
The Tensor-Core Beamformer: A High-Speed
Signal-Processing Library for Multidisciplinary Use

Leon Oostrum1, Bram Veenboer2, Ronald Rook3, Michael Brown4, Pieter Kruizinga4, John W. Romein2

1Netherlands eScience Center, Amsterdam, the Netherlands, l.oostrum@esciencecenter.nl
2ASTRON (Netherlands Institute for Radio Astronomy), Dwingeloo, the Netherlands, {veenboer, romein}@astron.nl

3Sioux Technologies, Eindhoven, the Netherlands
4Erasmus Medical Center, Rotterdam, the Netherlands

Abstract—Beamforming is a well-known technique to combine
signals from multiple sensors. It has a wide range of application
domains. This paper introduces the Tensor-Core Beamformer: a
generic, optimized beamformer library that harnesses the com-
putational power of GPU tensor cores to accelerate beamforming
computations. The library hides the complexity of tensor cores
from the user, and supports 16-bit and 1-bit precision. An exten-
sive performance evaluation on NVIDIA and AMD GPUs shows
that the library outperforms traditional beamforming on regular
GPU cores by a wide margin, at much higher energy efficiency.
In the 16-bit mode, it achieves over 600 TeraOps/s on an AMD
MI300X GPU, while approaching 1 TeraOp/J. In the 1-bit mode,
it breaks the 3 PetaOps/s barrier and achieves over 10 TeraOps/J
on an NVIDIA A100 GPU. The beamforming library can be
easily integrated into existing pipelines. We demonstrate its use
for medical ultrasound and radio-astronomical instruments.

Index Terms—Graphics Processing Unit, beamforming, ultra-
sound, radio astronomy

I. INTRODUCTION

Beamforming is one of the basic ways to combine the
signals from multiple sensors. It is a well-known technique
to increase sensitivity in specified directions (the beams),
and suppress signals from other directions. Beamforming can
be used for sound and radio waves, for transmissions and
reception, and can be performed on analog and digitized
signals. The applications range from wireless communication
to seismology.

This paper focuses mostly on digital beamforming. Depend-
ing on the application, the data rate of signals, the number of
sensors, or the number of beams can be large. This leads to
a compute challenge, while the signals typically need to be
processed in real time, and often under constraints that limit
the energy use.

In this paper, we explore the use of tensor cores for
beamforming. Tensor cores are hardware matrix-matrix mul-
tiplication units found in most modern Graphics Processing
Units (GPUs). They perform these multiplications much more
efficiently than regular GPU cores, but typically only work
for limited-precision input data (e.g. 8-bit integers), while
the output is usually 32-bit integer or floating point. Tensor
cores are a key technology for accelerating training and
inference algorithms in deep learning. However, they can
be used for any algorithm that can be expressed as matrix-
matrix multiplications and operates on limited-precision input

data. Beamforming is one of them, provided that multiple
beams (i.e. directions or positions) are created from the same
input streams, and that the weights used to steer the beams
are constant for some period of time (they should not be
different for every sample in time). Under these conditions,
the algorithm is a multiplication of a matrix of sampled data
by a matrix of weights (see also Section II). The input data
normally come from Analog-to-Digital Converters of which
the accuracy is limited to a dozen bits or less, hence there is
no benefit from performing the beamforming multiplications
in high precision.

The main contributions of this paper are the introduction and
performance analysis of the Tensor-Core Beamformer (TCBF),
a highly efficient beamforming library for multiple application
domains. This library is domain independent, and performs
complex-valued matrix-matrix multiplications, hiding the com-
plexity of using tensor cores. In addition, we integrated the
library into beamforming applications for radio-astronomical
use and medical computational ultrasound imaging use. In
these applications, the TCBF is up to a factor 10-100 faster
than previous GPU-based beamforming implementations, as
well as an order of magnitude more energy efficient. This
paper describes and evaluates the library, as well as the use in
both application domains.

The paper is structured as follows: Section II provides an
overview of the background and related work. In Section III,
we introduce the TCBF and discuss its key features. Section IV
delves into auto-tuning techniques for optimizing performance
and energy efficiency, followed by analysis of the optimized
TCBF. Next, the applications of the TCBF in radio astronomy
and medical ultrasound are detailed in Section V. Finally, we
conclude with a summary of findings and future directions in
Section VI.

