Using Many-Core Hardware to Correlate
Radio Astronomy Signals

Rob V. van Nieuwpoort
ASTRON,
Netherlands Institute for Radio Astronomy
Dwingeloo, The Netherlands

nieuwpoort@astron.nl

Categories and Subject Descriptors

D.1.3 [Programming Techniqueg: Concurrent programming—
Parallel programming J.2 [Physical Sciences and Engineeririg
Astronomy

General Terms
Experimentation, Measurement, Performance

Keywords

LOFAR, correlator, many-core

ABSTRACT

A recent development in radio astronomy is to replace ftiuht
dishes with many small antennas. The signals are combirfedio
one large, virtual telescope. The enormous data streantsass-
correlated to filter out noise. This is especially challeggisince
the computational demands grow quadratically with the remalh
data streams. Moreover, the correlator is not only comjmrtally
intensive, but also very I/O intensive. The LOFAR telescdpe
instance, will produce over 100 terabytes per day. The éUBKA
telescope will even require in the order of exaflops, andhiesta
of I/O. A recent trend is to correlate in software instead eflie
cated hardware. This is done to increase flexibility and tuce
development efforts. Examples include e-VLBI and LOFAR.

In this paper, we evaluate the correlator algorithm on rradte
CPUs and many-core architectures, such as NVIDIA and ATI §P
and the Cell/B.E. The correlator is a streaming, real-tirpplia
cation, and is much more /O intensive than applications dne.
typically implemented on many-core hardware today. We amep
with the LOFAR production correlator on an IBM Blue Gene/P su
percomputer. We investigate performance, power efficicany
programmability. We identify several important architeet prob-
lems which cause architectures to perform suboptimally. fidd-
ings are applicable to data-intensive applications in ggne

The results show that the processing power and memory ban
width of current GPUs are highly imbalanced for correlatmm-
poses. While the production correlator on the Blue Gendiieaes

(©OACM, 2009 This is the author’s version of the work. It is pastesre
by permission of ACM for your personal use. Not for redisitibn. The
definitive version is published in the proceedings.

ICS’09, June 8-12, 2009, Yorktown Heights, New York, USA.
Copyright 2009 ACM 978-1-60558-498-0/09/06 ...$5.00.

John W. Romein
ASTRON,
Netherlands Institute for Radio Astronomy
Dwingeloo, The Netherlands

romein@astron.nl

a superb 96% of the theoretical peak performance, this islt#o
on ATl GPUs, and 26% on NVIDIA GPUs. The Cell/B.E. pro-
cessor, in contrast, achieves an excellent 92%. We fouridhba
Cell/B.E. is also the most energy-efficient solution, itsuhe cor-
relator 5-7 times more energy efficiently than the Blue Gerigthe
research presented is an important pathfinder for nextrgtoe
telescopes.

1. INTRODUCTION

A recent development in radio astronomy is to build instrotae
where traditional dishes are replaced with many small amglei
omni-directional antennas. The signals of the antennasare
bined to form one large virtual telescope. Examples inclcuaie
rent and future instruments such as LOFAR (LOw Frequency Ar-
ray) [13], MeerKAT (Karoo Array Telescope) [1], ASKAP (Aus-
tralian Square Kilometre Array Pathfinder) [7], and SKA (8o
Kilometre Array) [14]. These new generation telescopesipce
enormous data streams. The data streams from the diffement a
tennas must be cross-correlated to filter out noise. Theletion
process also performs a data reduction by integrating ssnapler
time. The correlation step is especially challenging, sithe com-
putational demands groguadratically with the number of data
streams. The correlator is extremely demanding, sincedtisnly
computationally intensive, but also very data intensivethle cur-
rent field of radio astronomy, the number of operations tlastto
be performed per byte of 1/O is exceptionally small. For @str

U omy, high-performance computing is of key importance. rlnst

ments like LOFAR are essentially software telescopes, ir@gu

massive amounts of compute power and data transport cjeabil
Future instruments, like the SKA [14], need in the order @fops

of computation, and petabits/s of I/O.

Traditionally, the online processing for radio-astronomstru-
ments is done on special-purpose hardware. A relativelgrntec
development is the use of supercomputers [13]. Both aphesac
have several important disadvantages. Special-purpasivaie

d_is expensive to design and manufacture and, equally immpipita

is inflexible. Furthermore, the process from creating a ward
design and translating that into a working implementataies a
long time. Solutions that use a supercomputer (e.g., a Bare
in the LOFAR case) are more flexible [12, 13], but are expensiv
to purchase, and have high maintenance and electrical prvsér
Moreover, supercomputers are not always well-balancedtior
needs. For instance, most supercomputers feature hiditieat
double-precision operations, while single precision ffigent for
our applications.

In this paper, we investigate the correlation algorithm any
core hardware, such as graphics processors (GPUs) [11]hend t
Cell/B.E. [5]. In contrast to many others, we do not only use

.
«n e,
*T correlate

Sl integrate
.
* T :

&
&
&

” “I---

Figure 1: An extremely simplified

NVIDIA GPUs, but also include ATI hardware. In addition, we
compare with the LOFAR production implementation on a Blue
Gene/P supercomputer [12]. As a reference, we also includig-m
core general-purpose processors. There are many advanbethe
use of many-core systems: it is a flexible software solutias
lower costs in terms of purchase and maintenance, and therpow
usage is significantly lower than that of a traditional saperputer.

The correlator differs from applications that were invgated
on many-core hardware in the past, because of the correléiar
flop/byte ratio. In addition, it is a streaming real-time Bpgtion,
so host-to-device data transfers are on the critical pathmdny
other studies, these transfers are not considered.

The production correlator on the Blue Gene/P achieves 96% of
the theoretical peak performance. We demonstrate thattice gs-
ing power and memory bandwidth of current GPUs are highly im-
balanced for correlation purposes. This leads to subopperéor-
mance. The Cell/B.E. processor, in contrast, achieves egllert
92% efficiency. The Cell/B.E. runs the correlator 5-7 timds-(
pending on the manufacturing process of the Cell/B.E.) neore
ergy efficiently than the Blue Gene/P. The research predémtais
paper is an important pathfinder for next-generation teless.

The rest of this paper is structured as follows. Section 2aéxg
how the correlation algorithm works, and why it is importair
Section 3, we describe the many-core architectures thatvale e
uate in detail, finishing with a comparison and discussioextN
in Section 4, we explain how we implemented the correlatgo-al
rithm on each of these architectures, and describe therpeafece
we achieve. In Section 5, we evaluate, compare, and dishess t
results, while identifying the weak and strong points of éinehi-
tectures. Section 6 discusses related work. In Section westi-
gate if our results and insights can be applied to other egidins.
Additionally, we discuss scalability issues. Finally, wanclude in
Section 8.

2. CORRELATING RADIO ASTRONOMY
SIGNALS

We call a set of receivers that are grouped closely together a
station The data streams from the different stations must be fil-
tered, delays in the signal path must be compensated forthend
data streams from different stations must be cross-coeclalhe
correlation process performs a data reduction by integgagam-
ples over time. In this paper, we use the LOFAR telescope as an
example, but the results apply equally well to other insents.

