
Image-Domain Gridding on Graphics Processors

Bram Veenboer, Matthias Petschow and John W. Romein
ASTRON (Netherlands Institute for Radio Astronomy)

PO Box 2, 7990 AA Dwingeloo, The Netherlands
Email: {veenboer,petschow,romein}@astron.nl

Abstract—Realizing the next generation of radio telescopes
such as the Square Kilometre Array (SKA) requires both more
efficient hardware and algorithms than today’s technology pro-
vides. The recently introduced image-domain gridding (IDG)
algorithm is a novel approach towards solving the most compute-
intensive parts of creating sky images: gridding and degridding. It
avoids the performance bottlenecks of traditional AW-projection
gridding by applying instrumental and environmental corrections
in the image domain instead of in the Fourier domain. In this
paper, we present the first implementations of this new algorithm
for CPUs and Graphics Processing Units (GPUs). A thorough per-
formance analysis, in which we apply a modified roofline analysis,
shows that our parallelization approaches and optimization leads
to nearly optimal performance on all architectures. The analysis
also indicates that, by leveraging dedicated hardware to evaluate
trigonometric functions, GPUs are both much faster and more
energy-efficient than regular CPUs. This makes IDG on GPUs
a candidate for meeting the computational and energy-efficiency
constraints of future telescopes.

I. INTRODUCTION

At the present time, the worlds largest radio telescope, the
Square Kilometre Array (SKA) [1], is being developed. It will
consists of thousands of dishes and hundreds of thousands of
antennas; its goal is to “enable astronomers to monitor the
sky in unprecedented detail and survey the entire sky much
faster than any system currently in existence” [1]. However,
even for existing telescopes such as the LOw-Frequency ARray
(LOFAR) [2], with in the order of 50,000 antennas grouped
into about 50 stations, data processing remains challenging – in
particular, when so called direction-dependent effects (DDEs)
have to be taken into account [3].

Creating sky images is especially computational intensive:
both efficient algorithms and processing are needed to meet
the ambitious time and power constraints of instruments such
as the SKA [4]. According to a requirements analysis of a
pipeline that creates sky images, the subparts of gridding and
degridding are the most dominant parts of the computation [5]
Recently, a novel algorithm for these operations was intro-
duced: Image-Domain Gridding algorithm (IDG) [6]. Its aim
is to address the shortcomings of more traditional methods
currently in use – in particular, the challenging DDEs.

The main contributions of this paper are the following:
(1) We present the first implementations of the IDG algorithm
on CPUs and GPUs; (2) We present the first efficient degrid-
ding implementation on GPUs ever; (3) We apply a thorough
analysis of the achieved performance, in which we apply a
roofline analysis [7] at another abstraction level, where not
only the hardware limitations, but also the limitations of the
supporting mathematical software is taken into account; (4) We
provide an assessment of the increasingly important energy
consumption on representative CPU and GPU platforms.

baseline (pair of stations)

station

incom
ing

radio
waves

× I

correlator imager

visibilities

calibration

image

Fig. 1: Incoming radio waves are received by a pair of
stations. Since the stations are spaced apart, the signal is out of
phase. The visibilities, which are correlations of station signals,
contain information on amplitude and phase of the source.

The rest of the paper is organized as follows: In Section II,
we provide the necessary background describing the problem
that needs to be solved. After discussing related work in
Section III, we describe the IDG algorithm in Section IV.
In Section V, we show how the algorithm is most efficiently
mapped onto state-of-the-art CPUs and GPUs (Intel Xeon,
AMD Fury X, and Nvidia GTX 1080). In Section VI, we
present experimental results for all architectures. A thorough
analysis uncovers architectural and other features that are most
relevant to performance and energy efficiency.

II. BACKGROUND

A radio telescope detects electromagnetic waves that orig-
inate from radio sources in the universe. The signals are
used, among other things, to construct a map of the sky
containing positions, strengths, and polarization of the sources.
As opposed to optical telescopes, which usually consists of a
single receiver, as mentioned above, modern radio telescopes
such as the LOFAR and the SKA are comprised of many small
antennas.1

As shown in Fig. 1, the creation of a sky image requires
roughly three steps: (1) the digitized signals from pairs of
distinct stations are correlated to produce measurement data
(so called visibilities), (2) calibration is used to estimate and
correct instrument parameters and environmental effects, and
(3) an imaging step converts partially corrected visibilities into
a sky image.

More precisely, for every frequency channel ν, every
station of dipole antennas produces two signals (one for each
polarization), and multiplying and integrating (correlating) the

1A notable exception is the single dish Five-hundred-meter Aperture Spher-
ical radio Telescope (FAST) [8].

− gridding iFFT CLEAN

FFTdegridding

Fourier
grid

residual image

model image
Fourier
grid

model visibilities

measured visibilities (model) image

“image”

“predict”

Fig. 2: The imaging step for a single subband.

signals of station pair (p, q) for a short time (in the order of
seconds) produces a single visibility, V (ν)

pq ∈ C2x2. Every visi-
bility is associated with a uvw-coordinate, (u(ν)pq , v

(ν)
pq , w

(ν)
pq) ∈

R3, which describes the distance of the two stations in units
of wavelength – thus, depends on frequency ν. Ignoring
the correction for direction-independent effects, the relation
between visibilities and sky brightness, B(l,m) ∈ R2x2, is
given by the following measurement equation [9]:

V (ν)
pq =

∫
`

∫
m

ApBA
H
q e

−2πi(u(ν)
pq `+v

(ν)
pq m+w(ν)

pq n) d` dm, (1)

where `,m ∈ R are direction cosines of sky coordinates,
n = 1 −

√
1− `2 −m2, and A

(ν)
p (`,m), A

(ν)
q (`,m) ∈ C2×2

describe the aforementioned DDEs. In other words, for a given
pair of stations and time, a visibility is the weighted sum of
the sky brightness in all directions.

