
A Comparison of Accelerator Architectures for
Radio-Astronomical Signal-Processing Algorithms

John W. Romein
ASTRON (Netherlands Institute for Radio Astronomy)

Postbus 2, 7990 AA Dwingeloo, The Netherlands
Email: romein@astron.nl

Abstract—In this paper, we compare a wide range of ac-
celerator architectures (GPUs from AMD and NVIDIA, the
Xeon Phi, and a DSP), by means of a signal-processing pipeline
that processes radio-telescope data. We discuss the mapping
of the algorithms from this pipeline to the accelerators, and
analyze performance. We also analyze energy efficiency, using
custom-built, microcontroller-based power sensors that measure
the instantaneous power consumption of the accelerators, at
millisecond time scale. We show that the GPUs are the fastest
and most energy efficient accelerators, and that the differences
in performance and energy efficiency are large.

I. INTRODUCTION

This paper compares a wide range of accelerators, by means
of a signal-processing pipeline that processes data from a
radio telescope. We implemented and optimized the algorithms
from this pipeline on GPUs from AMD and NVIDIA, the
Intel Xeon Phi, a Digital Signal Processor (DSP) from Texas
Instruments, and a dual Intel Xeon CPU as reference platform.
The algorithms have quite different compute and memory
access characteristics, hence we assess various subsystems
of the accelerators. The pipeline performs some domain-
specific operations like tracking a sky source, but also contains
standard signal-processing algorithms found in many more
application domains (e.g., radar, WiFi equipment, audio pro-
cessing, imaging).

The main contribution of this paper is an analysis of
the performance and energy efficiency of these accelerators.
We describe the optimizations needed to obtain high perfor-
mance. Additionally, we describe how we use custom-built,
microcontroller-based devices to measure the energy drawn
by the (PCIe) boards, at high time resolution. The accel-
erated applications are instrumented to gather power sensor
data during their execution, and determine their own energy
efficiency. We show that GPUs yield the best performance
and energy efficiency; even better than the DSP, that has
optimized hardware support for signal processing. We also
show that the differences between the (energy) efficiencies of
the accelerators are large.

This paper is structured as follows. The algorithms and
architectures used in this study are described in II and Sec-
tions III, respectively. Section IV describes the implemen-
tations and optimizations of the algorithms on the different
architectures. Sections V and VI analyze performance and
energy efficiency. Section VII discusses related work, and
Section VIII concludes.

II. SIGNAL-PROCESSING ALGORITHMS
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Fig. 1: Correlator pipeline.

Many radio telescopes use multiple receivers, to increase
sensitivity and angular resolution. Together, they form a dis-
tributed sensor network. In the field, receiver data is digitized,
preprocessed, and sent via dedicated WAN links to a central lo-
cation. There, the data is received, aligned, filtered, corrected,
and combined (correlated), by the correlator pipeline (Fig. 1).
Finally, data that is affected by interference is detected and
discarded, and the remaining data is calibrated and imaged.
This paper only considers the correlator pipeline. This pipeline
runs in real time and is offloaded to accelerators, because of
the high computational demands and data rates.

The first step is a Poly-Phase Filter (PPF) bank that splits
a frequency band into narrower frequency channels. The PPF
bank consists of a series of Finite Impulse Response (FIR)
filters and an FFT block (see Fig. 2). Input samples are round-
robin distributed over the FIR filters, and the FIR filter outputs
are subsequently Fourier transformed (FFT).

The FIR filters are band pass filters that attenuate high and
low frequencies. The complex-valued samples are convolved
with real filter weights (Fig. 3). For this paper, we use a PPF
bank with 64 FIR filters of 16 weights and history entries each.

The next step is delay compensation, to align the signals
from the observed sky source. Its wave front hits the receivers
at different times (see Fig. 4). The delay is implemented as
a phase rotation of the signal (a complex multiplication per
sample), and is interpolated in time and frequency (requiring
another complex multiplication).

Bandpass correction flattens a ripple (Fig. 5) that is caused
by another PPF bank near the receivers, in the field. The
amplitude of the signal is multiplied by a constant, real,
channel-dependent weight which is computed in advance.