An overview of the processing needed for the standard ingagin
pipeline of LOFAR is shown in Figure 1. The pipeline runs from

view of LOFAR processing.

left to right. The thickness of the lines indicates the sizthe data
streams. In this paper, we focus on the correlator step (thelgpx
in Figure 1), because its costs grow quadratically with thenn
ber of stations. All other steps have a lower time complexitie
choose 64 as the number of stations, since that is a realistiber
for LOFAR. Future instruments will likely have even moret&ias.
We call the combination of two stationsbaseline The total num-
ber of baselines igurStations x (nrStations +1))/2, since we
need each pair of correlations only once. This includes the-a
correlations (the correlation of a station with itselfps® we need
this later in the pipeline for calibration purposes. Altigbuhe au-
tocorrelations can be computed with fewer instructionsjgmere
this here, since the number of autocorrelations is smadl graws
linearly with the number of stations, while the number ofmaf
correlations grows quadratically.

Pseudo code for the algorithm is shown in Figure 2. A sample is
a (2 x 32 — bit) complex number that represents the amplitude and
phase of a signal at a particular time. The receivers areipethy
they take separate samples from orthogonal (X and Y) doesti
The received signals from sky sources are so weak, that tee-an
nas mainly receive noise. To see if there is statistical ot in
the noise, simultaneous samples of each pair of stationsoare-
lated, by multiplying the sample of one station with the ctewp
conjugate (i.e., the imaginary part is negated) of the sarapthe
other station. To reduce the output size, the products tegristed,
by accumulating all products. Stations are also autocated] i.e.,
with themselves. Both polarizations of a station A are datesl
with both polarizations of a station B, yielding correlatsoin XX,
XY, YX, and YY directions. The correlator is mostly multiphg
and adding complex numbers.

We can implement the correlation operation very efficientiyh
only four fma instructions, doing eight floating-point opgons
in total. For each pair of stations, we have to do this fouresm
once for each combination of polarizations. Thus, in totalneed
32 operations and load 8 floats (32 bytes) from memory, riegult
in exactly one FLOP/byteThe number of operations that is per-
formed per byte that has to be loaded from main memory iscalle
thearithmetic intensity9]. For the correlation algorithm, the arith-
metic intensity is extremely low.

An important optimization that we implemented is the reghrct
of memory loads by the correlator. A sample can be used nhltip
times by correlating it with the samples from multiple oth&ations
in the same loop iteration. For example, a sample from staiio
in the X polarization that is loaded into a register pair carcbrre-
lated with the X and Y polarizations of stations B, C and Dngsi
it 6 times. Figure 3 shows how we correlate multiple statiahs

for (ch=0; ch<nrChannels; ch++)
for (station2=0; station2<nrStations; station2++)
for (stationl=0; stationl<=station2; stationl++)
for (polarizationl = 0; polarizationl < nrPol arizations;

for (polarization2 = 0; polarization2 < nrPol ari zations;

conplex float sum= 0 + i*0;

for (time=0; time < integrationTime;, tine++)

pol ari zati onl++)
pol ari zati on2++)

sum += sanpl es[ch][stationl][tine][pol arizationl] * ~sanples[ch][station2][tine][polarization2];

basel i ne = conput eBasel i ne(stationl, station2);

correl ati on[baseline][ch][polarizationl][polarization2] = sum

Figure 2: Pseudo code for the correlation algorithm.

>
s

A

o = N W P IO N OO
station —>

A

0123 4567 8910
station —>

Figure 3: An example correlation triangle.

the same time. Each square represents the XX, XY, YX, and YY
correlations of the stations as indicated by row and coluom-n
ber. The figure is triangular, because we compute the ctioelaf
each pair of stations only once. The squares laba&latke autocor-
relations, which could be treated specially since they iregess
computations. The triangle is divided into larger tilesthis case
2x3 tiles (the dark gray boxes), but arbitrary sizes areiplessA

tile is correlated as a unit. For example, the lower rightehaide
rectangle correlates stations 9 and 10 with stations 0,d.2an

It is important to tune the tile size to the architecture. Wantv
to make the tile size as large as possible, while still fitiimghe
register file. This offers the highest level of data reusevdfhave
aw x h tile size, the number of operations is given piops =
32wh. The number of bytes that has to loaded from memory is
16(w + k). The minimum number of registers that is required is
4(1+min(w, b)) + 8wh. This is the total number of registers, in-
cluding accumulators, while reusing registers if a valugisonger
needed (hence thein operation). However, this formula does not
count additional registers that could be needed for dafetoieng,
address calculations and loop counters. The number ofteegiis
expressed in single-precision float registers. If an aechire has
vector registers, the result can be divided by the vectagtlenTa-
ble 1 shows the properties of different tile sizes.

There still is opportunity for additional data reusetweertiles.
The tiles within a row or column in the triangle still need g@me
samples. Therefore, caches can increase data reuse.
the algorithm is extremely data intensive, the resultingnoized
implementation on many-cores is typically limited by theharec-
ture’s memory bandwidth. The memory aspects of the alguorith
are twofold. There is an algorithmic part, the tile size, ethis lim-
ited by the number of registers. The second aspect is actinise
in nature: the cache sizes, cache hierarchy and hit ratigetfier,
these two aspects dictate the memory bandwidth that is deede
keep the ALUs busy.

tile | floating point | memory loads| arithmetic minimum nr.
size operations (bytes) | intensity | registers (floats)
Ix1 32 32 1.00 16
1x2 64 48 1.33 24
2x2 128 64 2.00 44
3x2 192 80 2.40 60
3x3 288 96 3.00 88
4x3 384 112 3.43 112
ax4 512 128 4.00 148

Table 1: Properties of different tile sizes.

In this paper, we focus on the maximal performance that can be
achieved with asingle many-core chiplt is important to realize
that the correlator itself igivially parallel, since tens of thousands
of frequency channels can be processed independentlyalltigs
us to efficiently exploit many-core hardware. We use floagiont
instead of integer operations, since all architecturepauphis
well. Single precision floating point is accurate enough dar
purposes.

Since the code is relatively straightforward, we impleraerthe
performance-critical kernel in assembly on all architezsu There-
fore, this paper really compares the hardware architestooenpil-
ers do not influence the performanadthough we wrote the criti-
cal parts in assembly, the additional code was written imttaral
programming model for each architecture. Therefore, we talke
programmability into account. We do this both for the asdgmb
parts, and the high-level code. The first is a measure of the pr
grammability of the hardware architecture itself. The sgkgives
an indication of the quality of the software stack.