Without the W-terms, e−2πiw(ν)
pq n, and the A-terms, and

after uniformly discretizing the sky coordinates, the relation
between visibilities and sky image becomes that of a discrete
Fourier transform for non-equidistant data (NDFT). In such
a scenario, the sky image can be obtained by a non-uniform
Fast Fourier Transformation (NFFT), which comprises three
steps: (1) the non-uniform visibilities are “gridded” onto a
uniform grid by applying an operation that corresponds to a
convolution, (2) an inverse FFT is applied to the grid, and (3)
a correction of the first step is performed [10]. For Eq. (1)
however, the gridding step has also to take the W-terms and
A-terms into account. Therefore, we define gridding as the
means to get, up to a simple correction, the Fourier transform
of the discretized sky image from the measured visibilities.
Similarly, we define degridding as the means to get visibilities
from the Fourier transform of the discretized sky image.

In the imaging step (Fig. 2), the measured visibilities are
processed independently for different spectral frequency ranges
(so called subbands). It starts with an empty sky model.
After “imaging” (gridding and inverse FFT) the visibilities,
one or more bright sources, which mask the more interesting
weak sources, are extracted using a variant of the CLEAN
algorithm and added to the sky model (see [11] and references
therein). For these sources, the visibilities are “predicted”
(FFT and degridding) and subtracted from the input to reveal
fainter sources. This process is repeated until the sky model
converges.

III. RELATED WORK

The traditional approach to gridding is known as W-
projection [12] and it neglects the correction of DDEs (the
A-terms): the W-terms are treated as a convolution in Fourier
space. However, when antennas are spaced far apart from each
other to resolve the high spatial frequencies and observing
large fields, the support of the W-terms can become large and
they have to be recomputed frequently, making this technique
inefficient and memory intensive [13]. The combination of W-
projection gridding and W-stacking improve on this technique
by limiting the support size of W-terms at the cost of using
more memory [14], [15].

The computational challenge increases even further when
the correction for DDEs is taken into account [13]. The
correction can be done in a similar manner than the W-term
correction – called A-projection. Applying both corrections
results in the so called AW-projection gridding [16].

Most state-of-the-art imagers make use of one or more
of the various gridding algorithms and their implementations:
e.g., CASA [17] and LOFAR’s AWImager [18] uses W-
projection and AW-projection, while WSClean [15] uses W-
projection in conjunction with W-stacking. A-term correction
is included in WSClean, but performance is much lower when
this feature is enabled. However, the integration of IDG into
WSClean is planned to improve performance for cases where
DDEs are of concern.

The first efficient implementation of W-projection gridding
on GPUs has been reported in [19], and has since then further
been improved [20], [21]. To the best of our knowledge, no
gridding and degridding implementation correcting for both
W-terms and A-terms has been presented that runs highly
efficiently on CPUs and/or GPUs. Even more, no degridding
routine has been presented for GPUs at all. As we show in
the following, the IDG algorithm, while running efficiently
correcting only for the W-term, allows corrections for DDEs
at negligible additional cost. It therefore alleviates most of the
limitations of traditional AW-projection gridding.

IV. THE IDG ALGORITHM

For every subband (and, if W-stacking is used, every
W-plane), we have a situation as depicted in Fig. 3. Due
to the earth rotation, the measurements associated with one
baseline (i.e., one pair of stations) draw tracks in the form
of an ellipsoid in the (u, v)-plane, which is the discrete
Fourier Transform (DFT) of the sky image (simply called
the grid hereafter). As the subband frequency range is further
discretized into C channels, each baseline is associated with
C tracks and T time steps.

Traditional W-projection and AW-projection apply a con-
volution kernel to each of the visibilities, as illustrated in
Fig. 3. The fraction of non-zero pixels of the grid is called
the uv-coverage. In order to increase the uv-coverage for
high-resolution images, longer baselines (that is, with larger
u and v values) must be used. Visibilities do not exactly map
to grid coordinates, which is corrected by oversampling the
convolution function. The convolution kernels in W-projection
or AW-projection gridding form a potentially large multi-
dimensional data structure that scales quadratically in size with

W-projection gridding
using convolution kernels

Image-Domain gridding
using subgrids

grid

visibility:
convolution:

updated pixel:

Fig. 3: In traditional W-projection and AW-projection gridding,
visibilities are gridded using convolutions (top-right) as op-
posed to correcting the W-term and A-term effects in the image
domain (bottom right). For the latter, neighboring visibilities
are gridded on small ‘subgrids’.

both the number of pixels in one dimension of the image
and an oversampling factor. IDG makes use of the classical
convolution theorem [22] to perform both W-correction and
A-correction in the image domain. Consequently, large convo-
lution functions are not needed.

At the center of the algorithm are so called subgrids,
which represent low-resolution versions of the sky brightness
for a small subset of visibilities (Fig. 3). These subgrids are
placed onto the grid in such a way that they cover a subset
of T̃ × C̃ visibilities and their associated W-term and A-
term convolution kernels (see also Section V). Every pixel
of the subgrid is then computed as a direct sum of shifted
visibilities, as shown in Algorithm 1. Afterwards, both W-term
and A-term corrections are applied. Since we have performed
the corrections in the image domain, the subgrid has to be
Fourier-transformed before the result is added to the grid (i.e.,
four Ñ × Ñ FFTs per subgrid, one for every of the four
combinations of p and q).

The entire process is illustrated in Fig. 4. Image-Domain
Gridding consists of three steps: (1) The visibilities are gridded
onto subgrids by the gridder kernel, which applies Algorithm 1
for every subgrid; (2) the subgrids are Fourier-transformed.
This step will be referred as the subgrid FFTs; (3) the
transformed subgrids are added to the grid by the adder.

The degridding step is similar to the gridding step, but
proceeds in reverse order: First, subgrids are extracted from
grid by the splitter, then every subgrid is Fourier transformed
by an inverse FFT, and finally the associated visibilities are
predicted by the degridder kernel, which is similar to the
gridder kernel and shown in Algorithm 2.