Next, the data is transposed in memory; the need for this is
explained in Section IV. Finally, the filtered and corrected data
from the different receivers are correlated. For each pair of
stations, we multiply a filtered and corrected sample from one
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Fig. 6: Correlation triangle.

station with the complex conjugate of a sample from the other
station. The products are accumulated over time, and the result
is stored in a triangular data structure (see Fig. 6). There is no
need to compute the upper triangle, as the correlation matrix is
Hermitian. The correlator kernel resembles the BLAS routine
CHERK, but our triangular output data structure is twice as
compact. Computing the correlations is computationally the
most expensive operation of the pipeline.

For simplicity, we ignore polarizations; we assume dual-
polarized receivers throughout this paper.

III. ARCHITECTURES

Table I lists the characteristics of the used accelerators.
We include server-grade and consumer-grade hardware, as the
consumer-grade hardware is typically one generation ahead
of the server-grade hardware. Most accelerators are powerful
devices that consume hundreds of Watts, but the DSP is a
low-power System-on-Chip (SoC) that needs about 20W.

All architectures are highly parallel, and use three levels
of parallelism. First, loosely-coupled cores provide MIMD1

concurrency. As these cores operate independently, they are
supposed to exploit coarse-grain parallelism. Second, each
of these cores uses SIMD (vector-like) instructions, so that
only one instruction decode and issue is necessary to perform

1Flynn’s taxonomy: SIMD = Single Instruction, Multiple Data; MIMD =
Multiple Instruction, Multiple Data.

many identical operations. SIMD instructions are suitable
to exploit fine-grain parallelism. Third, all architectures also
support instruction-level parallelism, by dispatching multiple
instructions to different execution pipelines (ALUs, load-store
units, branch units, etc.) in a single cycle.

All architectures have multiple layers of memory: device
memory, transparent caches, and a register file. In addition,
the GPUs and DSP have fast, local memories that can be used
explicitly by the programmer to share and reuse data.

The AMD and NVIDIA GPUs are similar. Each processing
unit runs groups of light-weight threads that cooperate on a
single task, usually follow the same instruction path, share a
piece of fast local memory, and synchronize through barrier
instructions. Memory and instruction latencies are hidden
by having tens of instructions per processing unit in flight,
so that most cycles the instruction scheduler finds enough
instructions ready for dispatch to keep all execution units busy.
Hence, the programmer should provide more parallelism than
on a regular CPU. Computations and PCIe I/O overlap by
submitting commands to different command queues.

The Xeon Phi (Knights Corner) has up to 61 regular CPU
cores. Each core is equipped with a vector unit that operates
on 16 single-precision floating-point values simultaneously.
Prefetching data into the L2 and L1 caches (either compiler
generated or manually inserted), alignment to 64 bytes, and
the use of non-sequentially-consistent streaming writes are
essential to obtain good performance.

The EVMK2H is a SoC with 4 ARM cores and 8 DSP
cores. The DSP has a VLIW architecture with eight specialized
execution units. It has hardware features that support signal
processing, such as circular addressing, complex vector-matrix
instructions, and optimized support for 16-bit complex num-
bers. Loops can be pipelined, i.e., multiple loop iterations are
processed simultaneously and out of phase, subject to resource
constraints, timing constraints, and (loop-carried) dependen-
cies. DMA controllers can be used to move data between the
different types of memories. Altogether, the DSP is a complex
processor with many specialized hardware features exposed to
the programmer.

model type intro architecture tech. clock core configa) = #FPUs peak mem sz mem bw TDPd)

date (nm) (GHz) TFLOPS (GB) (GB/s) (W)

se
rv

er
gr

ad
e

AMD FirePro S10000 GPU Q4’12 Tahiti 28 0.825 2×28×1×64 = 3584 5.91 2×6 480c) 375
Intel Xeon Phi 7120X CPU Q2’13 Knights Corner 22 1.33b) 1×61×1×16 = 976 2.60b) 16 352c) 300
NVIDIA Tesla K40 GPU Q4’13 Kepler 28 0.875b) 1×15×6×32 = 2880 5.04b) 12c) <288c) 235
TI EVMK2H DSP Q4’13 KeyStone 2 28 1.167 1× 8×2× 8 = 128 0.15 2+2 10.7 >19
Intel Xeon E5-2697v3 CPU Q3’14 Haswell EP 22 2.60b) 2×14×2× 8 = 448 2.78b) ≤1536 136c) 290

co
ns

u-
m

er

NVIDIA Titan X GPU Q1’15 Maxwell 28 1.113b) 1×24×4×32 = 3072 6.84b) 12 336 250
AMD R9 Fury X GPU Q2’15 Fiji 28 1.050 1×64×1×64 = 4096 8.60 4 512 275
NVIDIA GTX 1080 GPU Q2’16 Pascal 16 1.80b) 1×40×2×32 = 2560 9.22b) 8 320 180

a) #ICs × #compute units × FPU
instructions/cycle × vector size

b) turbo mode enabled
c) ECC (error correction) enabled;

this reduces memory size (on
K40) and bandwidth

d) Thermal Design Power

TABLE I: Processor characteristics.



