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Abstract. Radio telescopes produce enormous amounts of data. Many
of them use GPU clusters to combine the digitized antenna signals, usu-
ally in real time. Achieving high data rates is challenging: the PCIe
bandwidth of discrete GPUs is limited, and without RDMA, handling
200 or 400 Gb/s Ethernet packets with telescope data is difficult.
The NVIDIA Grace Hopper is a novel, innovative system that eliminates
the I/O bottleneck of traditional, discrete GPUs by using NVLink instead
of PCIe. This opens the door to higher data rates, but faster hardware
alone is not enough. In this paper, we combine hardware and software
innovations to process Ethernet packets at no less than 1.2 Tb/s, a huge
improvement over what was previously possible. We use the Data Plane
Development Kit to minimize the receive overhead, and use a new feature
that allows packet processing directly by the GPU. We demonstrate the
data handling in a correlator application, analyze the performance, and
show how to reduce the energy use.
The presented innovations enable the use of GPUs for more powerful
telescopes with much higher data rates. The results are also of interest
to (GPU) applications from other application domains with high I/O
demands, especially if RDMA is not available.
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1 Introduction

Radio telescopes produce enormous amounts of data, and with the relentless
drive to build more powerful instruments, these data rates increase and increase.
Most telescopes combine the data from tens or hundreds of receivers, to obtain
higher sensitivity and image resolution. This data is transported, typically over
Ethernet, to a central location where the data is combined by what is called a
correlator. Due to the high data rates, these data are usually correlated in real
time. In the past, this was done using custom-built electronics, ASICs, or DSPs,
but nowadays this task is performed by FPGAs or GPUs.

The choice to use FPGAs or GPUs for a correlator depends on multiple
factors. Generally, FPGAs are considered to be better at I/O, but difficult to
program, while GPUs are better at compute, and allow much more flexible and
complex processing pipelines. Instruments with moderately high data rates, like



2 J.W. Romein

Fig. 1: Schematics of the Grace Hopper Superchip (source: NVIDIA).

CHIME [9], LOFAR [7], and the MWA [13], use GPU-based correlators. However,
for instruments with the highest data rates, like ALMA [8] and the two SKA
sites, new FPGA-based correlators are being developed, as GPU systems were
deemed less suitable to handle tens of terabits per second.

During the past decade, the computational performance of successive GPU
generations increased by roughly two orders of magnitude, partly because of the
introduction of tensor cores, that can be efficiently used for signal-processing
tasks like correlations and beam forming [19, 22]. In the same period, the PCIe
bandwidth increased by less than a single order of magnitude, thus the gap
between computational performance and I/O performance widened. To profit
from the hundreds of tera-ops/s of computational processing power from present-
day GPUs, we would need to stream in data at more than a terabit per second
— far beyond the 200 or 400 Gb/s PCIe gen 4 or gen 5 bus speeds of recent,
discrete GPUs and network interfaces.

The recently introduced Grace Hopper Superchip [17] turns out to be a game
changer. These innovative systems do not only contain the most powerful GPU
to date, the traditional PCIe link between CPU and GPU is replaced by NVLink,
that provides seven times more bandwidth than PCIe gen 5 (see Figure 1). This
essentially eliminates the I/O bottleneck of discrete GPUs. The figure also shows
four PCIe links (on the left), but in practice, Grace Hopper systems have at most
three PCIe slots available for network interfaces (NICs). Each slot can hold one
400 Gb/s Ethernet (GbE) NIC or a dual-port 200 GbE NIC, for a total of
1200 Gb/s of Ethernet connectivity, six times more than a PCIe gen 4 GPU can
handle.

However, faster hardware alone is not enough to achieve 1.2 Tb/s at the
application level. Such data rates cannot be handled by the Operating System
(OS): the interrupt, context switching, and packet-copying overheads are pro-
hibitive. And as we will show below, even the CPU memory is too slow to act as
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a packet buffer. We need techniques that bypass the OS, and stream packet data
directly from the NICs into GPU memory. Normally, one would use RDMA tech-
niques like RoCE or GPUdirect [15] for this, but as the data comes from FPGAs,
RDMA would severely complicate the FPGA firmware. Instead, we use the Data
Plane Development Kit (DPDK) [4] to receive and handle network packets with-
out OS overhead, and we use a recent DPDK addition, called GPUdev [5], that
allows Ethernet packets to be processed directly by the GPU. This proved to be
an essential technique to achieve high data rates.