The minimum size of the subgrids follow from the size of
the W-term and A-term convolutions kernels and the tapering
function that used to reduce aliasing (such as a spheroidal,
which is used in our case). For the LOFAR telescope, subgrids
as small as 24 × 24 pixels are found to provide sufficient

1 S = 0; // CÑ×Ñ×2×2 subgrid
2 for y=1,. . . ,Ñ do
3 for x=1,. . . ,Ñ do
4 for t=1,. . . ,T̃ do // time
5 for c=1,. . . ,C̃ do // channel
6 α = f(x, y) · g(u(t, c), v(t, c), w(t, c));
7 Φ = cos (α) + i sin (α);
8 for p=1,2 do // polarization
9 for q=1,2 do

10 S(y, x, p, q) += Φ · Ṽ (t, c, p, q);
11 end
12 end
13 end
14 end
15 end
16 end
17 apply aterm(S);
18 apply spheroidal(S);
19 store S;
Algorithm 1: Pseudocode that is executed for every subgrid
in the gridder kernel. For every evaluation of sin(α) and
cos(α), 17 real-valued multiply-add operations are performed
(one in the evaluation of f(), 16 in the addition to S).

gridding

gridder kernel

gridder kernel FFT

FFT

adder

image
subgrid

image
subgrid

Fouriersubgrid

Four
ier

subg
rid

visibilities

visibilities

grid

degridding

splitter kernel

FFT

FFT

degridder kernel

degridder kernel

Four
ier

subg
rid

Fouriersubgrid

image
subgrid

image
subgrid

visibilities

visibilities

grid

Fig. 4: The Image-Domain routines are drop-in replacements
for the gridding and degridding step in Fig. 2.

accuracy to exceed the accuracy of traditional gridding [6].
Furthermore, larger subgrids (e.g. up to 64× 64) can be used
in connection with W-stacking to dramatically limit the number
of required W-planes [6]. Due to the smaller memory footprint,
IDG not only makes the computation efficient, but also enables
the creation of larger, higher-resolution images [6].

V. ARCHITECTURES & OPTIMIZATION

In this section we demonstrate how the IDG algorithm is
efficiently mapped onto modern CPUs and GPUs. The CPU
class will be represented by Intel’s Xeon processors family,
while the GPU class is represented by an AMD Fury X (Fiji
architecture) and Nvidia GTX 1080 (Pascal architecture).

A. The execution plan

Before any execution, we need to specify the subgrid
locations and associate visibilities to them. This is done in
form of an execution plan.

1 Ṽ = 0; // CT̃×C̃×2×2 visibilities
2 apply spheroidal(S);
3 apply aterm(S);
4 for t=1,. . . ,T̃ do // time
5 for c=1,. . . ,C̃ do // channel
6 for y=1,. . . ,Ñ do
7 for x=1,. . . ,Ñ do
8 α = −f(x, y) · g(u(t, c), v(t, c), w(t, c));
9 Φ = cos (α) + i sin (α);

10 for p=1,2 do // polarization
11 for q=1,2 do
12 Ṽ (t, c, p, q) += Φ · S(y, x, p, q)
13 end
14 end
15 end
16 end
17 end
18 end
19 store Ṽ ;
Algorithm 2: Pseudocode that is executed for every subgrid
or work item in the degridder kernel.

If V = {Vpq(t, c) : ∀t ∀c} denotes the visibilities from all
baselines, the positions of the subgrids induce a partitioning
V = V1∪V2∪. . .∪Vn. This process of positioning the subgrids
to cover all visibilities is implemented in form of a greedy
algorithm. As depicted in Fig. 5, not only the visibilities need
to be covered by the subgrids, but also the support of their
associated AW -projection convolution kernels [6]. Thus, for
each baseline, starting with time step 1 and having C̃ channels
that can be covered by an Ñ×Ñ subgrid, we include as many
time steps as possible (each with C̃ channels) until they cannot
be covered anymore. In that case, we create a new subgrid
(with a new positions on the grid) to cover the remaining
channels and repeat the process at time step T̃ + 1.

We might additionally require that T̃ ≤ T̃max (where T̃max
is architecture-specific and dependent on the other observation
parameters) to limit the maximal number of time steps that
are associated with a single subgrid. Such an approach keeps
the amount of computation to be performed for each subgrid
comparable, and the memory required for that computation
limited.

Vj : (1, C̃), (1, 1), (T̃ , 1), (T̃ , C̃)

grid
subgrid

Fig. 5: A subset of visibilities (Vj , black dots), including their
associated AW -projection convolution kernels (blue circles),
is covered by a subgrid.

We call each subgrid Sj (including its metadata such as
its position in the grid) together with its associated visibilities
Vj (including uvw-coordinates) a work item. The set of all n
work items is called the work, and is generated by the execution
plan. After grouping m ≤ n work items into a work group, the
gridder and degridder kernels process a work group by using
Algorithm 1 and Algorithm 2 for every work item, respectively.
This work division hierarchy is illustrated in Fig. 6, and we
will refer to it later to show how the algorithm is mapped
differently onto the two distinct architectures classes, CPU and
GPU.

(1) work

(2) work group

(3) work item

(4) pixels

(1) work

(2) work group

(3) work item

(4) pixels

(1) work

(2) work group

(3) work item

(4) pixels

Fig. 6: Work division within IDG: (1) The work is split into
(2) work groups, represented by a subset of all subgrids.
(3) A work group consists of work items, represented by
an individual subgrid. (4) For gridding, the smallest unit of
work is the computation of a single pixel. For degridding, the
smallest unit of work is the computation of a single visibility.

B. CPU

The CPU class is represented by Intel’s Xeon server
processor family. These CPUs are available in a wide variety
of models and vary in core-counts (up to 24 cores) and clock
speed (up to 3.4 Ghz). The last generations (Haswell-EP and
Broadwell-EP) have a similar underlying architecture: they
implement the AVX2 instruction set and have, for each core,
64 KB of L1 Cache and 256 KB L2 Cache. Furthermore, all
cores share a L3 cache of 2.5 MB per core. The clock speed
is dynamically adjusted depending on the workload.

Every core contains two floating point execution units
(FPUs), which both support vector fused multiply-add (FMA)
instructions, with 8-element single precision SIMD vector
width. To fully utilize all CPU cores and execution units, IDG
needs to exploit both thread-level and data-level parallelism.
Finding the right granularity for both levels is key to good
performance and scalability. We now detail our strategy for
various subparts: a) gridder kernel, b) degridder kernel, c)
subgrid FFTs, and d) adder and splitter.

a) Gridder kernel: The gridder kernel (as all other
kernels implemented in C++) is executed for every work
group. It distributes the work items over all logical cores
using OpenMP. That is, each thread computes a subset of the
subgrids according to Algorithm 1.