3. MANY-CORE HARDWARE

Recent many-core architectures present enormous corngnaiat
performance at very low costs. Reductions in power usage als
become increasingly important. For LOFAR, for example,rgda
part of the operational costs is the electrical power comgiomn.
The three most energy efficient supercomputers on the Gdéen5
list' derive most of their computational performance from a many-
core platform (the Cell/B.E). In the remainder of this seatiwe
discuss several many-core architectures in detail, ancleda with
a summary and discussion of the differences that are eakéonti

Becaughe correlator, and for data-intensive applications inegah

3.1 General Purpose multi-core CPU
(Intel Core i7 920)
As a reference, we implemented the correlator on a mulg-cor
general purpose architecture. We use a quad core Intel T&20i
CPU (code name Nehalem) at 2.67 GHz. There is 32 KB of on-

!See http://www.green500.0rg.

chip L1 data cache per core, 256 KB L2 cache per core, and 8 MB
of shared L3 cache. The thermal design power (TDP) is 130s\Watt
The theoretical peak performance of the system is 85 gflaps, i
single precision. The parallelism comes from four core \wito-

way hyperthreading, and a vector length of four floats, mlediby

the SSE4 instruction set.

The architecture has several important drawbacks for opii-ap
cation. First, there is no fused multiply-add instructi@ince the
correlator performs mostly multiplies and adds, this canseaa
performance penalty. The processor does have multipldipése
and the multiply and add instructions are executed in diffepipe-
lines, allowing eight flops per cycle per core.

Another problem is that SSE’s shuffle instructions to movada
around in vector registers are more limited than for instamt the
Cell/B.E. processor. This complicates an efficient impletagon.
For the future Intel Larrabee GPU, and for the next genamatfdn-
tel processors, both a fused multiply-add instruction anproved
shuffle support has been announced.

The number of SSE registers is small (sixteen 128-bit regikt
allowing only little data reuse. This is a problem for thereer
lator, since the tile size is limited by the number of registeA
smaller tile size means less opportunity for data reuseeasing
the memory bandwidth that is required.

3.2 IBM Blue Gene/P

The IBM Blue Gene/P (BG/P) [6] is the architecture that is-cur
rently used for the LOFAR correlator [13]. Four 850 MHz Pow-
erPC 450 processors are integrated on each Blue Gene/P/gaip.
found that the BG/P is extremely suitable for our appliaat&ince
it is highly optimized for processing of complex numbers. eTh
BG/P performsall floating point operations in double precision,
which is overkill for our application. The L2 prefetch unitep
fetches the sample data efficiently from memory. In conti@sil
other architectures we evaluate, the problem is computadbou
stead of I/O bound, thanks to the BG/P’s high memory bandwidt
per operation. Itis 3.5-10 times higher than for the othehitec-
tures. The ratio between flops and bytes/sec of memory baltialwi
is exactly 1.0 for the BG/P.

The BG/P has a register file with 32 vector registers of width 2
Therefore, 64 floating point numbers (with double preciysican
be kept in the register file simultaneously. This is the sameumt
as on the general purpose Intel chip, but an important éiffes is
that the BG/P has 32 registers of width 2, compared to Intél'sf
width 4. The smaller vector size reduces the amount of shinffle
structions needed. The BG/P is an energy efficient superatamp
This is accomplished by using many small, low-power chips a
low clock frequency. The supercomputer also has excellént-
pabilities, there are five specialized networks for comroatidn.

3.3 ATI 4870 GPU (RV 770)

The most high-end GPU provided by ATI (recently acquired by
AMD) is the 4870 [3]. The RV770 processor in the 4870 runs
at 750 MHz, and has a thermal design power of 160 Watts. The
RV770 chip has ten SIMD cores, each containing 16 superscala
streaming processors. Each streaming processor has fieend
dent scalar ALUs. Therefore, the GPU contains 8(DX 16 x 5)
scalar 32-bit streaming processors. The Ultra-Threadsgddih
Processor controls how the execution units process stredims
theoretical peak performance is 1.2 teraflops. The 4870 @B 1
of GDDR5 memory with a theoretical bandwidth of 115.2 GB/s.
The board uses a PCl-express 2.0 interface for communcaitt
the host system. Each of the ten SIMD cores contains 16 KB-of lo
cal memory and separate L1 texture cache. The L2 cache itshar

The maximum L1 bandwidth is 480 GB/sec. The bandwidth be-
tween the L1 and L2 Caches is 384 GB/sec. The application can
specify if a read should be cached or not. The SIMD cores can
exchange data using 16 KB of global memory.

The ATI 4870 GPU has the largest number of cores of all archi-
tectures we evaluate (800). However, the architecture éaesral
important drawbacks for data-intensive applications.stFithere
is no way to synchronize threads. With other architectuves,
can improve the cache hit ratio significantly by letting tde that
access the same samples run in lock step, increasing data. reu
Second, the host-to-device bandwidth is too low. In practibe
achieved PCl-express bandwidth is far from the theoretinat.

We will explain this in more detail in Section 4.3. The acleidv
bandwidth is not enough to keep all cores busy. Third, wedoun
that overlapping communication with computation by perfirg
asynchronous data transfers between the host and the desdce
a large impact on kernel performance. We observed kernet slo
downs ofa factor of threedue to transfers in the background. Fourth,
the architecture does not provide random write access twalev
memory, but only tchostmemory. However, for our application
which is mostly read-performance bound, this does not hisge
impact (see Section 4.3).

3.4 NVIDIA GPU (Tesla C1060)

NVIDIA's Tesla C1060 contains a GTX 280 GPU (code-named
GT200), is manufactured using a 65 nm process, and has 1.4 bil
lion transistors. The device has 30 cores (called multgseors)
running at 1296 MHz, with 8 single precision ALUs, and one-dou
ble precision ALU per core. Current NVIDIA GPUs thus have
fewer cores than ATI GPUs, but the individual cores are faste
The memory architecture is also quite different. NVIDIA G®U
still use GDDR3 memory, while ATl already uses GDDRS5 with the
4870 GPU. The GTX 280 in the Tesla configuration has 4 GB of
device memory, and has a thermal design power of 236 Watts. Th
theoretical peak performance is 933 gflops.

The number of registers is large: there are 16348 32-bit-float
ing point registers per multiprocessor. There also is 16 KB o
shared memory per multiprocessor. This memory is shared be-
tween all threads on a multiprocessor, but not globally. rétie
a total amount of 64 KB of constant memory on the chip. Finally
texture caching hardware is available. NVIDIA only spedcifieat
“the cache working set for texture memory is between 6 and 8 KB
per multiprocessor” [2]. The application has some contuelrdhe
caching hardware. It is possible to specify which area oiagev
memory must be cached, while the shared memory is completely
managed by the application.

On NVIDIA GPUs, itis possible to synchronize the threadswnit
a multiprocessor. With our application, we exploit thishorease
the cache hit ratio. This improves performance considgratdshen
accessing device memory, it is important to make sure thatlsi
taneous memory accesses by different threads@akescednto a
single memory transaction. In contrast to ATl hardware, DM
GPUs support random write access to device memory. This al-
lows a programming model that is much closer to traditionatim
els, greatly simplifying software development. The NVIDG®Us
suffer from a similar problem as the ATI GPUs: the host-tuice
bandwidth is equally low.

