKL library. Due to the SFUs, on Maxwell the achieved performance
is over 90% of the theoretical peak.

The dotted line on the roofline for Arria illustrates the theoretical peak,
at the advertised frequency of 450 Mhz. In practice, even with only a single
DSP used, the maximum clock frequency that the compiler achieves is 350 Mhz
resulting in a lower practical peak indicated by the solid line. Our gridding
and degridding designs on average achieve about 255 Mhz (indicated with the
red dashed line). The percentage of DSPs used to implement Flops (63% for
gridding-ip and degridding-ip, 90% for gridding-lu and degridding-lu,
see Figure 3) provides upper bounds on attainable performance. The achieved
performance is within 99% of these bounds, indicating that the designs are nearly
stall-free.

5 FPGAs vs. GPUs: lessons learned

As we implemented and optimized Image-Domain Gridding for both FPGAs
and GPUs, we found differences and similarities with respect to architecture,
programming model, implementation effort, and performance.

The source code for the FPGA imager is highly different from the GPU code.
This is mostly due to the different programming models: with FPGAs, one builds
a dataflow pipeline, while GPU code is imperative. The FPGA code consists of
many (possibly replicated) kernels that each occupy some FPGA resources, and
these kernels are connected by channels (FIFOs). The programmer has to think
about how to divide the FPGA resources (DSPs, memory blocks, logic, etc.) over
the pipeline components, so that every cycle all DSPs perform a useful compu-
tation, avoiding bottlenecks and underutilization. Non-performance-critical op-
erations, such as initialization routines, can consume many resources, while on
GPUs, performance-insensitive operations are not an issue. On FPGAs, it is also
much more important to think about timing (e.g., to avoid pipeline stalls), but
being forced to think about it leads to high efficiency: in our gridding application,
no less than 96% of all DSPs perform a useful operation 99% of the time.

FPGAs have typically less memory bandwidth than GPUs, but we found that
with the FPGA dataflow model, where all kernels are concurrently active, it is
less tempting to store intermediate results off-chip than with GPUs, where ker-
nels are executed one after another. In fact, our FPGA designs use memory only
for input and output data; we would not even have used FPGA device memory
at all if the OpenCL Board-Support Package would have implemented the PCIe
I/O channel extension. In contrast, the cuFFT GPU library even requires data
to be in off-chip memory.

Both FPGAs and GPUs obtain parallelism through kernel replication and
vectorization; FPGAs also by pipelining and loop unrolling. This is another
reason why FPGA and GPU programs look differently. Surprisingly, many op-
timizations for FPGAs and GPUs are similar, at least at a high level. Maximiz-
ing FPU utilization, data reuse through caching, memory coalescing, memory
latency hiding, and FPU latency hiding are necessary optimizations on both ar-

Radio-Astronomical Imaging: FPGAs vs GPUs 11

chitectures. For example, an optimization that we implemented to reduce local
memory bandwidth usage on the FPGA also turned out to improve performance
on the GPU, but somehow, we did not think about this GPU optimization before
we implemented the FPGA variant. However, optimizations like latency hiding
are much more explicit in FPGA code than in GPU code, as the GPU model
implicitly hides latencies by having many simultaneously instructions in flight.
On top of that, architecture-specific optimizations are possible (e.g., the sin/cos
lookup table; see Section 3.1).

Overall, we found it more difficult to implement and optimize for an FPGA
than for a GPU, mostly because it is difficult to efficiently distribute the FPGA
resources over the kernels in a complex dataflow pipeline. Yet, we consider the
availability of a high-level programming language and hard FPUs on FPGAs an
enormous step forward. The OpenCL FPGA tools have considerably improved
during the past few years, but have not yet reached the maturity level of the
GPU tools, which is quite natural, as the GPU tools have had much more time
to mature.

6 Related work, discussion and future work

Licht et al. [4] present an overview of HLS FPGA code transformations such
as transposing of the iteration space, replication and streaming dataflow that
we also applied. However, they do not describe code transformation for over-
coming underutilization of resources. Yang et al. [14] address underutilization
of resources by using a consumer-producer model, which they implement us-
ing channel arbitrage. We also connect kernels running at different rates using
channels, but we use channel depth to facilitate buffering and to avoid stalls.

Several studies compare energy efficiency between OpenCL applications for
FPGAs and GPUs [16, 15, 3, 5, 7, 6]. In most cases, they compare FPGAs and
GPUs manufactured using a similar lithographical process and report higher
energy-efficiency for FPGAs compared to GPUs. We compared contemporary
and comparable devices (in terms of lithographical process and peak perfor-
mance) and apply the roofline model to illustrate that our implementations
perform close to optimal both on the FPGA and on the GPU. On Arria 10 we
show that the performance of our designs are bound by clock frequency, some-
thing we can not improve with the current OpenCL compiler for FPGAs. We
also explain that the GPU has an advantage, by computing sine/cosine using
dedicated hardware. In contrast to what the related work suggests, our results
indicate that FPGAs are not necessarily more energy-efficient than GPUs.