The most important performance optimizations are the
following: (1) We load and transpose visibility data of TB ≤ T̃

Listing 1: The reduction clause instructs the compiler to
vectorize over channels. Each vector loop executes 16 FMAs.
#pragma omp simd r e d u c t i o n (+ : . . .)
f o r (i n t c = 0 ; c < NR CHANNELS; ++c) {

p i x p p r e += v i s p p r e [c] ∗ P h i r e [c] ;
p ix pp im += v i s p p r e [c] ∗ Phi im [c] ;
p i x p p r e −= vis pp im [c] ∗ Phi im [c] ;
p ix pp im += vis pp im [c] ∗ P h i r e [c] ;

/ / [. . . same f o r ’ p i x pq ’ and ’ p i x qp ’]

p i x q q r e += v i s q q r e [c] ∗ P h i r e [c] ;
p ix qq im += v i s q q r e [c] ∗ Phi im [c] ;
p i x q q r e −= vis qq im [c] ∗ Phi im [c] ;
p ix qq im += vis qq im [c] ∗ P h i r e [c] ;

}

time steps and CB ≤ C̃ time steps at a time into memory-
aligned arrays to allow for non-strided data access. (TB and
CB are a platform-specific optimization parameters; that is,
the computation is performed in batches.) At this moment,
we also separate real and imaginary part of the operands.
(2) The sine/cosine-computations (Line 7 of Algorithm 1) are
precomputed for the entire batch of visibilities with either
Intel’s Short Vector Math Library (SVML) or Vector Math
Library (VML), whichever is faster. (3) We vectorize the
channel loop (Line 5) by writing the computation in the form
of a SIMD reduction illustrated in Listing 1.

The vectorization works best when the number of channels
is a multiple of the SIMD vector width, as otherwise the
remainder(CB , SIMD WIDTH) channels will be processed
using masked vector instructions. This implies that wider vec-
tors will not necessarily result in higher performance. Finally,
we aid compiler assisted vectorization in the remainder of the
kernel by using runtime compilation, i.e. we only compile the
kernel when the parameters are known at runtime.

b) Degridder kernel: We distribute the work in the
same manner as in the gridder kernel: each thread processes a
subset of a work group by applying Algorithm 2 on every work
item. In other words, each thread computes the visibilities for a
subset of the subgrids. The kernel optimizations are similar to
the optimizations for the gridder kernel. A notable difference is
that we apply vectorization over pixels (Line 7 in Algorithm 1).
This works best when the number of pixels in one row of the
subgrid is a multiple of the SIMD vector width.

c) Subgrid FFTs: All subgrids are Fourier-transformed
before adding them to the grid and after splitting the subgrids
from the grid, respectively. This is an embarrassingly parallel
process and most efficiently done by using a highly-optimized
math library such as the Intel’s Math Kernel Library (MKL).

d) Adder and splitter: As subgrids might partially over-
lap in the grid, for the adder, parallelization over subgrids
would imply prohibitive synchronization costs. Instead, we
parallelize over the rows of the grid to avoid concurrent access
to the same pixels. For the splitter, overlapping subgrids are
not a problem as the data from the grid is read-only. Therefore,
we parallelize over subgrids.

C. GPU

AMD GPUs are programmed in OpenCL, the open GPGPU
programming standard by Khronos [23], and NVIDIA GPUs
are programmed in either OpenCL or CUDA, the proprietary
standard by Nvidia [24]. Both of these standards include a
runtime system and a set of C/C++ extensions to operate the
GPU. Apart from syntactic differences, these standards offer
the same basic functionality. In the remainder we adhere to
the CUDA terminology.

Compared to CPUs, high-end GPUs such as Nvidia’s GTX
1080 have a much higher core count (2560 cores) and run
at a lower clock speed (1733 Mhz). The cores are organized
in smaller groups of 128 cores, which are called Streaming
Multiprocessors (SMs). Every SM contains a register file, load-
store units, and dedicated caches. GPUs lack a L3 cache as
found on most CPUs, instead each SM has a software-managed
cache. GPUs are connected to a host machine using PCI-E
and have their own device memory. The device memory is
limited in size (8 GB), but faster than on a regular Xeon-
based system (e.g. 320 GB/s versus 68 GB/s). Since it resides
in a separate memory space, this means that data needs to
be copied explicitly over the PCI-E bus to and from device
memory.

On any GPU, threads are organized in a three-level hier-
archy: grid-level, block-level, and warp-level. When a kernel
is executed, the GPU spawns a grid of thread-blocks (both
of user-specified dimensions) and dispatches the thread-blocks
onto the SMs.

It is possible to impose light-weight barriers within a
thread-block to synchronize threads; however, synchronization
between thread-blocks requires costly atomic operations on
device memory. When branches are encountered during ker-
nel execution the implication are similar to masked vector-
instructions on CPUs and result in sub-optimal performance.

This GPU programming model requires a different paral-
lelization strategy compared to the CPU implementation. We
detail our parallelization and optimization strategies in the
following paragraphs.

a) Asynchronous I/O and kernel execution: We use
triple-buffering to prevent the GPU from being idle during data
transfers. To this end we start three threads on the host, allocate
buffers on the device (threefold) and create three different
CUDA streams: one for host-to-device memory transfers, one
for kernel execution, and one for device-to-host memory
transfers. Each host thread processes a subset of the work
groups of the work by issuing operations onto the streams.
CUDA events are used to synchronize between streams and
ensure sequential consistency between the operations within
the kernel invocation; i.e., the kernel only starts when the input
data is transferred.

Fig. 7 illustrates how this technique overlaps I/O and kernel
execution. At the beginning of this example execution, all
threads enqueue three operations on the respective streams:
(1) copy of input data from host to device (HtoD), (2) kernel
execution and (3) copy of results from device to host (DtoH).
Furthermore, thread T1 only starts the copy of input data for
the next kernel invocation (indicated with dashes) when its
input buffer can be overwritten.

model type architecture clock core configa)= #FPUs peak mem size mem bw TDP
(GHz) (TFlops) (GB) (GB/s) (W)

Intel Xeon E5-2697v3 CPU Haswell-EP 2.60b) 2×14×2×08 = 448 2.78b) ≤1536 136 290
AMD R9 Fury X GPU Fiji 1.050 1×64×1×64 = 4096 8.60 4 512 275
NVIDIA GTX 1080 GPU Pascal 1.80b) 1×40×2×32 = 2560 9.22b) 8 320 180

a) #ICs × #compute units × FPU instructions/cycle × vector size
b) turbo mode enabled

TABLE I: The three architectures used in this comparison.