II. BACKGROUND AND RELATED WORK

Beamforming is a signal-processing technique used to direct
the reception or transmission of signals in a specific direction
by combining signals from multiple sensors, typically in an
array configuration [1]. This process enhances the signal-to-
noise ratio (SNR) for the signal of interest while suppressing
interference from other directions. Beamforming is for exam-
ple used to search for pulsars or Fast Radio Bursts [2] in radio
astronomy, and for medical ultrasound imaging [3].



Consider an array of N sensors receiving a plane wave
signal s(t) from a far-field source at an angle θ. The signal
received by the k-th sensor can be expressed as:

xk(t) = s(t− τk) + σk(t) (1)

where τk is the time delay associated with the k-th sensor
due to the wavefront’s angle of arrival, and σk(t) is the noise
at the k-th sensor. The time delay τk is given by:

τk =
dk sin θ

c
(2)

where dk is the distance of the k-th sensor from a reference
point in the array, and c is the speed of the wave (e.g. speed of
light for electromagnetic waves, speed of sound for acoustic
waves).

In beamforming, the signals received by each sensor are
combined with appropriate weights to form the beamformed
output y(t):

y(t) =

K∑
k=1

wkxk(t) (3)

where wk are the complex weights applied to each sensor’s
signal. These weights are designed to steer the beam in the
desired direction, effectively aligning the phases of the signals
from the desired source and canceling out interference from
other directions. When multiple samples are beamformed at
once, Eq. 3 maps to a matrix-matrix multiplication. Matrix-
matrix multiplication is typically described as the product of
an M×K matrix with an K×N matrix. The result is an M×N
matrix. In the beamforming algorithm, M corresponds to the
number of beams, N is the number of samples beamformed at
a time, and K is the number of elements that is summed over,
i.e. the number of receivers in the above description.

The beamforming procedure becomes more complicated for
near-field sources and when transmissions of an (acoustic)
signal are included as well, but the overall procedure remains
the same and can still be mapped to a matrix-matrix multipli-
cation.

Tensor cores have been used before for signal processing:
The Tensor-Core Correlator [4] is a highly (energy) efficient li-
brary that correlates the signals from multiple radio telescopes.
Correlating is the “other” method to combine the signals from
multiple sensors, and is, for example, used to create sky
images. Whereas beamforming is a weighted addition of all
sensor signals, correlations are pair-wise multiplications.

Highly-efficient GPU matrix-matrix multiplication libraries
already exist, such as CUTLASS and cuBLAS/rocBLAS.
However, these libraries typically impose restrictions on data
layouts and some lack full support for 1-bit and complex-
valued computations. The lower-level Warp Matrix Multiply-
Accumulate interface allows precise control over data place-
ment in shared and device memory, enabling a custom kernel
optimized for our needs.

Recent AMD GPUs have their own version of tensor cores,
called matrix cores. The domain-independent layer of the
tensor core beamformer supports AMD matrix cores as well.

Although this paper typically uses NVIDIA terminology, the
content applies to the AMD equivalent as well. The only
exception is 1-bit precision, which is only supported on
NVIDIA GPUs.

III. THE TENSOR-CORE BEAMFORMER

The core of the beamforming algorithm is a complex-valued
matrix-matrix multiplication, which we have implemented in a
separate library, ccglib1. ccglib supports both CUDA and
HIP. To program the tensor cores of NVIDIA GPUs, we use
the Warp Matrix Multiply Accumulate (WMMA) interface.
AMD implements a similar interface through rocWMMA,
available in HIP. The user of ccglib can switch between
the CUDA and HIP backends with a CMake flag, or when
compiling manually simply by switching between the nvcc
and hipcc compilers. The use of the tensor cores and the
complexity of supporting both HIP and CUDA is hidden from
the user. The user only has to provide the input and output
matrices and tell ccglib what shapes and types the matrices
have. To achieve optimal performance, ccglib compiles the
GPU kernel at runtime with knowledge of both the type of
GPU used, and of all input parameters such as the number
of receivers and the number of beams to be created. It is
also possible to execute several matrix-matrix multiplications
at once through a batch size option.
ccglib currently supports 16-bit float and 1-bit integer

precision. We focus on 16-bit float processing because some
domain-specific input data is naturally in this format, making it
both practical and efficient. 16-bit tensor-core operations offer
significant speedups over 32-bit float on standard GPU cores,
while also halving memory usage and bandwidth requirements.