The main contributions of the paper are the following. Through a combina-
tion of software and hardware innovations, we demonstrate a GPU correlator
that receives and processes 1196 Gb/s of Ethernet packets, a 6–20-fold improve-
ment over previous-generation GPU correlators. This result shows that in general
I/O is no longer the GPU’s Achilles heel. We explain the techniques and opti-
mizations that are necessary to achieve this data rate. We analyze the network,
CPU, and GPU performance, show how to reduce the energy use, and discuss
the strengths and weaknesses of the DPDK approach.

Although this study is driven by the challenges from radio astronomy, the
results apply to (GPU) applications from any domain that demands high data
rates, especially in situations where the use of RDMA is not possible.

This paper is structured as follows. In Section 2, we provide some back-
ground information on radio telescopes, GPU correlators, and DPDK. Section 3
describes several DPDK-based implementations of a GPU correlator, for which
we analyze the performance and energy efficiency in Section 4. Section 5 discusses
advantages and disadvantages of the DPDK approach, and Section 6 describes
related and future work. Section 7 concludes.

The software developed for this publication is available online [1, 2].

2 Background

In this section, we briefly describe how data flows in a radio telescope system, up
to the point that telescope data has been combined by what is called the correla-
tor. A complex post-correlator processing pipeline then takes care of calibration
and imaging, but this is outside the scope of this paper. Figure 2 depicts the data
flow between the antennas and the correlator. On the left, antenna signals are
digitized by Analog-to-Digital Converters (ADCs), controlled by FPGAs. The
FPGAs also filter and packetize the data. The filter separates the signals into
disjoint frequency bands, that can each be processed independently by the dif-
ferent GPU correlator machines on the right. As discussed in the introduction,
correlators can be built from either FPGA or GPUs; in this paper we assume a
GPU-based correlator. In contrast, the digitizers on the left are always FPGAs,
as GPUs cannot control and read ADCs.

As each digitizer FPGA holds the signals from all frequency bands of one
antenna, while a GPU correlator node needs one frequency band of all antennas,
the data transport from the FPGAs to the GPU systems forms a left-to-right
any-to-any pattern, which is known as the “corner turn”. In other words: each
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Fig. 2: Data flow from antennas to GPU correlator systems.

FPGA sends packets to all GPU correlator systems, and each GPU correlator
system receives packets from all FPGAs. The corner turn is performed on the
network switch in the middle of the figure, which is physically close to the GPU
correlator systems.

Depending on the telescope, the FPGAs digitizers and the GPU correlator
systems may be any distance between a few meters and thousands of kilometers
apart (the distance between the two outermost antennas is one of the factors
that determines the eventual image resolution). We use Ethernet as the trans-
portation method, because Ethernet is well supported by both the FPGAs and
by the GPU systems. Moreover, Ethernet works over any distance. Often, these
Ethernet packets are formatted as UDP/IP packets, so that they can be routed.
By design, the data transport is unreliable, as a reliable protocol like TCP would
severely complicate the FPGA firmware and requires additional buffering, while
in a real-time environment there is generally no time for retransmissions anyway.
Also, the post-correlator processing pipeline may discard data for other reasons
(in particular, due to Radio Frequency Interference), so the pipeline is well capa-
ble of handling missing data. Apart from UDP/IP/Ethernet headers, the packets
contain an application-specific header with a timestamp of the precise time that
the first sample in the packet was taken, the antenna number, and the frequency
band number. The packet payload typically contains a few thousand consecutive
(filtered) antenna samples, so that the size of the whole packet does not exceed
the jumbo frame limit (9000 bytes), while the header size is small compared to
the payload size.