HtoD stream:
Execute stream:

DtoH stream:
host threads:

time

T1 T2 T3

Fig. 7: Three host threads and three CUDA streams are used
to implement triple buffering. This way, memory copies from
and to the GPU are overlapped with kernel execution as much
as possible.

b) Gridder kernel: The gridder kernel is launched once
for every work group. The number of thread blocks is set
according to the number of work items in the work group.
The number of threads in a thread block is an architecture
specific optimization parameter: We found that 192 and 256
threads works best for the Nvidia GTX 1080 and the AMD
Fury X, respectively.

In order to process a single work item, a thread block
executes Algorithm 1. We apply the following optimizations:
(1) Line 2 and 3 have been collapsed and threads are mapped
onto pixels based on their position in the thread block.
(2) Since the size of input data scales linearly with Ñ and
C̃, we process the input data in batches. Thus, we transpose
and prefetch the batch of data into fixed size shared memory
buffers. (3) While iterating through the batch data, every
thread accumulates all contributions to its current pixel in
registers. Only when the threads have finished the entire batch,
they write the pixel value to device memory using coalesced
memory accesses. (4) The sine/cosine computation in Line
7 is performed using regular sin and cos function calls.
During compilation we pass -use_fast_math to the CUDA
compiler to enable the use of optimized sine/cosine functions.
These functions have a maximum error of 2 units in the last
place (ulps) [25], which is sufficient for IDG [6].

c) Degridder kernel: As for the gridder kernel, the
degridder kernel is launched once for every work group. For
the processing of a single work item, a more elaborate paral-
lelization strategy is used, in which threads have two different
roles. We apply the following optimizations to Algorithm 2:
(1) We collapse Line 4 and 5 and map threads onto (a subset
of) visibilities based on their position in the thread block – the
first mapping. (2) We collapse Line 6 and 7 and also map the
threads onto pixels – the second mapping. According to the
second mapping, every thread loads a pixel value from device
memory, applies the spheroidal and the A-term correction
(Line 2 and 3), and stores the result into shared memory.
Furthermore, every thread evaluates f(x, y) in Line 8 and

stores the result in shared memory. At this point threads return
to their first role (according to the first mapping) and perform
the remainder of the algorithm: they evaluate g() in Line 8 and
perform Line 9 to 12. Next, the procedure is repeated for the
next batch of pixels. (3) During the entire process, threads keep
their first role and update their associated visibility in registers.
(4) Like in the gridder kernel, the sine/cosine-evaluations (Line
9) are executed using optimized math functions.

The optimal number of threads for this kernel are 128 and
256 threads for the Nvidia GTX 1080 and AMD Fury X,
respectively. When the number of threads is lower than the
T̃ × C̃ visibilities associated with the subgrid, the procedure
described above is repeated: threads are mapped onto a next
batch of visibilities and an iteration over all pixels is performed
until the entire work item is processed.

d) Subgrid FFTs: We use the cuFFT and clFFT li-
braries to compute Fourier transformations for the CUDA and
OpenCL implementations, respectively.

e) Adder and splitter: We have two options to add all
subgrids onto the grid: (1) Perform the operation on the GPU,
or (2) copy the subgrids into host memory and perform the
operation on the CPU. The second option is only required
when dealing with large images that no longer fit into GPU
device memory. For the first option, a relatively simple kernel,
where every thread-block atomically adds all pixels to the
grid was found most efficient. In CUDA we use the built-
in atomicAdd function twice, to add both the real and
imaginary component of the pixel to the grid. In OpenCL,
support for atomic operations on floating point numbers is not
available as of version 2.1, so we resorted to a loop that updates
grid values using atomic_cmpxchg.

Unlike the adder kernel, no synchronization is required for
the splitter kernel. For every subgrid we copy the relevant part
of the grid into the subgrid buffer.

VI. RESULTS

In this section, after describing the experimental setup,
we analyze IDG’s performance for each architecture in detail.
Additionally, we demonstrate that IDG is far more suited for
GPUs: it is almost an order of magnitude faster and more
energy efficient than on CPUs.

A. Experimental setup

All experiments were executed on the DAS-5 cluster [26]
using the hardware listed in Table I. We refer to the three
systems as HASWELL (a dual-socket system with Haswell-EP

−4000 −2000 0 2000 4000
−4000

−2000

0

2000

4000

u [m]

v
[m

]

Fig. 8: (u, v)-plane for our test data set.

processors), FIJI (a system hosting an AMD R9 Fury X GPU),
and PASCAL (a system hosting a NVIDIA GTX 1080 GPU).

For HASWELL, in our experiments, we used Intel’s com-
piler version 17.0.0 together with MKL version 2017.0.0; for
FIJI, we used the AMD APP SDK 3.0 OpenCL runtime and
GPU driver version 1800.11; for PASCAL we used CUDA
8.0.27 and GPU driver 367.35. All computations are performed
in single precision floating point operations (flops). We there-
fore omit the term “single precision” from here on.

As performance is data dependent (the uvw-coordinates
determine the subgrid configuration and, hence, the computa-
tional intensity within the gridder and degridder kernels, the
synchronization in the adder, and the total amount of sub-
grids to be Fourier-transformed), we created a representative
benchmark using proposed antenna coordinates for the SKA-1
low telescope – the phase 1 subset of the SKA covering the
low frequency spectrum [27]. The data set has the following
parameters: 150 stations (11,175 baselines), T = 8,192 time
steps (at 1 second integration time) and C = 16 channels; the
A-terms (for simplicity, all set to identity) are updated every
256 time steps; the subgrids and grid are 24 × 24 pixels and
2048 × 2048 pixels in size, respectively. The (u, v)-plane for
this data set is illustrated in Fig. 8.2

B. Performance comparison

In Fig. 9 and 10 we present respectively the execution time
and throughput (measured in MVisibilities/s) for the single
imaging cycle shown in Fig. 2. Both GPUs complete the
task almost an order of magnitude faster than HASWELL.
For all architectures, runtime is dominated by the gridder
and degridder kernels (more than 93%). Since the impact on
execution time of all other kernels is limited, we focus on the
gridder and degridder kernels for the remaining analysis.