Intel claims that the Stratix 10 FPGA (produced at 14nm) will be about
3.6× as energy-efficient compared to Arria 10 [13] and have a peak performance
of up to 9 TFlop/s. In future work, we would like to extend our analysis to
compare Stratix 10 and NVIDIA Turing GPUs.

12 Bram Veenboer and John W. Romein

7 Conclusion

In this paper we set out to implement a complex radio-astronomy application
on an Arria 10 FPGA using the Intel FPGA SDK for OpenCL. Being able to
implement such an application illustrates that having support for a high-level
programming language is a major leap forwards in programmability, as we would
not have been able to implement this application using a hardware description
language. We show optimization techniques that make our implementation very
scalable as it uses almost all DSPs available to perform useful floating-point
computations while it stalls less than 1% of the time.

We compared optimized implementations of an astronomical imaging appli-
cation on a GPU, FPGA, and a CPU. While the theoretical peak-performance
for these devices is almost identical, the FPGA and GPU perform much better
than the CPU and they consume significantly less power. In absolute terms, the
GPU is the fastest and most energy-efficient device, mainly due to support for
sine/cosine operations using dedicated hardware. On the FPGA, our implemen-
tation of a custom lookup-table for these operations is advantageous, but the
maximum achieved clock frequency is only about 70% of the theoretical peak.
Unfortunately, the Intel FPGA SDK for OpenCL (currently) provides few means
to improve the clock frequency. This issue is non-existent on GPUs.

FPGAs are traditionally used for low-latency, fixed-point and streaming com-
putations. With the addition of hardware support for floating-point computa-
tions and the OpenCL programming model, the FPGA has also entered the
domain where GPUs are used: high-performance floating-point applications.

Acknowledgments

This work is funded by the Netherlands eScience Center (NLeSC), under grant
no 027.016.G07 (Triple-A 2), the EU Horizon 2020 research and innovation pro-
gramme under grant no 754304 (DEEP-EST) and by NWO (DAS-5 [2]). The
European Commission is not liable for any use that might be made of the infor-
mation contained in this paper. The authors would like to thank Atze van der
Ploeg (NLeSC) and Suleyman S. Demirsoy (Intel) for their support.

References

1. ASTRON Netherlands Institute for Radio Astronomy: Image-Domain Gridding for
FPGAs. GitLab: astron-idg/idg-fpga (2019)

2. Bal, H., et al.: A Medium-Scale Distributed System for Computer Science Research:
Infrastructure for the Long Term. IEEE Computer 49(5), 54–63 (2016)

3. Cong, J., et al.: Understanding Performance Differences of FPGAs and GPUs. In:
2018 IEEE 26th International Symposium on Field-Programmable Custom Com-
puting Machines, pp. 93–96 (2018)

4. de Fine Licht, J., et al.: Transformations of High-Level Synthesis Codes for High-
Performance Computing. Computing Research Repository (CoRR) (2018)

Radio-Astronomical Imaging: FPGAs vs GPUs 13

5. Jin, Z., Finkel, H.: Power and Performance Tradeoff of a Floating-Point Intensive
Kernel on OpenCL FPGA Platform. pp. 716–720 (2018)

6. Minhas, U.I., et al.: Exploring Functional Acceleration of OpenCL on FPGAs
and GPUs Through Platform-Independent Optimizations. In: 14th International
Symposium, ARC 2018, pp. 551–563 (2018)

7. Muslim, F.B., et al.: Efficient FPGA Implementation of OpenCL High-Performance
Computing Applications via High-Level Synthesis. IEEE Access 5, 2747–2762
(2017)

8. Romein, J.W., Veenboer, B.: PowerSensor 2: a Fast Power Measurement Tool. 2018
IEEE International Symposium on Performance Analysis of Systems and Software
pp. 111–113 (2018)

9. Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented
tool suite for x86 multicore environments. Proceedings of the International Con-
ference on Parallel Processing pp. 207–216 (2010)

10. van der Tol, S., Veenboer, B., Offringa, A.: Image Domain Gridding. Astronomy
& Astrophysics 616 (2018)

11. Veenboer, B., Petschow, M., Romein, J.W.: Image-Domain Gridding on Graphics
Processors. Proceedings of the International Parallel and Distributed Processing
Symposium, IPDPS pp. 545–554 (2017)

12. Williams, S., Waterman, A., Patterson, D.: Roofline: An Insightful Visual Perfor-
mance Model for Multicore Architectures. Communications of the ACM 52, 65–76
(2009)

13. Won, M.S.: Meeting the Performance and Power Imperative of the Zettabyte Era
with Generation 10. Tech. rep., Intel Programmable Solutions Group (2013)

14. Yang, C., et al.: OpenCL for HPC with FPGAs: Case study in molecular electro-
statics. In: 2017 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–8 (2017)

15. Zohouri, H.R.: High Performance Computing with FPGAs and OpenCL. Ph.D.
thesis, Tokyo Institute of Technology (2018)

16. Zohouri, H.R., et al.: Evaluating and Optimizing OpenCL Kernels for High Per-
formance Computing with FPGAs. In: SC16: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 409–420 (2016)