IV. IMPLEMENTATIONS AND OPTIMIZATIONS

We implemented the processing pipeline as described in
Section II on all platforms. We programmed all accelerators in
their native languages: CUDA for NVIDIA GPUs, OpenCL for
AMD GPUs, C++/OpenMP with auto-vectorization, pragmas,
and intrinsics on the Xeon and Xeon Phi, and a mix of
assembly, C++, and OpenCL on the DSP. For the FFT, we
use vendor-supplied libraries (NVIDIA cuFFT, Apple/AMD
clFFT, Intel MKL, TI DSPlib).

The pipeline consists of two parts: all kernels except the
correlator, and the correlator kernel itself. The first part is
coarse-grain parallel along the number of receivers, as these
are processed independently. The frequency channels provide
fine-grain parallelism; they are created simultaneously by
the PPF bank. Conversely, in the second part, the correlator
processes the frequency channels independently, but combines
all receivers in a fine-grain parallel way. This has two major
implications: we need to change parallelization strategies
between the first and the second part of the pipeline, and we
need to transpose data in memory.

The implementations for the different GPUs are similar.
Delay compensation, bandpass correction, and transpose are
combined into one kernel, to make fewer passes over the
data. Some optimizations are architecture specific, e.g., texture
memory reads are only beneficial on the Kepler-based K40.
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Fig. 7: Decomposition of work
in the correlate kernel.

On all architectures, the
correlator kernels minimize
memory bandwidth usage
by accumulating correla-
tions in registers, and by
caching samples in all lev-
els of the memory hi-
erarchy, including regis-
ters [1]. The correlation tri-
angle (Fig. 7) is decom-
posed hierarchically; e.g.,
on GPUs, in blocks of
32x32 receivers. One kernel
computes triangular blocks
near the diagonal (green),
another kernel computes square blocks (yellow), and, if the
number of receivers is not a multiple of 32, a third kernel
processes rectangular blocks on the right (gray). Each block
is processed by a (blue) CUDA thread block or OpenCL work
group, and is decomposed further into (red) 2x2 subblocks
that are processed by individual threads. The threads within a
thread block collectively transfer samples from 32 receivers
from device memory or L2 cache to local memory, and
each thread transfers samples from local memory to registers.
Different channels are correlated independently by different
thread blocks. Other architectures decompose the work and
minimize memory bandwidth usage similarly.

The Xeon and Xeon Phi implementations are vectorized by
using a mix of intrinsics and OpenMP SIMD directives. As
the instruction set does not support complex-complex vector

multiplications without explicit shuffling, complex data is
stored in separate arrays of real and imaginary numbers (where
the other implementations store arrays of interleaved real
and imaginary numbers). The Xeon Phi implementation uses
OpenMP 4.0 offloading. The Xeon and Xeon Phi implemen-
tations of the correlator kernel are similar (except for vector
length), but the other kernels are implemented quite differently.
The Xeon Phi FIR filter profits from the four times larger
vector register file by keeping weights and samples in registers;
the register file of the regular Xeon is too small for this.
However, this optimization disallows another optimization,
namely, that the Fourier-transformed data is kept in L1 cache,
as the Xeon implementation does. Additionally, the transpose
implementations are different, as the penalty for scattering
data to memory is acceptable on the Xeon and prohibitively
expensive on the Xeon Phi. Therefore, the Xeon Phi transposes
data hierarchically, transposing blocks of 16x16 values within
vector registers using a long sequence of permute, swizzle,
and shuffle operations. The Xeon Phi makes one more pass
over the data than the Xeon, but we found that this was still
the most efficient way.