2Although the data set is representative for a wide variety of use cases,
a benchmark covering more of the parameter space will be performed, once
IDG is integrated into state-of-the-art imagers We intend to make both the
input data as well as the software publicly available.

0 10 20 30 40 50 60

Haswell

Pascal

Fiji

Runtime [seconds]

gridder subgrid-ifft adder

grid-fft splitter subgrid-fft

degridder

Fig. 9: Distribution of runtime for one full imaging cycle.

0 50 100 150 200 250 300

Haswell

Pascal

Fiji

Throughput [MVisibilities/s]

gridding

degridding

Fig. 10: Throughput for gridding and degridding.

In Fig. 11 we show performance for the two kernels in the
form of a roofline plot, where an operation (an op) is defined
as one of the following: +,−, ∗, sin(), cos(). As about 17 out
of 18 operations in Algorithms 1 and 2 are FMAs, the plot
can be interpreted as TFlops/s, if the sine/cosine-evaluations
are ignored. However we include the sine/cosine evaluations
in the definition of an operation for two reasons: (1) we do not
have any influence on how fast and resource consuming these
mathematical functions are evaluated; thus, we have to treat
them as black boxes; and (2) on PASCAL these operations are
supported in hardware [25]. Despite this definition, the peak
performance measured in TOps/s is still only achieved when
using FMAs exclusively.

1 2 4 8 16 32 64 128 256 512 1024

0.1

1

10

Haswell

DR
AM

De
vic

e m
em

or
y

Pascal

Fiji

De
vic

e m
em

ory

Operational intensity [Op/Byte]

P
er
fo
rm

a
n
ce

[T
O
p
/
s]

gridder degridder

Fig. 11: Roofline analyis: one operation is +,−, ∗, sin(), cos().
Peak performance is only attained if non-masked FMA instruc-
tions (two operations) are used exclusively.

On all architectures, both kernels are compute bound mea-
sured by their operational intensity – the number of operations
per byte moved from/to main memory. While the operation
count is known exactly, the data movement is measured.
Despite being compute bound, only on PASCAL we achieve
close to the theoretical peak performance. In contrast, on

HASWELL and FIJI, both kernels perform significantly lower
than the peak.

C. Performance analysis

On HASWELL and FIJI, although not being compute
bound, the performance seems far from optimal and requires
further investigation.

1) The HASWELL and FIJI case: Defining sine/cosine-
evaluations as operations comes with a number of compli-
cations: (1) their performance highly depends on the math-
ematical library that is used; (2) their performance depends on
the settings such as accuracy and number of values computed
at once; (3) their performance can also be dependent on the
values of the input. On HASWELL, to simplify the analysis,
in this section, we only use SVML whose performance is
independent on the number of values computed. Furthermore,
we select medium accuracy (maximum of 4 ulps error), and
values in the range of [−104, 104], to achieve the highest
performance. On FIJI, the native AMD math library is used
by specifying the -cl-fast-relaxed-math flag during
compilation.

As the gridder and degridder kernel perform 17 real-
valued FMA instructions for every sine/cosine-evaluation (see
Algorithm 1 and Algorithm 2), this situation is similar to an
instruction imbalance in traditional roofline analysis, where
peak performance is only achieved if an equal number of
multiplication and additions are performed in form of FMAs.
In order to determine an upper bound on performance for our
workload, we benchmarked the performance for various ratios
of

ρ =
number of FMAs
number of sincos

.

In this definition we use the fact that, for our kernels, sine
and cosine are always evaluated on the same argument, which
is more efficient than having distinct arguments. The result of
the benchmark is shown in Fig. 12.

1
4

1
2

1248163264128256
0

2

4

6

8

ρ [fma/sincos]

P
er
fo
rm

a
n
ce

[T
O
p
/
s]

Haswell

Pascal

Fiji

Fig. 12: Operation throughput for various mixes of FMA
instructions and sine/cosine-evaluations.

PASCAL’s SMs contain a number of special function units
(SFUs) that implement the computation of both transcendental
functions and interpolation in hardware [28]. Since sine/cosine
is handled in a separate processing queue, the performance of
PASCAL stays high when ρ decreases. In contrast, on FIJI,
the sine/cosine-evaluations are performed by the same ALUs
that also compute the FMAs, at a quarter of the rate [29].

Consequently, a more significant performance degradation is
observed for small values of ρ. A similar behavior is observed
for HASWELL.

Given these insights, we establish new upper bounds for
the peak Ops/s for the gridder and degridder kernels in Fig. 11
(dashed lines). These bounds correspond to the values in
Fig. 12 for ρ = 17. Now, the gridder and degridder kernels
are close to optimal, given the limitations of hardware and the
supporting mathematical library; unfortunately, we cannot use
the full computational capacity of HASWELL and FIJI without
algorithmic changes.

2) The PASCAL case: Although sine/cosine-evaluations are
supported in hardware, the measured kernel performance is be-
low the theoretical peak performance (Fig. 11): 74% and 55%
of the peak for the gridder and degridder kernel, respectively.
To further investigate the cause, we create a second roofline
graph in Fig. 13 – this time with respect to shared memory
instead of device memory.

Both kernels are close to the shared memory bandwidth
bound. Being only limited by shared memory bandwidth,
explains the good performance that can be seen in Fig. 11 for
PASCAL. Interestingly, the kernels on FIJI are also relatively
close to hitting the shared memory bandwidth limit.

1
4

1
2

1 2 4 8 16 32 64

0.1

1

10

De
vic

e m
em

ory
Sh
are

d me
mo

ry
Pascal

De
vic

e m
em

ory

Sh
are

d me
mo

ry
Fiji

Operational intensity [Op/Byte]

P
er
fo
rm

a
n
ce

[T
O
p
/
s]

gridder degridder

Fig. 13: Roofline graph with operational intensity computed
with respect to the amount of bytes transferred from shared
memory instead.