1-bit processing enables higher throughput by reducing
memory bandwidth and increasing arithmetic intensity, as the
same number of operations are performed on fewer bits.
Since 1-bit arithmetic is faster than 16-bit, this can lead
to significant speedups. While lower precision introduces
quantization noise, beamforming remains robust since many
values are accumulated. By leveraging tensor cores for 1-
bit arithmetic, we explore its potential for efficient, high-
performance beamforming.

In addition to a matrix-matrix multiplication GPU kernel,
ccglib implements two more types of kernels: For 1-bit
precision, the input data must be packed, i.e. 32 consecu-
tive 1-bit samples must be stored in a single 32-bit integer.
Packing and unpacking kernels are provided to handle this.
Additionally, the matrix-matrix multiplication kernel requires
that the input matrices are tiled in device memory. This can be
handled by ccglib through a transpose kernel. The packing
and transpose kernels are relatively straightforward, and both
are bound by memory bandwidth as they only move data
around.

Beamforming for a specific scientific domain can be im-
plemented as a thin wrapper around ccglib. Two such
applications are described in Sect. V.

1https://git.astron.nl/RD/recruit/ccglib

https://git.astron.nl/RD/recruit/ccglib


During the implementation of ccglib, we identified sev-
eral challenges: the absence of support for complex numbers,
the details of 1-bit arithmetic, the limited support for 1-bit
tensor-core operations by the NVIDIA Hopper GPU architec-
ture, and the fact that tensor cores have such a high compute
throughput that it is difficult to feed them data fast enough.
Before discussing these challenges, we investigate the potential
of tensor-core technology through a set of micro-benchmarks
on a range of workstation and server-grade GPUs: NVIDIA’s
RTX 4000 Ada (Hereafter AD4000), Tesla A100 (A100),
and Grace Hopper (GH200), as well as AMD’s Radeon Pro
W7700 (W7700), Instinct MI210 (MI210), Instinct MI300X
(MI300X), and Instinct MI300A (MI300A).

A. Tensor-core micro-benchmarks

Tensor cores support several precisions and matrix sizes, and
different GPU architectures support different combinations of
these parameters. To get an overview of the attainable tensor
core performance, we have run micro-benchmarks on several
GPU architectures. These micro-benchmarks do not load data
from global memory, to avoid memory throughput bottlenecks
(see also Sect. III-C). The benchmarks were run using the
cudapeak2 library. The results are summarized in Table I.

When computing the peak performance using the measured
clock frequency, which differs from the theoretical maximum,
cudapeak’s performance is close to the peak on all GPUs,
except for the GH200, which falls notably short. The GH200
and other GPUs of the Hopper generation support a new
interface to the tensor cores, called WGMMA. Only with this
interface, it is possible to reach maximum performance. As
shown in [5], the WMMA interface limits the performance to
60 − 65% of the maximum. Our benchmark indeed reaches
∼ 65% of the expected GH200 peak performance.

For 1-bit precision, the 16×8×256 matrix fragment layout
is not available through the WMMA interface, only through
inline PTX. In both cudapeak and ccglib, we have in-
cluded an extension to WMMA with support for this fragment
layout. The 1-bit benchmarks were run with both the WMMA-
supported layout of 8×8×128 as well as with this custom
extension, and with both XOR and AND as multiplication
operand. This leads to a total of four different benchmarks.
These are only run on NVIDIA GPUs, as 1-bit matrix values
are not supported on AMD GPUs.

The 8× 8× 128 and 16× 8× 256 layouts have the same
performance on the AD4000, but on the A100 and GH200
the larger layout is at least twice as fast. As the larger layout
is never slower than the smaller one, there seems to be no
reason to use the small layout when considering just the tensor
core throughput. We also note that on the GH200, using XOR
as an operand is up to five times slower than using AND.
The CUDA documentation notes that XOR is deprecated as
of the Hopper generation. However, the instruction is still
available at both the WMMA and PTX level. Inspecting the
generated SASS assembly reveals that the XOR operation has

2https://gitlab.com/astron-misc/cudapeak/

been removed from hardware, and in software it is replaced by
several AND operations combined with boolean logic. This is
the reason for the low performance of the XOR mode on the
GH200. In the best-performing case, we see the same ∼ 65%
of maximum performance as for float16, resulting from our
use of the WMMA interface instead of WGMMA.