We developed two implementations for the DSP: one that
operates on single-precision floating-point values (like the
other accelerators), and one that operates on mixed-precision
integers that fits the DSP architecture better. The accuracy
loss of limited-precision integers is tolerable. All kernels are
written in assembly, as the C compiler does not generate
efficient code, not even when using intrinsics. We only use
the OpenCL runtime to dispatch work to the DSP cores. Also,
all DSP-specific features like software-managed caches, DMA
controllers, some complex instructions, and circular addressing
are extensively used. We cannot overemphasize that some
of these features, especially the DMA controllers, severely
complicate programming.

V. PERFORMANCE RESULTS

In this section, we analyze the performance that we ob-
tain on the different architectures. Figures 8a–8d show the
performance of the four kernels for up to 768 receivers.
Figure 8e shows the performance of the whole processing
pipeline. Generally, the GPUs perform best, followed by the
Xeon, Xeon Phi, and the low-power DSP.

The fluctuations in the Fury X curve of Fig. 8a and all
GPU curves in Fig. 8c are caused by the sensitivity of the
memory subsystems to particular access strides. Normally,
padding helps to avoid inefficient access strides, but we do
not do so here as it would affect FFT performance negatively.

The GPU curves of Fig. 8d (and 8e) show that multiples of
32 receivers perform better than non-multiples of 32 receivers.
The latter require a third kernel invocation that processes the
rectangular leftovers at the right of the correlation triangle (the
gray rectangles in Fig. 7). This kernel may leave some cores
idle, provides less parallelism to hide all latencies, and needs
to execute additional instructions to check boundaries.

Below, we analyze the performance results in more detail.
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Fig. 8: Performance of the individual kernels, as well as the full pipeline.

A. Compute and memory bounds

To determine if a kernel is compute bound or memory
I/O bound, we start with a roofline analysis [2], as shown in
Fig. 9. The Y-axis represents performance, i.e., the number of
operations per second. The X-axis represents the operational
intensity (OI), i.e., performance divided by memory bandwidth
usage, in FLOP/byte. A compute-bound kernel has a high OI;
a memory-I/O bound kernel has a low OI. The roofline shows
the architecture’s performance limit, as function of the OI.

Each dot in a graph represents a kernel on an architecture. A
dot closely below the horizontal part of the roofline indicates
that the kernel is compute bound; a dot closely below the
diagonal part indicates that the kernel is memory-I/O bound.
A dot far below the roofline indicates that it is bound by
something else. We only count FLOPs that contribute to the
result, not overhead instructions like address calculations and
branch instructions. To measure the bandwidth, we use the
device’s hardware performance counters to measure DRAM
bandwidth usage, so cache hits do not count, but, for example,
mis-speculated prefetches do.

For this analysis, we keep the problem size fixed: 576
receivers, the largest number correlated by any radio telescope
(AARTFAAC).

Theoretically, the FIR filter, FFT, and delay/bandpass/trans-
pose kernels (Fig. 9a–9c) have expected FLOP/byte ratios of
6.4, 1.87, and 0.75, respectively. In most cases, the measured
FLOP/byte ratios match the theoretical values. The ratio is

lower than expected on the Tesla
K40, due to ECC overhead. It is
much lower on the Xeon Phi 7120X
in Fig. 9c, as this kernel makes a
second pass over the data. It is much
higher on the DSP and the dual E5-
2697v3 CPU, because the interme-
diate data remains in SRAM/cache.
The three kernels are I/O bound,
which explains why the AMD GPUs
outperform the other accelerators:
these GPUs have the highest memory
bandwidth.

For the correlator kernel (Fig. 9d)
the FLOP/byte ratio varies, but the high data reuse through
caches and the register files makes this kernel compute bound
on all architectures. On most architectures, the correlator
reaches more than 80% of the FPU peak performance.

B. Other bounds

Figure 9 shows that in several cases, the performance is
quite distant from its roofline, usually indicating that the
kernel is neither compute bound, nor memory-I/O bound. The
large distances for the Xeon Phi 7120X (Fig. 9(a–c)) are
still due to memory performance; the roofline is based on
an advertised bandwidth of 352 GB/s, but the practical upper
bound is around 160 GB/s, so the diagonal part of the roofline
is unrealistically high. Fang et al. [3] attribute this to ring
saturation, contention on the distributed tag directories, and
ECC overhead.

On the DSP, the peak integer performance can only be
achieved by using powerful complex vector-matrix multiplica-
tion instructions, but a FIR filter with real filter weights and the
FFT do not map well to these instructions. This is surprising;
one would expect excellent hardware support on a DSP
for such basic signal-processing algorithms. The correlator
algorithm also does not map well to these instructions, as the
input data must be reordered to use them.