3.5 The Cell Broadband Engine
(QS21 blade server)
The Cell Broadband Engine (Cell/B.E.) [5] is a heterogeseou
many-core processor, designed by Sony, Toshiba and IBM)(STI
The Cell/B.E. has nine cores: the Power Processing ElerR@ti)|

feature | Cell/B.E. | GPUs

access times uniform non-uniform

cache sharing level single thread (SPE) all threads in a multiprocessor
access to off-chip memory| not possible, only through DMA supported

memory access overlapping asynchronous DMA
communication

communication between SPEs through

hardware-managed thread preemption
IBndependent thread blocks + shared memory within a block

Table 2: Differences between many-core memory architects.

acting as a main processor, and eight Synergistic Proge&in
ements (SPEs) that provide the real processing power. Adsco
run at 3.2 GHz. The cores, the main memory, and the exter@al I/
are connected by a high-bandwidth (205 GB/s) Element laterc
nection Bus (EIB). The main memory has a high-bandwidth (25
GBY/s), and uses XDR (Rambus). The PPE’s main role is to run the
operating system and to coordinate the SPEs. An SPE corains
RISC-core (the Synergistic Processing Unit (SPU)), a 256K&al
Store (LS), and a memory flow controller. The LS is an extrgmel
fast local memory (SRAM) for both code and data and is man-
aged entirely by the application with explicit DMA transferThe

LS can be considered the SPU’s L1 cache. The LS bandwidth is
47.7 GB/s per SPU. The Cell/B.E. has a large number of registe
each SPU has 128, which are 128-hit (4 floats) wide. The theore
ical peak performance of one SPU is 25.6 single-precisiapgfl
The SPU can dispatch two instructions in each clock cyclagusi
the two pipelines desighatesvenandodd Most of the arithmetic
instructions execute on the even pipe, while most of the nngime
structions execute on the odd pipe. We use a QS21 Cell blate wi
two Cell/B.E. processors and 2 GB main memory (XDR). This is
divided into 1 GB per processor. A single Cell/B.E. in ourteys
has a TDP of 70 W. Recently, an equally fast version with a 50 W

memory system. A lower number means a better balance between
memory and compute performance. For the GPUs, we can split
this number into a device-to-host component and an intearak
ponent. Itis clear that thelative performance of the memory sys-
tem in the Blue Gene/P system is significant higher than thall o

the other architectures. The number of gflops that can beaathi

per Watt is an indication of the theoretical power efficienfyhe
hardware. In theory, the many-core architectures are monep
efficient than general-purpose systems and the BG/P.

The Bound and Bottleneck analysis [9, 19] is a method to gain
insight into the performance that can be achieved in praciita
particular platform. Performance is boubdthby theoretical peak
performance in flops, and the product of the memory bandwidth
and the arithmetic intensitd I (the flop/byte ratio):

Perfmaz = min(perfpear, AI X memoryBandwidth). Several im-
portant assumptions are made with this method. First, itrass
that the memory bandwidth is independent of the accessrpatte
Second, it assumes a complete overlap of communicationamel ¢
munication, i.e., all memory latencies are completely biddFi-
nally, the method does not take caches into account. Threrdfo
the correlator can make effective use of the caching meshemi
performance can actually be better thaerf..... Nevertheless,

TDP has been announced. The 8 SPEs of a single chip in the systhe perf... gives a rough idea of the performance than can be

tem have a total theoretical single-precision peak perémca of
205 gflops.

3.6 Hardware Comparison and Discussion

The memory architectures of the many-core systems are of par
ticular interest, since our application is mostly memdmetighput
bound (as will be discussed in Section 4). Table 2 shows s@ye k
differences of the memory architectures of the many-costesys.
Both ATl and NVIDIA GPUs have a hardware L1 and L2 cache,
where the application can control which memory area is ahche
and which is not. The GPUs also have shared memory, which is
completely managed by the application. Also, coalescirbamk
conflicts have to be taken into account, at the cost of sigmific
performance penalties [2]. Therefore, the memory accessstare
non-uniform The access times of the local store of the Cell/B.E.,
in contrast, are completely uniform (6 cycles). Also, eaeti/B.E.
SPE has its owprivatelocal store, there is no cache that is shared
between threads. While the GPUs can directly access devdogm
ory, the Cell/B.E. does not provide access to main memory. Al
data has to be loaded and stored into the local store first, &le
way that is used to overlap memory accesses with compusaison
different. The Cell/B.E. uses asynchronous DMA transfets)e
the GPUs use hardware-managed thread preemption to hide loa
delays. Finally, the SPEs of the Cell/B.E. can communicatequ
the Element Interconnection Bus, while the multiprocessira
GPU execute completely independently.

Table 3 shows the key properties of the different architestwe
discuss here. Note that the performance numbers indioatheb-
retical peak. The memory bandwidths of the different architectures
show large differences. Due to the PCl-e bus, the host¥m@ee
bandwidth of the GPUs is low. The number of gflops per byte of
memory bandwidth gives an indication of the performancehef t

achieved.

With the GPUs, there are several communication steps that in
fluence the performance. First, the data has to be trandferom
the host to the device memory. Next, the data is read from the
device memory into registers. Although the GPUs offer highh i
ternal memory bandwidths, the host-to-device bandwidliimised
by the low PCl-express throughput (8 GB/s for PCl-e 2.0 16iX).
practice, we measured even lower throughputs. With the N¥ID
GPU, we achieved 5.58 GB/s, and with the ATI GPU 4.62 GB/s.
For both communication steps, we can compute the arithriretic
tensity and theperf.... The sample data must be loaded into the
device memory, but is then reused several times, by therdiffe
tiles. We call the arithmetic intensity from the point of wief
the entire computatiod I;.14;. The number of flops in the com-
putation is the number of baselines times 32 operationdeutte
number of bytes that have to be loaded in total is 16 bytesstime
the number of stations. As explained in Section 2, the nurober
baselines ignrStations x (nrStations+1))/2. If we substitute
this, we find thatAdl 05a: = nrStations + 1. Since we use 64
stations, theA I opq; is 65 in our case. Thellj.cq: is the arith-
metic intensity on the device itself. The value depends ertith
size, and was described in Section 2.

For both ATl and NVIDIA hardware, th@erfimaz, giobar 1S 65 X
8.0 = 520 dflops, if we use the theoretical PCl-e 2.0 16X band-
width of 8 GB/s. If we look at the PCI-e bandwidth that is ackig
in practice (4.62 and 5.58 GB/s respectively), the GPUs lzave
PeTfmaz, giobar OF ONly 300 gflops for ATI, and 363 gflops for NVIDIA
Since there is no data reuse between the computations ef-diff
ent frequency channels, this is a realistic upper boundhemper-
formance that can be achieved, assuming there is no perfcema
penalty for overlapping device computation with the hastiévice
transfers. We conclude that due to the low PCI-e bandwidtly, @