B. Complex number support

Tensor cores were created to accelerate common compu-
tations in deep learning and are only capable of executing
real-valued matrix-matrix multiplications. Additionally, they
only provide an accumulation operation, subtraction is not
available. To implement the multiplication of two complex
numbers on tensor cores, we need both, though.

Given two complex numbers a and b, complex multiplica-
tion is defined as follows:

Re(a× b) = Re(a)Re(b)− Im(a) Im(b)

Im(a× b) = Re(a) Im(b) + Im(a)Re(b)

Starting with output initialized to zero, this can be imple-
mented for matrices on the tensor cores in five steps:

1) Re(a× b) += Re(a)Re(b)
2) Im(a× b) += Re(a) Im(b)
3) Im(b) = − Im(b)
4) Re(a× b) += Im(a) Im(b)
5) Im(a× b) += Im(a)Re(b)

Hence, complex matrix-matrix multiplication can be imple-
mented using four real-valued matrix-matrix multiplications
and one negation of the imaginary part of the b matrix. The
negation of Im(b) is executed in local registers, so it is fast
and does not modify the global input data.

C. Need for data reuse

To achieve good performance on tensor cores, it is of utmost
importance to ensure the data are efficiently reused throughout
the GPU memory hierarchy, from global memory, L2 and L1
caches, and shared memory, to registers.

The GPU kernels in ccglib are adaptive in the amount
of work per thread block and warp, which affects the amount
of reuse at the shared-memory level and register-file level, re-
spectively. Optimal configurations for specific GPUs have been
determined through auto-tuning as described in Sect. IV-A.
ccglib automatically selects these parameters at runtime, the
user does not need to provide them. Through this mechanism,
we ensure optimal reuse of data at all levels of memory.

In addition to data reuse, we can reduce memory bottlenecks
by making use of asynchronous data copies between GPU
global and shared memory, available on NVIDIA Ampere
and later GPUs. With this feature, it is possible to overlap
computations with data transfer to reduce execution time. We
implement this by creating a multi-stage buffer in shared
memory. While data is being copied to one buffer, another
buffer can be copied to the register file and used for compu-
tations. Using the CUDA pipeline synchronization primitives,
we ensure that data has been written to a shared memory buffer



TABLE I: Tensor core micro-benchmark results for 16-bit float and 1-bit integer precision. The measured tensor core throughput
as well as the theoretical value are shown. 1-bit precision was benchmarked with two matrix fragment layouts and two operands
for the multiplication operation. It is available on NVIDIA GPUs only.

Input / output type Fragment size Measured performance / Theoretical peak (TOPs/s)
M×N×K AD4000a A100 GH200 W7700a MI210 MI300Xb MI300Ab

float16 / float32 16× 16× 16 117 / 107 308 / 312 646 / 990 59 / 57 174 / 181 1205 / 1307 949 / 981
int1 / int32 (XOR) 8× 8× 128 1847 / 1710 2465 / 4992 979 / 15800c N/A N/A N/A N/A
int1 / int32 (AND) 8× 8× 128 1804 / 1710 2408 / 4992 3894 / 15800c N/A N/A N/A N/A
int1 / int32 (XOR) 16× 8× 256 1865 / 1710 4942 / 4992 2361 / 15800c N/A N/A N/A N/A
int1 / int32 (AND) 16× 8× 256 1865 / 1710 4942 / 4992 10276 / 15800c N/A N/A N/A N/A

aThe AD4000 and W7700 run at boosted clock speeds beyond their vendor’s specification, explaining why they perform better than the theoretical
maximum. bThe MI300X and MI300A cannot sustain the maximum clock speed in this synthetic benchmark, leading to lower performance than the

theoretical value. cNVIDIA does not provide the theoretical 1-bit performance for the GH200. We assume it scales from float16 the same as on the Ampere
and Ada generation GPUs.

before it is read by the threads and written to the register file.
The number of buffers is tunable and automatically set to one
on AMD GPUs, which do not support these asynchronous
copies.

D. 1-bit arithmetic on tensor cores

In a 1-bit representation of a real number, only two possible
values exist. A natural choice is to use these two values to
represent −1 and 1, as they preserve sign information. Impor-
tantly, this implies that the number 0 cannot be represented.