A complicating factor of a correlator application is that we cannot assume
that the data from all antennas arrive at the same time in a correlator system.
Packets from a thousand kilometer distant antenna may arrive tens or even a
hundred milliseconds later than from a nearby antenna. To combine the samples,
the input streams from the different antennas must be realigned. Therefore, each
correlator system maintains a ring buffer in which the input data is buffered,
typically for hundreds of milliseconds or a few seconds. For each antenna, a sep-
arate ring buffer is used. The ring buffer is selected by the antenna-number value
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Fig. 3: Copy behavior of the different implementations.

in the packet header, and the location within the ring buffer where samples from
the packet payload are stored is determined by the header’s timestamp value
modulo the ring-buffer size. The ring-buffer data is continuously overwritten by
newer data, so there is only a limited amount of time available to process the
data. The data also needs to be available in the buffer while it is being transferred
to the GPU.

This paper focuses on the receipt and processing of the network packets in
the GPU systems, on the right in Figure 2. Whereas in the 10 and 40 GbE era
UDP/IP packets could be received through the operating system, the interrupt,
context switching, and packet copying overheads are too large for 100 Gb/s Eth-
ernet and beyond. Hence, we need a mechanism that bypasses the operating
system in the critical receive path. As we strive to achieve line speeds from mul-
tiple network interfaces, we choose the Data Plane Development Kit (DPDK),
also because of its recently added support for GPUs.

DPDK is a toolkit that allows an application to take full control over a net-
work interface, bypassing the OS. The main functions are the functions that take
care of receiving and sending Ethernet packets, and the ones that manage packet
buffers in memory pools. Any network protocol on top of Ethernet also has to be
implemented in user space. For simple protocols like UDP/IP, the application
will likely implement the protocol stack itself, but for complex protocols like
TCP/IP, it is probably more convenient to use an open-source user-level library
like F-Stack [3]. As a DPDK application can send and receive any Ethernet
packet on a network, which is a severe security threat, DPDK applications run
with an elevated privilege level (as superuser, or with some specific capabilities).
The toolkit is supported by all major NIC vendors, but the GPUdev extension
currently only works with NVIDIA NICs and NVIDIA GPUs. We elaborate on
the use of DPDK in the next section.

3 Implementation

We implemented three correlator variants. Each of them uses DPDK, but the
data paths are different. Figure 3a depicts how the most straightforward imple-
mentation of a GPU correlator works: the packets are received in DPDK packet
buffers, the packet data is copied into the ring buffers in CPU memory, and after
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some time, when all data for a particular time interval has arrived (or should
have arrived), the section of ring-buffer data for that time interval is copied to
GPU memory, for each antenna. Subsequently, the GPU processes the data. We
call this the 2-copy variant, as receiving data from the NIC is generally not
counted as a “copy” action.

The second variant does not have the ring buffers in CPU memory, but in
GPU memory (see Figure 3b). Here, the packets are still received in DPDK
packet buffers, but their contents are copied into the GPU ring buffers. We call
this the 1-copy variant. Alternatively, we could have stored the ring buffers in
CPU memory and let the GPU channel filter kernel read the ring buffer contents
through unified memory, but despite the use of NVLink, this makes the channel
filter kernel prohibitively slow, so we do not further consider this alternative.

The third variant, the 0-copy variant, works quite differently (see Figure 3c).
Rather than implementing the ring buffer as a flat memory buffer, we use a giant
amount of DPDK packet buffers as “ring buffer”, and process the data at a later
moment directly from the packet buffers. For this, we use the recently added
GPU support in DPDK, GPUdev [5], that allows allocating packet buffers in
GPU memory. DPDK also allows splitting packets, and receive packet fragments
in different memory pools. We allocate one memory pool in CPU memory and
another memory pool in GPU memory, and split incoming packets so that each
packet header (56 bytes) is received in CPU memory, and the associated packet
payload (8192 bytes) is received in GPU memory. Important to note is that 99.3%
of the packet data is directly DMAed from the NIC into GPU memory, bypassing
CPU memory. The packet headers contain the timestamps and antenna numbers,
that determine the location in the ring buffer. The timestamps and antenna
numbers are inspected by the CPU, and a pointer to the packet payload (in
GPU memory) is placed in the ring buffer. The ring buffers thus contains pointers
to packet payload buffers instead of the samples themselves. After all packets
from a certain time interval should have arrived, the CPU copies the ring buffer
payload pointers to the GPU, and launches the filter and correlator kernels that
we describe in Section 3.1.