The Kepler-based Tesla K40 achieves only 50% of the FPU
peak performance on the correlator kernel; it cannot fully hide
the FPU and memory latencies. Its successor architecture,
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Fig. 9: Roofline plots for all kernels and architectures.

Maxwell, has many architectural improvements (shorter in-
struction latencies, improved instruction scheduling, etc.), and
indeed: the Titan X achieves 85%.

The Xeon CPU loses performance in the FIR filter (Fig. 9a)
due to vector register spilling and the inability to hide the
latencies of the AVX2 fused multiply-add instructions.

VI. ENERGY EFFICIENCY

We study energy efficiency not only because this is impor-
tant from environmental and cost perspectives, but also be-
cause this is a fair way to compare accelerators with different
power demands. The devices cannot measure their own energy
consumption at the high time resolutions necessary to measure
individual kernels. Hence, we built custom power meters out of
microcontrollers, current sensors, and PCIe riser cards, similar
to PowerInsight [4]. Unlike PowerInsight, we only measure
currents and not voltages; we verified that the voltages are
sufficiently stable to compute the power consumption. The
measurements are reported back to the host via USB, and a
small library allows the accelerated applications to determine
their own power consumption and energy efficiency. For PCIe
cards, we measure the 3.3V and 12V lines of the PCIe slot,
and the external power cables. We measure the power of the
entire DSP board, thus the power consumption of the ARM
cores is included, unlike the PCIe boards. We do not measure
the Xeon reference platform with the power meters, but use
LIKWID [5] to measure the CPU package and DRAM power.

Most devices can trade performance for better energy effi-
ciency (see Price et al. [6] for an in-depth study), but for these
energy measurements, we kept the same, aggressive clock
settings as used in Section V.

As the power measurements are near-millisecond accu-
rate, we see how the energy consumption varies when an
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Fig. 10: Energy consumption traces.

accelerator runs the
consecutive kernels
of the pipeline. Fig-
ure 10 shows the in-
stantaneous power
consumption of the
Titan X. The figure
shows that some ker-
nels draw much more
energy than others.

Figure 11 shows energy efficiency, as function of number
of stations. The recently introduced, 16 nm technology-based
GTX 1080 is by far the most energy-efficient platform, nearly
seven times more efficient than the reference CPU platform.
The high energy-efficiency of the FFT kernel on the DSP is
due to the data being kept in L1 SRAM, not due to special
signal-processing features.

VII. RELATED WORK

Five years ago, we studied the (compute-bound) correlator
kernel [7, 8] on contemporary accelerators. This paper extends
that work by not only considering the correlator kernel, but a
whole pipeline of signal-processing algorithms with a mixture
of compute-bound and memory-I/O-bound kernels. In addi-
tion, we now assess the energy efficiency of the accelerators.

Many radio telescopes worldwide use GPUs to correlate
data: LOFAR, the LWA, MWA, and GMRT use NVIDIA
GPUs, while AARTFAAC and CHIME use AMD GPUs. The
LOFAR and AARTFAAC correlators are based on the program
code used for this paper, while the LWA and MWA are based
on the xGPU [9] library. Fiorin et al. [10] propose a custom
architecture for the future SKA telescope.

There are more papers that compare multiple accelerators
(typically GPUs and the Xeon Phi), for example in the domain
of pulsar searching [11], image processing [12], and pattern
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Fig. 11: Energy efficiency of the individual kernels, as well as the full pipeline.

matching [13]. These papers com-
pare performance, but none of them
assesses energy efficiency.

VIII.
CONCLUSIONS AND FUTURE WORK

The take-away message of this
study is that GPUs are the most (en-
ergy) efficient accelerators — at least
for a radio-astronomical correlator
pipeline — and that the differences
in performance and energy efficiency
between the accelerators are large. It
is difficult to obtain good memory
performance on the Xeon Phi. The DSP has architectural
features that support signal processing (like circular address-
ing, loop pipelining, some complex instructions, and multi-
level DMA controllers), but these features make it difficult to
program and do not make it more energy efficient than GPUs.
The custom-built power sensors that we introduced in Sec. VI
are highly useful to analyze energy efficiency, at millisecond
timescales.

Future work includes a comparison with FPGAs. In a
separate work, we study how to efficiently create sky images
from correlated data on these accelerators.
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