Architecture Intel Core i7 | IBM Blue Gene/P| ATI 4870 NVIDIA Tesla C1060| STI Cell/B.E.
cores x FPUs per core ax4 4x2 160x5 30x8 8x4
operations per cycle per FPU 2 2 2 2 2
Clock frequency (GHz) 2.67 0.850 0.75 1.296 3.2
gflops per chip 85 13.6 1200 936 204.8
registers per core x register width 16x4 64x2 undisclosed| 2048x1 128x4
total L1 data cache size per chip (KB) | 32 128 undisclosed| undisclosed 2048
total L1 cache bandwidth (GB/s) undisclosed | 54.4 480 undisclosed 409.6
total device RAM bandwidth (GB/s) n.a. n.a. 115.2 102 n.a.
total host RAM bandwidth (GB/s) 25.6 13.6 8.0 8.0 25.8
Process Technology (nm) 45 90 55 65 65
TDP (W) 130 24 160 236 70
gflops / Watt (based on TDP) 0.65 0.57 7.50 3.97 2.93
gflops/device bandwidth (gflops / GB/s)[n.a. n.a. 10.4 9.2 n.a.
gflops/host bandwidth (gflops / GB/s) | 3.3 1.0 150 117 7.9

Table 3: Properties of the different many-core hardware plaforms. For the Cell/B.E., we consider the local store to be L cache.

small fraction of the theoretical peak performance can hehed,
even if the kernel itself has ideal performance. In the feilg
sections we will evaluate the performance we achieve wittctr-
relator in detail, while comparing teerfqz-

4. CORRELATOR IMPLEMENTATION
AND PERFORMANCE

This section describes the implementation of the correlato
the different architectures. We evaluate the performanckiail.
For comparison reasons, we use the performgecehipfor each
architecture. We also calculate the achieved memory balttbsvi
for all architectures in the same way. We know the number tddy
that has to be loaded by the kernel, depending on the tilelst és
used. We divide this by the execution time of the kernel toate
the bandwidth. Thanks to data reuse with caches and logalssto
the achieved bandwidth can biggherthan the memory bandwidth.

4.1 General Purpose multi-core CPU
(Intel Core i7 920)
We use the SSES3 instruction set to exploit vector paraftelis
Due to the limited shuffle instructions, computing the clatiens
of the four polarizations within a vector is inefficient. Wehieve

4.3 ATI 4870 GPU (RV 770)

ATI offers two separate programming models, at different ab
straction levels. The low-level programming model is ahltbe
“Compute Abstraction Layer” (CAL). CAL provides communica
tion primitives and an intermediate assembly languagewiiig
fine-tuning of device performance. For high-level prograngn
ATl adoptedBrook which was originally developed at Stanford [4].
ATI's extended version is calleBrook+ [3]. We implemented the
correlator both with Brook+ and with CAL.

With both Brook+ and CAL, the programmer has to do the vec-
torization, unlike with NVIDIA GPUs. CAL provides a feature
calledswizzling which is used to select parts of vector registers in
arithmetic operations. We found this improves readabdityhe
code significantly. Unlike the other architectures, the GRAUs are
not well documented. Essential information, such as thetbaumf
registers, cache sizes, and memory architecture is migsiakjng
it hard to write optimized code. Although the situation iroged
recently, the documentation is still inadequate. Moreatrer pro-
gramming tools are insufficient. The high-level Brook+ miattees
not achieve acceptable performance for our applicatiore [dbv-
level CAL model does, but it is difficult to use.

A serious problem with the ATI hardware is that it is not pbssi
to synchronize the threads within a multiprocessor. If thauld

only a speedup of a factor of 2.8 compared to a version without be possible, we could increase the cache hit ratio, by emstinat

SSE3. We found that, unlike on the other platforms, computin
four samples with subsequent time stamps in a vector wortksrbe
The use of SSE3 improves the performance by a factor of 3t8dn t
case. In addition, we use multiple threads to utilize allrfoores.

threads that access the same samples are scheduled ayrheghl
same time. With NVIDIA hardware, this leads to a considezabl
performance improvement (see Section 4.4).

The architecture also does not provide random write acaess t

To benefit from hyperthreading, we need twice as many threads device memory. The kernel output can be written to at mostt8 ou

as cores (i.e., 8 in our case). Using more threads does not hel
Hyperthreading increases performance by 6%. The mostegffici
version uses a tile size @fx 2. Larger tile sizes are inefficient due
to the small SSE3 register file. We achieve a performance 6f 48
gflops, 67% of the peak, while using 73% of the peak bandwidth.

4.2 |IBM Blue Gene/P

The LOFAR production correlator is implemented on the Blue
Gene/P platform. We use it as the reference for performaoice ¢
parisons. The (assembly) code hides load and instructiendees,
issues concurrent floating point, integer, and load/stw®uctions,
and uses the L2 prefetch buffers in the most optimal way. \ee us
a cell size o2 x 2, since this offers the highest level of reuse, while
still fitting in the register file. The performance we achigvi¢h
this version is 13.1 gflops per chip, 96% of the theoreticalkpe
performance. The problem is compute bound, and not I/0 hound
thanks to the high memory bandwidth per flop, as is shown in Ta-
ble 3. For more information, we refer to [12].

put registers (each 4 floats wide). The hardware stores tioese
predetermined locations in device memory. When using tiyeubu
registers, at most 32 floating point values can be storeds @i
fectively limits the tile size t@ x 2. Random write access twst
memory is provided. The correlator reduces the data by a larg
amount, and the results are never reused by the kernel. fohesre
they can be directly streamed to host memory.

The theoretical operations/byte ratio of the ATI1 4870 aeatture
is 10.4 for device memory (see Table 3). In order to achieig th
ratio with our application, a minimal tile size @0 x 10 would be
needed. This would require at least 822 registers per thrEaid
is unfeasible, so we cannot achieve the peak performancéa Da
sharing between tiles using the hardware caches could irapinis
situation.

The best performing implementation streams the result diata
rectly to host memory, and uses a tile size of 4x3, thanksettettye
number of registers. The kernel itself achieves 297 gflopsciwv
is 25% of the theoretical peak performance. The achieveiteev

memory bandwidth is 81 GB/s, which is 70% of the theoretical this to calculate the maximal performance without commainia.

maximum. Thanks to the large tile size, the cache hit ratitv . perfmaz = min(966, 2.4 x 102) = 245 gflops. In practice, the
As is shown in Table 1, the arithmetic intensity with thig ilize is performance is better than that: we achieve 116% of thiskihto
3.43. Thereforeperfmae = min(1200, 3.48 x 115.2) = 395. the efficient texture cache.

We achieve 75% of this, because the memory bandwidth that is If we include communication, the performance drops by 15%,
achieved in practice is significantly lower than the theéoed¢band- and we only get 243 gflops. Just like with the ATI hardwares thi
width of 115.2 GB/s. caused by the low PCI-e bandwidth. With NVIDIA hardware and

If we also take the host-to-device transfers into accouat; p our data-intensive kernel, we do see significant performaains
formance becomes much worse. We found that the host-t@elevi by using asynchronous 1/0. With synchronous 1/O, we achige

throughput is only 4.62 GB/s in practice, although the théoal 153 gflops. Therefore, the use of asynchronous I/O is essehi
PCl-e bus bandwidth is 8 GB/s. The transfer can be done asyn-Section 3.6, we calculated that therf,,..z, 4000 fOr our hardware
chronously, overlapping the computation with host-toidexom- is 363 gflops. In practice, we achieve 67% of this limit dueht® t

munication. However, we discovered that the performanchef external I/O problems.

compute kernel decreases significantly if transfers artopeed

concurrently. For the x 3 case, the compute kernel becomes 3.0 4.5 The Cell Broadband Engine
times slower, which can be fully attributed to the decredskevice (QS21 blade server)

memory throughput. Due to the low I/O performance, we achiev
only 171 ¢flops, 14% of the theoretical peak. This is 57% of the
Perfmaz,globat OF 300 gflops that we calculated in Section 3.6.