Even though we use almost 74 GB (77%) of the GPU memory for buffering
packet payloads, the buffer fills up quickly at high data rates. At the maximum
data rate of 1.2 Tb/s, the 9.4-million entry packet buffer is completely filled after
only 0.52 seconds. The GPU processes blocks of 18 GB of data (one quarter of
the ring buffer size), which corresponds to 0.13 seconds at the highest data rates,
so that the remainder of the ring buffer is used to receive new packets, while
there is also sufficient time to overcome the packet arrival time differences from
the different antennas.

At first, using large amounts of GPU memory with GPUdev did not work
well. During program initialization, the GPU memory is registered by DPDK to
make it accessible to the NICs, but registering a few gigabytes of GPU memory
was prohibitively slow (taking hours), and was exponentially slower for even
larger sizes. We fixed this in DPDK’s mlx5 driver, by sorting a list of segments
only once instead of for each added segment. A patch is available [2].
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DPDK packet processing channel filter correlate

Fig. 4: Simplified view of the GPU processing pipeline.

We distribute the packet-handling work over multiple CPU cores, by using
multiple receive queues. Each receive queue is associated with one CPU thread
that continuously polls the queue for incoming packets. The amount of receive
queues (and thus CPU cores) is an adjustable parameter. The antenna streams
are divided over the available receive queues; consecutive packets from the same
antenna always end up in the same receive queue.

As all cores and CPU memory in the Grace CPU are in the same NUMA
domain, there is no need to bind threads to specific cores. Yet we distinguish
between threads that poll a NIC receive queue and threads that do not; the
polling threads make as few system calls as possible (to not stop receiving packets
for an extended period of time), while (blocking) system calls are performed by
the latter group of threads.

DPDK’s per-core memory pool cache plays a crucial role in obtaining good
performance. This is a 512-entry per-core cache where a core can quickly al-
locate and deallocate packets from, instead of using the much slower shared
pool. We found that, regardless of how many cores are used, data rates be-
yond 800 Gb/s are impossible without effective use of the memory pool cache.
This limits the freedom in application design choices. First, one cannot receive
a packet by one core, hand it over another core that manages the GPU, and let
the GPU-managing core deallocate the packet when the GPU is ready, because
the receiving core would always encounter an empty cache and the deallocat-
ing core a full cache. Second, one cannot deallocate large amounts of packets in
one go (even though a burst deallocation function is available). Instead, after
a packet has been processed, we defer packet deallocation, so that every time
a new packet is received, another unused packet is deallocated. This keeps the
cache usually in a partially filled state.

3.1 GPU processing

Although a comprehensive study of the GPU kernels is outside the scope of
this paper, we briefly describe the signal-processing operations performed by the
GPU. The GPU performs three major tasks: it handles the input packets (this
only applies to the 0-copy variant), and subsequently channelizes and correlates
the signals (see Figure 4). The last two tasks are standard signal-processing
operations that basically every (GPU) correlator performs.

Even though packet handling and channel filtering are depicted as two op-
erations, they are performed by the same GPU kernel. The channel filter comes
from a newly developed GPU library, that combines a PolyPhase Filter Bank
(FIR filters and FFT), delay compensation (optional), bandpass correction (op-
tional), and a memory transpose in a single GPU kernel. All these operations
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are fused in a single kernel, to reduce the number of GPU memory accesses. The
library compiles the GPU code at run time, applying specific optimizations that
depend on the given number of antennas, frequency channels, etc. We use the
runtime compilation property also to provide the library with custom GPU code
that reads input data from DPDK packet payloads, rather than a flat mem-
ory buffer. This is a nice separation of responsibilities: the filter library itself
is oblivious of DPDK, yet the GPU channel filter kernel is heavily involved in
processing the DPDK packets.

The second GPU kernel is a correlator kernel that combines the antenna data
by pairwise multiplication and integration of the filtered antenna samples. This
kernel comes from the Tensor-Core Correlator library [22], that performs these
operations on tensor cores. It is the fastest (GPU) correlator to date.

Once the data from all antennas should have arrived in the ring buffers (pos-
sibly with a time offset), the GPU processes blocks of 18 GB of data; a quarter
of the ring buffer size. Consecutive blocks are slightly overlapping, as the FIR
filters in the channelizer are in fact convolutions that need some historical data
from the previous block. This complicates the implementation. Due to the large
data blocks on which the GPU operates, the kernel launch overhead is negligible.
Yet, the kernels are launched by a different thread than the CPU threads that
receive DPDK packets, as the kernel launches may involve (blocking) system
calls.