D. Energy-efficiency comparison

We use LIKWID [30] to measure the energy usage of
both the package (CPU cores and caches) and the DRAM
for HASWELL. For FIJI and PASCAL, we measure energy
consumption of the full PCI-E device, using PowerSensor [31],
which provides power measurements at high time resolution
and enables us to analyze energy usage for individual compute
kernels. Since both GPUs require a host to operate, we
additionally measure energy consumption for the package and
the DRAM.

Fig. 14 shows the total energy consumed during the exe-
cution of a single imaging cycle. As most time is spent in the
gridder and degridder kernels (Fig. 9), most energy is naturally
spent in these kernels. Thus, also in terms of total energy
consumption, the GPUs outperform the CPU by an order of

magnitude. This is even true when the power consumption of
the host is taken into account.

In Fig. 15 we present the energy-efficiency of the individual
kernels. PASCAL is clearly the most efficient GPU: for the
gridder and degridder kernel, it achieves 32 and 23 GFlops/W,
respectively. Second, but still with about 13 GFlops/W, comes
FIJI. HASWELL lags far behind the GPUs, achieving only
about 1.5 GFlops/W.

0 2 4 6 8 10 12 14 16 18 20

Haswell

Pascal

Fiji

Energy consumption [KJoules]

gridder subgrid-ifft adder

grid-fft splitter subgrid-fft

degridder host

Fig. 14: Distribution of energy consumption for a single
imaging cycle.

0 5 10 15 20 25 30 35

Haswell

Pascal

Fiji

Energy effiency [GFlops/W]

gridder

degridder

Fig. 15: Energy efficiency for the gridder and degridder ker-
nels.

E. Comparison with W-projection

For the same data set, we compare IDG with the W-
projection algorithm introduced in [19]. The latter is one of
the fastest implementations of W-projection gridding and we
refer to it as WPG in the following. For our tests, WPG
uses an oversampling factor of 8 for the W-kernels, and
their computation is not included in the measurement of the
execution time.

The maximum size of the W-kernels, NW × NW pixels,
is determined by the observation settings (the instrument, the
field of view, the target location, etc.) [16], [18]. For the
LOFAR telescope, although the maximum W-kernel can be as
large as 500×500 pixels for pure W-projection gridding, NW is
usually much smaller (NW = 30 on average) [18]. In practice,
WPG and IDG are used in conjunction with W-stacking to
limit NW to small values in all situations (e.g. NW ≤ 16).
Allowing large W-kernels however, reduces the need to have
additional W-planes (copies of the grid, where a subset of
the visibilities are gridded onto), which can be prohibitively
memory consuming for high-resolution images.

With the above in mind, we present in Fig. 16 the perfor-
mance on PASCAL for various values of NW , ranging from
the relatively large to the relatively small. While for large
W-kernel sizes we see comparable performance, for smaller
kernels, IDG outperforms WPG significantly. However, very

816243240485664
0

100

200

300

400

(Ñ = 80)
1.4×

(Ñ = 80)
1.1×

(Ñ = 64)
1.4×

(Ñ = 64)
1.3×

(Ñ = 48)
1.2×

(Ñ = 32)
1.8×

(Ñ = 24)
2.1×

(Ñ = 16)
2.4×

W-kernel size NW

T
h
ro
u
g
h
p
u
t
[M

V
is
ib
il
it
ie
s/
s] W-projection

Image-Domain Gridding

Fig. 16: Throughput of WPG [19] and IDG for various W-
kernel sizes. In practice, Nw ≤ 24 is more common than larger
values for NW . Ñ denotes the subgrid size used within IDG.

recently improvements of WPG have been introduced that can
increase its performance from roughly 28% of the peak floating
point performance (which me measured in our tests) to 55% in
the best case [21]. Even in this scenario, IDG’s performance is
comparable to W-projection gridding without the need of the
potentially costly computation and storage of the W-kernels.

More importantly, IDG is particularly suitable if A-term
corrections need to be applied; in this case, the additional cost
to IDG is negligible, while including this feature to the W-
projection gridding (so called AW-projection) “requires signifi-
cantly more instructions and bandwidth for loading the [convo-
lution kernels], because they are dependent on time, frequency,
polarization and possibly baseline, and are not separable” [21].
As a consequence, AW-projection gridding becomes much
slower and memory-consuming than W-projection gridding.
Although, to draw definite conclusions, a more complete com-
parison of traditional gridding and IDG is needed, the results
suggest that IDG on GPUs is a very significant achievement to
address the problems of AW-projection gridding: IDG achieves
the performance of the simpler W-projection gridding without
the storage overhead, while providing the functionality of the
significantly more challenging AW-projection gridding.

VII. CONCLUSIONS

We presented the first implementations of the novel
Imaging-Domain Gridding algorithm on CPUs and GPUs;
we demonstrated that our parallelization and optimization
strategies lead to nearly optimal performance on three distinct
architectures: Intel Xeon (Haswell), AMD Fiji, and Nvidia Pas-
cal. In particular for the latter two, the Graphics Processors, the
IDG algorithm elegantly maps onto the underlying hardware.
While the AMD architecture, similar to the CPU, is limited
in performance by evaluations of sine/cosine functions in
software, the Nvidia architecture has hardware support for their
computation. As a consequence, our code achieves up to 74%
of the floating point peak performance and over 30 GFlops/W
on Nvidia GPUs. Due to being an order of magnitude faster
than on CPUs, the energy efficiency is equally an order of
magnitude higher. Therefore, IDG on GPUs is a candidate
to meet the demanding computational and energy-efficiency
constraints imposed by future telescopes such as the Square
Kilometre Array (SKA). In this regard, we hope that our work
contributes to making discoveries in radio astronomy possible.

ACKNOWLEDGMENTS

This work is supported by the Dutch Ministry of EZ and
the province of Drenthe through the ASTRON-IBM Dome
grant, the EU FP7 under grant no ICT-610476 (DEEP-ER),
and by the NWO through NWO-M (DAS-5 [26]) and Open
Competition (Triple-A) grants. The European Commission is
not liable for any use that might be made of the information
contained in this paper.

REFERENCES

[1] The SKA Organisation, “Square Kilometre Array,” [On-
line]. Available: www.skatelescope.org.