The basic Cell/B.E. programming is based on multi-thregdin
the PPE spawns threads that execute asynchronously on BiREs.
SPEs can communicate with other SPEs and the PPE, using mech-
anisms like signals and mailboxes for synchronization andlls

4.4 NVIDIA GPU (TeSIa C1060) amounts of data, or DMA transfers for larger data. With th#/Bde.
NVIDIA's programming model is called Cuda [2]. Cuda is rel- itis important to exploit all levels of parallelism. Apptitions deal
atively high-level, and achieves good performance. Howebe with task and data parallelism across multiple SPEs, vauaor

programmer still has to think about many details such as mgmo allelism inside the SPEs, and double or triple-buffering BdA

coalescing, the texture cache, etc. An advantage of NVICiAlh transfers [5]. The Cell/B.E. can be programmed in C or C++ilavh

ware and Cuda is that the application does not have to donesto using intrinsics to exploit vector parallelism.

tion. This is thanks to the fact that all cores have their odurass The large number of registers (128 times 4 floats) allows a big

generation units. All data parallelism is expressed bygiireads. tile size of4 x 3, leading to a lot of data reuse. We exploit the
The correlator uses 128-bit reads to load a complex sample wi vector parallelism of the Cell/B.E. by computing the foutgr@a-

two polarizations with one instruction. Since random weateess tion combinations in parallel. We found that this perfornestéer

to device memory is supported (unlike with the ATl hardwavey than vectorizing over the integration time. This is thankghe
can simply store the output correlations to device memormy.ugé Cell/B.E.’s excellent support for shuffling data aroundha vector
the texture cache to speed-up access to the sample data. We deegisters. The shuffle instruction is executed in the odeljip,
not use it for the output data, since that is written only orazed while the arithmetic is executed in the even pipeline, allhgthem
never read back by the kernel. With Cuda, threads within eatthr to overlap.

block can be synchronized. We exploit this feature to lethineads We identified a minor performance problem with the pipeliokes

that access the same samples run in lock step. This way, we paythe Cell/B.E. Regrettably, there is no (auto)incrementrugsion in
a small synchronization overhead, but we can increase ttleeca the odd pipeline. Therefore, loop counters and addresslatilens
hit ratio significantly. We found that this optimization ingved have to be performed on the critical path, in the even pipelin
performance by a factor of 2.0. the time it takes to increment a simple loop counter, fourtipiyt

We also investigated the use of the per-multiprocessoreshar adds, or 8 flops could have been performed. To circumvent this
memory as an application-managed cache. Others reportrgeod we performed loop unrolling in our kernels. This solves thefqr-

sults with this approach [16]. However, we found that, for ap- mance problem, but has the unwanted side effect that it oses |

plication, the use of shared memory only led to performamcgat store memory, which is better used as data cache.

dation. A distinctive property of the architecture is that cachesfars
The best performing implementation uses a tile size of 3xBe T are explicitly managed by the application, using DMA. Thisin-

optimal tile size is influenced by the way the available regsare like other architectures, where caches work transpare®yydi-

used. The register file is a shared resource. A smaller tile si viding the integration time into smaller intervals, we caef the
means less register usage, which allows the use of more gentu sample data foall stationsin the local store. Because of this,
threads, hiding load delays. On NVIDIA hardware, we fouratth we have to load and store the correlations to main memoryaeve

the using a relatively small tile size and many threads mses times, since the sub-results have to be accumulated. Wéapver

performance. communication with computation, by using multiple buffefor
The kernel itself, without host-to-device communicatichiaves the sample data we use double buffering. Since the cowaktre

285 gflops, which is 31% of the theoretical peak performante. both read and written, we use triple buffering in this caséariks

achieved device memory bandwidth is 110 GB/s, which is 108% o to the explicit cache, the correlator implementation fegleach
the theoretical maximum. We can reach more than 100% becausesample from main memorgnly exactly once Although issuing
we include data reuse. The performance we get with the eerrel explicit DMA commands complicates programming, for ourlapp

tor is significantly improved thanks to this data reuse, Wwhie cation this is not problematic.
achieve by exploiting the texture cache. The advantagergela Due to the high memory bandwidth and the ability to reuse,data
because separate bandwidth tests show that the theoredicel we achieve 187 gflops, including all memory I/O. This is 92% of

width cannot be reached in practice. Even in the most optimal the peak performance on one chip. If we use both chips in the ce
case, only 71% (72 GBY/s) of the theoretical maximum can be ob- blade, the performance drops only with a small amount, anstilie
tained. The arithmetic intensity with this tile size is 2Me can use achieve 91% (373 dflops) of the peak performance. Even though

450

34%

of peak

400

96%

of peak 91%

of peak

350

300

250

200
150

performance (gflops)

100
67%
50 of peak

oIl

Intel CPU

96%
of peak

IBMBG/P ATI GPU

l no communication M with communication

NVIDIA GPU

STI Cell/B.E. 2x STI Cell/B.E.
(full blade)

Percentages are the fraction of the theoretical peak performance for that architecture

Figure 4: Achieved performance on the different platforms.

the memory bandwidth per operation of the Cell/B.E. is eighes
lower than that of the BG/P, we still achieve excellent perfance,
thanks to the high data reuse factor.

5. COMPARISON AND EVALUATION

Figure 4 shows the performance on all architectures we eval-

uated. The NVIDIA GPU achieves the highedisoluteperfor-
mance. Nevertheless, the GRBicienciesare much lower than on
the other platforms. The Cell/B.E. achieves the highestieffcy

of all many-core architectures, close to that of the BG/Eh@éugh
the theoretical peak performance of the Cell/B.E. is 4.@&hower
than the NVIDIA chip, the absolute performance is only dligh
less. If both chips in the QS21 blade are used, the Cell/Bdb. a
has the highest absolute performance. For the GPUs, it E-pos

tems based on general-purpose CPUs only achieve 0.27 §flops/

The performance gap between assembly and a high-level pro-
gramming language is quite different for the different fdans.

It also depends on how much the compiler is helped by manually
unrolling loops, eliminating common sub-expressions, uke of
register variables, etc., up to a level that the C code besahe
most as low-level as assembly code. The difference varigeea
only a few percent to a factor of 10.