We considered using a persistent GPU kernel that would poll for new incom-
ing packets, and immediately process (channelize) new packet data. The advan-
tage of that would be that the packet-buffer size could be kept small, decreasing
the DPDK overhead. However, it may increase the energy use, as it keeps the
GPU busy at all times, even if there is no new data to process. Unfortunately,
a persistent kernel is difficult to implement in this case, for several reasons. In
particular, the realignment in time of the channelized data prior to correlation
(which requires some sort of ring buffer as well), but also the missing support for
persistent kernels in the filter library, the internal state that a filter must main-
tain, the deallocation of processed packets, and CPU–GPU synchronization all
add to the complexity. Therefore, we refrained from using a persistent kernel.

3.2 Correlator output

In this study, we do not specifically optimize for high output data rates, as the
output data rate of a correlator is typically (much) lower than the input data
rate. If the output is written to file, we use the new cuFile library from the
CUDA toolkit to write data directly from GPU memory to file. Alternatively,
the data can be sent over a TCP connection to an external system. For simplicity,
we do this via the operating system (and another virtual instance of one of the
NICs), which works fine for speeds up to about 50 Gb/s. If the output data rate
requirements for a specific instrument setup would exceed this, the output data
path should also be optimized (either through DPDK, or some RDMA protocol),
but at such high output data rates, the biggest challenges would not be in the
correlator itself, but in the post-correlator processing pipeline.
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4 Performance

We analyze the application and DPDK performance on the CPU and GPU. Al-
though in reality antenna data are digitized and packetized by FPGAs near the
individual antennas, in this experimental setup we use a CPU-based packet gen-
erator that mimics the FPGA behavior, for practical reasons. We only evaluate
the performance of a single GPU correlator system, as multi-GPU correlator
systems operate independently of each other, since they each process a different
frequency band, so multi-GPU scaling is trivial. The corner turn does not scale
trivially, and can impose high packet-switching requirements on the switch, but
this is outside the scope of this paper.

The measurements were performed on two QCT S74G-2U Grace Hopper
systems with 96 GB HBM3 and 480 GB LPDDR5 memory (one for the packet
generator, the other one for the GPU correlator), using a patched version of
DPDK 24.03 (see Section 3) and Linux kernel 6.5.0-1024-nvidia-64k. For avail-
ability reasons, we use a mixture of 400 GbE and dual-port 200 GbE ConnectX-7
NICs, for a total of 1200 Gb/s per system (in each direction). To simplify the
software, we split the 400 GbE NICs into two virtual 200 GbE NICs, so that the
software does not need to distinguish between different link speeds. In practice,
we saw that a single 400 GbE link and two bundled 200 GbE links behaved
similarly. SSH connections are routed via a separate USB-Ethernet dongle, to
not interfere with the high-speed network interfaces. Unless stated otherwise, 12
(out of 72 available) CPU cores are used to poll the NICs and insert the packets
in the circular buffer.

We simulate 72 antennas and 8 bits per sample, typical numbers for a ra-
dio telescope. For other instruments, the ratio between the amount of I/O and
computations may be different. The I/O bandwidth scales proportionally to the
number of antennas, but the amount of computations scales quadratically. Fewer
bits per sample reduces the amount of I/O, but has no impact on the amount
of computations.

We seek for the largest amount of data that a Grace Hopper system could re-
ceive and process in real time, without packet loss (the correlator should normally
not lose data, even though the remainder of the processing pipeline tolerates it).
Figure 5 shows the obtained network bandwidth, for each of the three variants.
The 2-copy variant runs up to 309 Gb/s without packet loss. The 1-copy variant
works best with 24 cores, and achieves a data rate of 670 Gb/s. The 2-copy and
1-copy variants can actually process higher data rates, but start to drop packets
then, something that we wish to avoid. Only the 0-copy variant is able to process
packets at 1.2 Tb/s. This means that the application is still limited by network
bandwidth, but this bandwidth is six times higher than what was possible with
previous-generation GPUs. And as we will see later, the GPU would not be
able to handle a much higher data rate, so the GPU compute power and I/O
capabilities are fairly balanced.