For 1-bit complex numbers, there is one bit per compo-
nent, meaning that both the real and imaginary parts are
independently represented using a single bit. Preserving sign
information along both the real and imaginary axes, this results
in four possible complex values. These values are equally
spread around the unit circle in the complex plane, as shown
in Fig. 1.

NVIDIA tensor cores support 1-bit precision matrix-matrix
multiplication using binary operations. Instead of numerical
multiplication, they perform a bitwise operation between two
input matrices, followed by a population count (popc), which
counts the number of bits set to one in the result. The bitwise
operation is either XOR (deprecated as of the Hopper archi-
tecture) or AND (introduced with the Ampere architecture).

Real-valued matrix-matrix multiplication with the encoding
described above can be implemented efficiently using XOR
as the bitwise operation. To illustrate this, consider the dot
product of two vectors A and B of length K, as shown in
Table II for K = 4. The left half of the table shows the
vector dot product in decimal. After performing element-wise
multiplication, the final value of the dot product is obtained
by summing the results.

In the binary case, shown in the right half of the table,
the process differs slightly. Instead of multiplying the decimal
values directly, we perform an element-wise XOR operation
between the corresponding elements of the two vectors. This
produces a new vector where a binary zero represents a posi-
tive value and a binary one represents a negative value. Due to
the XOR operation, the binary encoding in this resulting vector
is flipped with respect to the binary encoding in the input
vector. The final value of the dot product is then determined
by subtracting the number of binary zeroes from the number

ℜ

ℑ
1+i−1+i

−1−i 1−i

01 11

00 10

Fig. 1: 1-bit complex numbers and their binary representation.
The representable values −1−i, −1+i, 1−i, and 1+i are shown
at the corners of the square, with binary values 00, 01, 10,
and 11, respectively. The light gray circle represents the unit
circle. Note that zero, i.e. 0+0i, is not representable.

of binary ones in the resulting vector. The number of ones
is counted using the population count popc function, while
the number of zeroes is simply K minus the number of ones.
Thus, the final expression for the 1-bit vector dot product is:

K − 2 popc(A⊕B), (4)

where ⊕ denotes the element-wise XOR operation. Since
matrix-matrix multiplication can be expressed as a series of
vector dot products, this approach can also be applied to
implement matrix-matrix multiplication with 1-bit precision.

TABLE II: Vector dot product in 1-bit precision. Every row in
this table corresponds to one element of the input vector, i.e.
the input A of length 4 (K=4) has decimal values 1, −1, 1
and −1 and is represented as 1010 in binary.

Decimal Binary
A B Ak ×Bk A B Ak ⊕Bk

1 1 1 1 1 0
−1 1 −1 0 1 1

1 −1 −1 1 0 1
−1 −1 1 0 0 0∑

Ak ×Bk 0 popc(A⊕B) 2
K − 2popc(A⊕B) 0



For complex-valued matrix-matrix multiplication, we need
to consider two things: the number of matrix multiplications
executed and the absence of a representation of zero in the
input values.

Firstly, to compute the real and imaginary parts of the
output, two separate real-valued matrix-matrix multiplications
are required. This means that instead of K terms, 2K terms
are summed for each part.

Secondly, when multiplying matrices that do not exactly
match the sizes supported by the tensor cores, padding is
applied to make the matrix dimensions compatible. The
padded area is typically set to zero. However, zero cannot be
represented in 1-bit mode. Instead, we set the padded region to
binary 0, which corresponds to decimal −1. This introduces an
additional effect that must be accounted for. For the real part of
the output, the results of the two matrix-matrix multiplications
cancel out the padding effect, as the results are subtracted
from each other. For the imaginary part, however, the padding
effect leads to an erroneous addition of Kpad×−1×−1 in the
result, where Kpad denotes the amount of padding. Combining
these two effects, we arrive at the following two equations for
complex-valued 1-bit matrix-matrix multiplication on tensor
cores, using subscript r and i to denote the real and imaginary
parts:

(A×B)r = 2
(
K−

(
popc(Ar⊕Br)+popc(Ai⊕Bi)

))
(5)

(A×B)i = 2
(
K−Kpad−

(
popc(Ar⊕Bi)+popc(Ai⊕Br)

))
E. NVIDIA Hopper support

As explained in the previous section, 1-bit matrix-matrix
multiplication can be efficiently implemented with an XOR
operation. However, this operation is deprecated as of the Hop-
per architecture and leads to low performance, as discussed in
Sect. III-A and shown in Table I.