[2] M. P. van Haarlem et al., “LOFAR: The LOw-Frequency
ARray,” Astronomy & Astrophysics, vol. 556, 2013.

[3] R. J. van Weeren et al., “LOFAR facet calibration,” The
Astrophysical Journal Supplement Series, vol. 223, no.
1, p. 2, Mar. 2016.

[4] E. Vermij, L. Fiorin, R. Jongerius, C. Hagleitner, and
K. Bertels, “Challenges in exascale radio astronomy:
Can the SKA ride the technology wave?” International
Journal of High Performance Computing Applications,
vol. 29, no. 1, pp. 37–50, Feb. 2015.

[5] R. Jongerius, S. Wijnholds, R. Nijboer, and H. Corpo-
raal, “An end-to-end computing model for the square
kilometre array,” IEEE Computer, vol. 47, no. 9, pp. 48–
54, Sep. 2014.

[6] B. v. d. Tol and B. Veenboer, “Image Domain Gridding,”
unpublished.

[7] S. Williams, A. Waterman, and D. Patterson, “Roofline:
An Insightful Visual Performance Model for Multicore
Architectures,” Communications of the ACM, vol. 52,
no. 4, pp. 65–76, Apr. 2009.

[8] R. Nan et al., “The five-hundred-meter aperture spheri-
cal radio telescope (fast) project,” International Journal
of Modern Physics D, vol. 20, no. 06, pp. 989–1024,
Jun. 2011.

[9] O. M. Smirnov, “Revisiting the radio interferometer
measurement equation,” Astronomy & Astrophysics, vol.
531, A159, Jul. 2011.

[10] L. Greengard and J.-Y. Lee, “Accelerating the Nonuni-
form Fast Fourier Transform,” SIAM Review, vol. 46,
no. 3, pp. 443–454, Jan. 2004.

[11] U. Rau, S. Bhatnagar, M. A. Voronkov, and T. J. Corn-
well, “Advances in Calibration and Imaging Techniques
in Radio Interferometry,” IEEE Proceedings, vol. 97,
pp. 1472–1481, Aug. 2009.

[12] T. J. Cornwell, K. Golap, and S. Bhatnagar, “The
Noncoplanar Baselines Effect in Radio Interferometry:
The W-Projection Algorithm,” IEEE Journal of Selected
Topics in Signal Processing, vol. 2, no. 5, pp. 647–657,
Oct. 2008.

[13] A. Scaife, SDP Memo: The SDP Imaging Pipeline,
2016.

[14] T. J. Cornwell, M. A. Voronkov, and B. Humphreys,
“Wide field imaging for the square kilometre array,”
Proc. SPIE, vol. 8500, Aug. 2012.

[15] A. R. Offringa et al., “WSClean: an implementation of
a fast, generic wide-field imager for radio astronomy,”
vol. 14, 2014.

[16] S. Bhatnagar, T. J. Cornwell, K. Golap, and J. M. Uson,
“Correcting direction-dependent gains in the deconvo-
lution of radio interferometric images,” Astronomy &
Astrophysics, vol. 487, no. 1, pp. 419–429, Aug. 2008.

[17] S. Jaeger, “The Common Astronomy Software Applica-
tion (CASA),” in Astronomical Data Analysis Software
and Systems XVII, R. W. Argyle, P. S. Bunclark, and
J. R. Lewis, Eds., ser. Astronomical Society of the
Pacific Conference Series, vol. 394, Aug. 2008, pp. 623–
627.

[18] Tasse, C., van der Tol, S., van Zwieten, J., van Diepen,
G., and Bhatnagar, S., “Applying full polarization A-
Projection to very wide field of view instruments: An
imager for LOFAR,” Astronomy & Astrophysics, vol.
553, A105, May 2013.

[19] J. W. Romein, “An efficient work-distribution strategy
for gridding radio-telescope data on GPUs,” in Pro-
ceedings of the 26th ACM international conference on
Supercomputing, Jun. 2012, pp. 321–330.

[20] D. Muscat, “High-Performance Image Synthesis for
Radio Interferometry,” PhD thesis, 2014.

[21] B. Merry, “Faster GPU-based convolutional gridding via
thread coarsening,” Astronomy and Computing, vol. 16,
pp. 140–145, Jul. 2016.

[22] R. Bracewell, “The Fourier Transform and Its Applica-
tions,” New York, vol. 5, 1965.

[23] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A paral-
lel programming standard for heterogeneous computing
systems,” Computing in Science & Engineering, vol. 12,
no. 1-3, pp. 66–73, 2010.

[24] D. Luebke, “CUDA: Scalable parallel programming for
high-performance scientific computing,” pp. 836–838,
May 2008.

[25] NVIDIA Corporation, NVIDIA CUDA Compute Unified
Device Architecture Programming Guide. 2007.

[26] H. Bal et al., “A Medium-Scale Distributed System for
Computer Science Research: Infrastructure for the Long
Term,” IEEE Computer, vol. 49, no. 5, pp. 54–63, May
2016.

[27] B. Mort, A simple interferometer base-
line coordinate generator, GitHub: SKA-
ScienceDataProcessor/uvwsim, 2015.

[28] S. Oberman and M. Siu, “A High-Performance Area-
Efficient Multifunction Interpolator,” in 17th IEEE Sym-
posium on Computer Arithmetic, 2005, pp. 272–279.

[29] Advanced Micro Devices, Inc., Southern Islands Series
Instruction Set Architecture. 2014.

[30] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A
lightweight performance-oriented tool suite for x86 mul-
ticore environments,” Proceedings of the International
Conference on Parallel Processing Workshops, pp. 207–
216, 2010.

[31] J. W. Romein and B. Veenboer, “Powersensor: A tool
to analyze energy efficiency,” unpublished.

www.skatelescope.org
https://github.com/SKA-ScienceDataProcessor/uvwsim
https://github.com/SKA-ScienceDataProcessor/uvwsim

	Introduction
	Background
	Related work
	The IDG Algorithm
	Architectures & Optimization
	The execution plan
	CPU
	GPU

	Results
	Experimental setup
	Performance comparison
	Performance analysis
	The Haswell and Fiji case
	The Pascal case

	Energy-efficiency comparison
	Comparison with W-projection

	Conclusions