Figure 6 shows the actual CPU memory bandwidth use, which is a scarce
resource for the 2-copy and 1-copy variants. Unfortunately, there are no perfor-
mance counters that measure the CPU memory bandwidth use directly, so we
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measured and added the memory traffic from the local CPU cores, NVLink, and
PCIe busses, as described in the Grace Performance Tuning Guide [18].

From the figure, we see that the 2-copy and 1-copy variants would never scale
to 1.2 Tb/s, as their extrapolated graphs exceed the memory bandwidth that is
available. A separate benchmark measured the memory bandwidth at 340 GB/s,
which is consistent with what the Tuning Guide [18] reports. Yet, we see that
the 2-copy and 1-copy variants do not get close to the 340 GB/s bandwidth use
as they start losing packets; this already happens around 200 GB/s. For the
2-copy variant, this is mostly due to the irregular CPU-to-GPU transfers: due
to the high NVLink link speed, these transfers can claim all the available CPU
memory bandwidth, leaving insufficient memory bandwidth for packet receipt.
The 1-copy variant does not suffer from this, still the memory access pattern is
not optimal to reach full bandwidth without packet loss.

In fact, the 0-copy variant is the only variant that does not suffer from in-
sufficient CPU memory bandwidth; the figure shows that its actual memory
bandwidth use is low. In the remainder of this section, we only consider the
0-copy variant.

Note that, unlike CPU memory bandwidth, GPU memory bandwidth is am-
ply available; the 150 GB/s that is needed to store packet payloads, is only a
small fraction of the 3.5 TB/s that is available.

4.1 Energy efficiency

A well-known technique to improve the energy efficiency of a GPU (and many
other processors) is to run the application at a reduced clock frequency [21]. As
the GPU idles for 23% of the time at the default (and highest supported) clock
frequency, there is room to reduce the clock speed, down to the point that it
just does not lose real-time behavior (see Figure 7). This way, we can reduce the
energy consumption already by 96 Watts.

Similarly, we can reduce the CPU clock frequency (see Figure 8). Note that,
unlike the GPU kernels, the packet-handling CPU cores never idle but keep on
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Fig. 7: GPU performance and energy efficiency. On the left: the time spent in the
different kernels, as a function of clock frequency (note that the DPDK packet
handling is in fact part of the filter kernel, but its execution time is shown
separately). On the right: the power use.

polling the NICs to check if new packets have arrived. When using only 6 CPU
cores to handle the incoming packets, there is hardly any room to reduce the clock
frequency without packet loss. However, if we increase the number of polling
cores to 12, we can decrease the clock frequency all the way down to 1.8 GHz,
without observing packet loss. This way, we can decrease the CPU power from
119 Watts (with 6 fast-running cores) to 69 Watts (with 12 slow-running cores).
We see no additional benefit from increasing the number of polling cores to 18,
because the clock speed cannot be reduced any further without packet loss.

5 Discussion

So far, we learned that the DPDK approach, and in particular its recent support
to receive packet payloads in GPU memory, yield extremely high data rates
on streaming data, and good application performance. However, there are some
drawbacks to this approach. First, the DPDK model provides no method to
control where packet payloads are received in GPU memory. As a result, the GPU
spends 22%–27% of the time collecting the input data from the scattered packet
payloads: looking up an input sample requires an extra pointer indirection, and
GPUs have no huge page support to reduce the amount of TLB misses.

Second, splitting packets increases DPDK’s internal CPU overhead, because
the header and payload buffers are allocated and deallocated from separately
managed memory pools. We tried receiving the full packet (header and payload)
in GPU memory. As, in this case, the relevant metadata (timestamp, antenna
number) are in GPU memory, either the CPU needs to retrieve this data from
GPU memory so that it can place the packet in the circular buffer, or the GPU
itself should fully handle the packet and maintain the circular buffer itself. Unfor-
tunately, for the former approach, the DPDK toolkit refused to register unified
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right: the energy use.