For the BG/P, the performance from compiled C++ code was by
far not sufficient. The assembly version hides load anduotbn
latencies, issues concurrent floating point, integer, aad/store
instructions, and uses the L2 prefetch buffers in the mostgp
way. The resulting code is approximately 10 times fastan tha+
code. For both the Cell/B.E. and the Intel core i7, we fourat th
high-level code in C or C++ in combination with the use of in-

ble to use more than one chip as well. This can be done in the trinsics to manually describe the SIMD parallelism yieldsept-

form of multiple PCl-e cards, or with two chips on a singled;ar
as is done with the ATl 4870x2 device. However, we found that
this does not help, since the performance is already linfitethe
low PCl-e throughput, and the chips have to share this resour
The graph indeed shows that the host-to-device 1/0 has a iarg

able performance compared to optimized assembly code., Thaus
programmer specifies which instructions have to be used¢dut
typically leave the instruction scheduling and registécation to
the compiler. On NVIDIA hardware, the high-level Cuda model
delivers excellent performance, as long as the programmi@s h

pact on the GPU performance, even when using one chip. With by using SIMD data types for loads and stores, and separate lo

the Cell/B.E., the 1/O (from main memory to the Local Storalyo
has a very small impact. Table 4 presents the details, ingutie
power efficiency.

The results show that the Cell/B.E. is about five times more en
ergy efficient than the BG/P. This is not a fair comparisongcsi
the BG/P includes a lot of network hardware on chip, while the
other architectures do not offer this. Nevertheless, itéarcthat
the Cell/B.E. is significantly more efficient. A 45 nm versioh
the Cell/B.E. has been announced for early 2009. With this ve
sion, which has identical performance, but reduces the TP t
about 50W, the Cell/B.E. even is seven times more efficiean th
the BG/P. The 65 nm version of the Cell/B.E. already is about
2.5 times more energy efficient than the GPUs. The fact that th
three most energy efficient supercomputers on the Green&do |
are based on the Cell/B.E. supports our findings. The Gréxigi0
also specifies the achieved power efficiency for entire sigmer
puters, i.e. including memory, chipsets, networking hanayetc.
PowerXCell-based systems achieve 0.54 glops/W, while tbe B
Gene/P is less power efficient, and achieves 0.37 gflops/\&. Sy

2See http://www.green500.0rg.

cal variables for values that should be kept in registergdh\AT|
hardware, this is different. We found that the high-leveb@&+
model does not achieve acceptable performance comparadde h
written CAL code. Manually written assembly is more tharethr
times faster. Also, the Brook+ documentation is insuffitien

In Table 5 we summarize the architectural strengths and weak
nesses that we identified. Although we focus on the cornelgio
plication in this paper, the results are applicable to @ppibns with
low flop/byte ratios in general.

6. RELATED WORK

Intel’s 80-core Terascale Processor [10] was the first gdiyer
programmable microprocessor to break the teraflopbaitieas a
good flop/Watt ratio, making it an interesting candidateftdure
correlators.

Intel's Larrabee [15] (to be released) is another promisirodi-
tecture. Larrabee will be a hybrid between a GPU and a maté-c
CPU. It will be compatible with the x86 architecture, buthiive
4-way simultaneous multi-threading, 512-bit wide vectoits; shuf-
fle and multiply-add instructions, and texturing hardwéararabee

Intel IBM ATI NVIDIA STI
Architecture Core i7 | BG/P | 4870 | Tesla C1060| Cell
measured gflops 48.0 13.1 | 171 | 243 187
achieved efficiency 67% 96% | 14% | 26% 92%
measured bandwidth (GB/9) 18.6 6.6 47 94 49.5
bandwidth efficiency 73% 48% | 41% | 93% 192%
achieved gflops/Watt 0.37 0.54 | 1.07 | 1.00 2.67

Table 4: Measured performance of the different many-core hedware platforms.

Intel Core i7 920 | IBM Blue Gene/P AT1 4870

NVIDIA Tesla C1060 | STI Cell/B.E.

+ well-known + L2 prefetch unit works well

+ high memory bandwidth

- few registers
-no fma
- limited shuffling

- everything double precision
- expensive

- CAL is low-level

+ largest number of cores
+ swizzling support

- low PCl-e bandwidth

- cannot synchronize thread
- transfer slows down kernel
- no random write access

- bad Brook+ performance
- not well documented

+ synchronize threads|
+ random write accesg
+ Cuda is high-level

+ explicit cache

+ random write access
+ shuffle capabilities

+ power efficiency

- low PCl-e bandwidth
S

- multiple parallelism levels
- no increment in odd pipe

Table 5: Strengths and weaknesses of the different platforsifor data-intensive applications.

will use in-order execution, and will have coherent cachéslike
current GPUs, but similar to the Cell/B.E., Larrabee wilvéa
ring bus for communication between cores and to memory.

Another interesting architecture to implement correlatme FP-
GAs [8]. LOFAR’s on-station correlators are also implenaeht
with FPGAs. Solutions with FPGAs combine good performance
with flexibility. A disadvantage is that FPGAs are relativelif-
ficult to program efficiently. Also, we want to run more thastju
the correlator on our hardware. LOFAR is the first of a new gen-
eration of software telescopes, and how the processingis best
is still the topic of research, both in astronomy and compsité
ence. We perform the initial processing steps on FPGAsdyjrea
but find that this solution is not flexible enough for the refsthe
pipeline. For LOFAR, currently twelve different procesgipipe-
lines are planned. For example, we would like to do the catlibn
of the instrument and pulsar detection online on the sanwzae,
before storing the data to disk. We even need to support pieilti
different observations simultaneously. All these issogether re-
quire enormous flexibility from the processing solution eféfore,
we restrict us to many-cores, and leave application-spean#truc-
tions and FPGAs as future work. Once the processing pipetine
fully understood, future instruments, such as the SKA, lik#ly
use ASICs.

Williams et al. [18] describe an auto-tuning framework faulti
cores. The framework can automatically perform different-|
level optimizations to increase performance. However, &Bté
not considered in this framework. We performed all optirticas
manually, which is possible in our case, since the algorithrela-
tively straightforward. More important, we found that inraase,
algorithmic changes are required to achieve good perforeafix-
amples include the use of different tile sizes, and vedtuginver
the different polarizations instead of the inner time loop.

A software-managed cache is used on the Cell/B.E. processor
GPUs typically have a small amount of shared memory that can
be used in a similar way [16]. An important difference is that
the Cell/B.E. the memory is private for a thread, while witR\(&
all threads on a multiprocessor share the memory. The almila
memory per thread is also much smaller. We applied the tqakni
described in [16], but found it did not increase performafoceur
application.

7. DISCUSSION

A key application characteristic of the correlator is thas iex-
tremely regular. This means that we know exactly which mereor
referenced at what time. In this paper, we explained thatgrop-
erty makes many optimizations possible. We also implentente
several other signal-processing algorithms we did noudisdere,
albeit not on all many-core architectures. Most of our cosicns
hold for all (data-intensive) applications. However, thégper does
not compare the ability of the architectures to cope witipre-
dictable memory access patterns. We know, for example, that a
particular radio-astronomy imaging algorithm (W-projen) ex-
hibits random memory access, and as a result performs poorly
at least some of these architectures, and probably all [AHo,
the software-manged cache of the Cell/B.E. is less effedtare,
since the programmer cannot predict the accesses in advéoce
tunately, not all applications behave so unpredictablygéneral,
we advocate that the focus for optimizations for many-cochia
tectures should be on memory bandwidth, access patterdigfan
ficient use of the caches, even at the cost of increased symizhr
tion and extra computation.