(managed) memory, so that the memory would have been accessible by the NIC,
CPU, and GPU. And the latter approach is difficult to implement. For example,
when the GPU finished processing a packet, it cannot return the packet frag-
ments to the mbuf pool and should leave this to the CPU, but then it is difficult
to make efficient use of DPDK’s mbuf cache, which is crucial for performance.

Finally, the presented 0-copy method is difficult to integrate into existing
GPU correlator applications like the LOFAR [7] and AARTFAAC [20] correla-
tors, due to the different way in which input data is stored, the different roles
of CPU threads, and the prohibitive costs of thread synchronization for every
received packet. The application that we use for this demonstration, was written
from scratch (except for the GPU kernels) so that DPDK could be properly
integrated.

On the other hand, we have not seen any competing approach that yields
such high data rates, and given the enormous increase in achieved data rates,
we consider the DPDK and GPUdev solution as a major step forward.

6 Related and future work

So far, GPU correlators have only been built for radio telescopes with moderate
data rates, like CHIME (for a total of 6.6 Tb/s divided over 1024 GPUs) [9],
LOFAR (236 Gb/s) [7], AARTFAAC (120 Gb/s) [20], and MWAX (11 Gb/s) [13],
to name a few. It is also worth noting what has not been built: so far, GPU and
NIC technology were not ready for instruments like ALMA, which is currently
being upgraded to 63 Tb/s [8]. This study shows that a 63 Tb/s GPU correlator is
feasible. But we also need more efficient packet handling in the AARTFAAC and
LOFAR correlators, as their networks are currently being upgraded to 400/100
GbE, allowing much higher data rates.
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Others tried ibverbs to bypass the operating system, e.g., in the SPEAD2
packet-handling library [12] or in an experimental setup [10]. The performance
that was obtained with it in practice, fell 10–30% short of the used Ethernet line
rates (200 and 400 Gb/s, respectively).

NVIDIA Holoscan [16] is a framework that supports implementing applica-
tions for real-time sensor processing on GPUs. Holoscan is used in a setup with
the Allen Telescope Array, where Holoscan’s Advanced Network Operator is used
to process 100 GbE data, bypassing the CPU [11]. As Holoscan is built on top
of DPDK, it should be able to perform similarly to what we report.

The DOCA toolkit [14] is a collection of SDKs that provide (low-level) access
to NVIDIA NICs and DPUs, some of which allowing packet receipt in GPU
memory (e.g., DOCA Ethernet and DOCA GPUnetIO). A recent addition to the
toolkit, DOCA DPA (and the driver layer DOCA FlexIO) is highly promising, as
it allows programming the Data-Path Accelerator with application-specific code.
As a next step, we plan to explore DOCA DPA, and try to run code on the NIC
that inspects the header of an incoming packet, computes a destination address
within a flat ring buffer in GPU memory (based on the header’s antenna number,
frequency band number, and timestamp), and DMAs the packet payload directly
from the NIC into the GPU ring buffer. If we can make this work, it would nearly
eliminate the CPU and GPU overhead that we encounter with DPDK.

7 Conclusions

Many radio telescopes use GPU clusters to process antenna data, in real time.
The desire to build more powerful radio telescopes results in higher data rates,
that must be handled by such GPU systems. However, the I/O bandwidth of
successive, discrete GPU generations did not keep pace with the increase in
computing power, and, in the absence of RDMA, truly efficient methods to
receive and handle network packets with telescope data were missing.

This paper demonstrates an enormous increase in network packet processing
rates, through a combination of hardware and software innovations. The Grace
Hopper architecture eliminates the PCIe bandwidth limitation, the Data Plane
Development Kit (DPDK) removed the operating system overhead of receiving
network packets, DPDK’s recent support for GPUs allowed receiving packet data
directly from the network interface into GPU memory, and the GPU application
processes network packet payloads. Without these innovations, handling packets
at a few hundred Gb/s was already difficult, but we demonstrate that 1.2 Tb/s
per GPU is possible now, with a reasonable balance between GPU compute per-
formance and I/O capabilities. The performance analysis shows that the CPU
and GPU overheads from handling the network packets is noticeable but not
prohibitive. We also showed that tuning clock frequencies led to a 145 Watts re-
duction in energy use, without losing real-time performance. Future work targets
methods that further reduce the overhead, but the presented approach already
enables the processing of much higher telescope data rates.
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