In this paper, we focus on the maximal performance that can be
achieved with a single many-core chip. An exiting result nespnt
here is that even extremely data-intensive applicatiansh 8s the
correlator, can perform well on many-core architectunegartic-
ular on the Cell/B.E.. These results allows us to move fodwand
bring up the question of scalability: can we scale the regolta
full system that processes all telescope data? In this xprités
important to emphasize that the correlator itself is tilyiparal-
lel, since tens of thousands of frequency channels can lbegsed
independently. However, in case of an FX correlator, a mdgoa
exchange is necessapyior to correlation: each input contains all
frequency channels of a single receiver, but the correlamuires
a single frequency channel of all receivers. We implemeitted
for the LOFAR correlator on the 3-D torus of the Blue Gene/P,
where we exchange all data asynchronously. Although arieeffic
implementation is complex, the time required for this exgdeis
small compared to the time to correlate the data. Moreokeriata
rates grow linearly with the number of receivers, while tloene
pute time of the correlator algorithm grows quadraticailfe also
experimented on a PC cluster with a Myrinet switch, which was

able to handle the all-to-all exchange at the required aeé&sr On
the Blue Gene/P, we can scale the application to more th&000.
cores. For more information, we refer to [13, 12].

8. CONCLUSIONS

Current and future telescopes have high computational /ahd |
demands. Therefore, we evaluated the performance of thenesly
data-intensive correlator algorithm on today’s many-an@hitec-
tures. This research is an important pathfinder for futudiora
astronomy instruments. The algorithm is simple, we carefoee
afford to optimize and analyze the performance by hand, éven
this requires assembly, application-managed cachesTh& per-
formance of compiler-generated code is thus not an issadruly
compared the architectural performance

Compared to the BG/P, many-core architectures have a signif
icantly lower memory bandwidtper operation Minimizing the

number of memory loads per operation is of key importance. We

do this by extensively optimizing the algorithm for eachtstiec-
ture. This includes making optimal use of caches and registe
high memory bandwidth per flop is not strictly necessary,oag |
as the architecture allows efficient data reuse. This carcliewed
through caches, local stores and registers.

Only two architectures perform well with our applicationher
BG/P supercomputer achieves high efficiencies thanks tbitite
memory bandwidth per FLOP. The Cell/B.E. also performs kexce
lently, even though its memory bandwidth per operation @i
times lower. We achieve this by exploiting the applicatnanaged
cache and the large number of registers, optimally reudirgam-
ple data. The Cell/B.E. is about five to seven times more gnerg
efficient than the BG/P, if we do not take the network hardviraie
account.

Itis clear that application-level control of cache behay&ther
through explicit DMA or thread synchronization) has a sabsal
performance benefit, and is of key importance for data imtens
high-performance computing. The results also demonstithtzt,
for data-intensive applications, the recent trend of iasiey the
number of cores does not work if I/0 is not scaled accordingly

Acknowledgments

This work was performed in the context of the NWO STARE As-
troStream project. We gratefully acknowledge NVIDIA, angbar-
ticular Dr. David Luebke, for providing freely some of the GP
cards used in this work. Finally, we thank Chris Broekema, Ja
David Mol, and Alexander van Amesfoort for their comments on
an earlier version of this paper.

9. REFERENCES

[1] The Karoo Array Telescope (MeerKAT). See
http://www.ska.ac.za.
NVIDIA CUDA Compute Unified Device Architecture
Programming Guide Version 2.fuly 2008.
[3] Advanced Micro Devices Corporation (AMDAMD Stream
Computing User Guideaugust 2008. Revision 1.1.
I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
Computing on Graphics Hardware. ACM Transactions on
Graphics, Proceedings of SIGGRAPH 20fp4ges 777786,
Los Angeles, California, August 2004. ACM Press.
M. Gschwind, H. P. Hofstee, B. K. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic Processing in
Cell's Multicore ArchitecturelEEE Micro, 26(2):10-24,
2006.

(2]

[4]

(5]

[6] IBM Blue Gene team. Overview of the IBM Blue Gene/P
project.IBM Journal of Research and Development
52(1/2):199-220, January/March 2008.

S. Johnston, R. Taylor, M. Bailes, et al. Science with
ASKAP. The Australian square-kilometre-array pathfinder.
Experimental Astronomy?2(3):151-273, 2008.

L. de Souza, J. D. Bunton, D. Campbell-Wilson, R. J.
Cappallo, and B. Kincaid. A radio astronomy correlator
optimized for the Xilinx Virtex-4 SX FPGA. Innternational
Conference on Field Programmable Logic and Applications
(FPL'Q7), pages 62—67, August 2007.

E. D. Lazowska, J. Zahorjana, G. S. Graham, and K. C.
Sevcik.Quantitative System Performance, Computer System
Analysis Using Queueing Network Moddbsentice-Hall,
1984.

T. G. Mattson, R. V. der Wijngaart, and M. Frumkin.
Programming the Intel 80-core network-on-a-chip terascal
processor. IProceedings of the 2008 ACM/IEEE conference
on Supercomputing (SC'08)ages 1-11, Austin, Texas,
2008.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,

J. Kruiger, A. E. Lefohn, and T. Purcell. A Survey of
General-Purpose Computation on Graphics Hardware.
Computer Graphics Forun26(1):80-113, 2007.

J. W. Romein, P. C. Broekema, J. D. Mol, and Rob V. van
Nieuwpoort. Processing Real-Time LOFAR Telescope Data
on a Blue Gene/P Supercomputer. 2009. Submitted for
publication.

J. W. Romein, P. C. Broekema, E. van Meijeren, K. van der
Schaaf, and W. H. Zwart. Astronomical Real-Time
Streaming Signal Processing on a Blue Gene/L
Supercomputer. IACM Symposium on Parallel Algorithms
and Architectures (SPAA'OGpages 59—66, Cambridge, MA,
July 2006.

R. T. Schilizzi, P. E. F. Dewdney, and T. J. W. Lazio. The
Square Kilometre ArrayProceedings of SPIEF012, july
2008.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Ahtas
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,

R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: A Many-Core x86 Architecture for Visual
Computing. ACM Transactions on Graphic27(3), August
2008.

M. Silberstein, A. Schuster, D. Geiger, A. Patney, anD.J
Owens. Efficient Computation of Sum-products on GPUs
Through Software-Managed Cache Rroceedings of the
22nd ACM International Conference on Supercompuyting
pages 309-318, June 2008.

A. Varbanescu, A. van Amesfoort, T. Cornwell, G. van
Diepen, R. van Nieuwpoort, B. ElImegreen, and H. Sips.
Building High-Resolution Sky Images using the Cell/B.E.
Scientific Programming (accepted, to appear) Special Issue
on High Performance Computing on the Cell BB08.

S. Williams, K. Datta, J. Carter, L. Oliker, J. Half, Kelck,
and D. Bailey. PERI - Auto-tuning memory-intensive kernels
for multicore.Journal of Physics: Conference Series
125(012038), 2008.

S. Williams, A. Waterman, and D. Patterson. Roofline: An
Insightful Visual Performance Model for Floating-Point
Programs and Multicore ArchitecturéSommunications of
the ACM (CACM)2009. to appear.

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