To optimize performance on Hopper, we switch to using the
AND operation. The XOR operation detects when two input
bits are different: if they are different, the output is set to 1;
otherwise, it is set to 0. We can achieve similar functionality
with the AND operation by following a different sequence
of steps. Specifically, we perform an AND operation on the
inputs, followed by negating both inputs, then performing
another AND operation, and finally summing the results of
both AND operations. This method detects when the input
bits are the same, as opposed to when they are different.

This means the (signed) output of the matrix-matrix multi-
plication is negated relative to the XOR version. In summary,
(real-valued) 1-bit matrix-matrix multiplication can be imple-
mented with the AND instruction as follows:

2
(
popc(A ∧ B) + popc(A ∧ B)

)
−K, (6)

where ∧ denotes the element-wise AND operation. Although
using the AND operation requires twice as many tensor core
instructions compared to XOR, this still results in a net perfor-
mance improvement on Hopper because the AND operation
is up to five times faster than XOR on this architecture.

Therefore, ccglib automatically switches to the AND-based
matrix-matrix multiplication when a Hopper or newer NVIDIA
GPU is detected.

IV. PERFORMANCE AND ENERGY EFFICIENCY

A. Auto-tuning

GPU kernels can typically be run on a GPU with many
different thread block dimensions, that all give the correct
result but can result in vastly different performance. Addi-
tionally, the GPU kernels in ccglib were designed such
that parameters, like the amount of work per thread block
and warp, can be set at compile time. Because ccglib
compiles the GPU kernels when the application is running
on the host, it can pick different values for these tunable
parameters based on the type of GPU used as well as the input
data sizes. To find the optimum of the tunable parameters,
we need to explore a vast search space, and this process
has to be repeated for each GPU architecture. To facilitate
this, we use Kernel Tuner [6], a Python-based auto-tuning
framework that can automatically optimize kernels written in
both CUDA and HIP [7]. Kernel Tuner measures the run time
of each configuration of a GPU kernel. It is possible to extend
Kernel Tuner with other metrics, either built-in or custom.
In addition to performance metrics, we measure the energy
consumption of the GPU using the Power Measurement
Toolkit (PMT) [8]. PMT supports power measurements of
both NVIDIA GPUs through NVML, as well as AMD GPUs
through rocm-smi.

In ccglib we have three types of GPU kernels: a packing
kernel for 1-bit data, a transpose kernel, and matrix-matrix-
multiplication kernels for 16-bit float and 1-bit integer types.
Only the matrix-matrix multiplication kernel is always in-
voked. The use of the others depends on the earlier steps of
the processing pipeline ccglib is used in. Additionally, the
matrix-matrix multiplication kernels take most time and are
the only kernels that have tunable parameters other than the
thread block size. Hence, we focus our optimization process
on these kernels.

The optimal tuning parameters do not only depend on the
GPU, but also on the size of the input and output data as
well as the precision used. As a generic use case, we tune
the float16 kernel for M = N = K = 8192, while for 1-bit
integer we select M=32768, N=8192, and K=524288. To
assess a kernel, we define the performance in TOPs/s as the
number of useful operations, i.e. 8×M×N×K, per second. In
the limit of large matrices, the product of the matrix sizes is
the number of fused multiply-add (FMA) instructions required
for real-valued matrix-matrix multiplication. The factor eights
comes from the fact that four FMA instructions are required
for each complex multiplication, and each FMA counts as two
instructions. The resulting performance number is divided by
the average power consumption of the GPU during the kernel
execution to obtain the number of operations per second per
Watt, or equivalently the number of operations per Joule.

The performance and energy efficiency of each combination
of tuning parameters is shown in Fig. 2. Typically, the most



performant combination of parameters is also the most energy
efficient solution. On the GH200, there is a large spread
of kernels with similar performance, but up to a factor two
difference in energy efficiency.

A summary of the parameters for the fastest kernels is
given in Table III. In float16, the MI300X is both the fastest
and most energy-efficient GPU. The GH200 is the fastest
in int1, although the A100 is more energy efficient. The
optimal tuning parameter values typically vary a lot from GPU
to GPU. The MI300X and MI300A optimal parameters are
identical, which is not surprising given that they are built
using identical architectures but with a different number of
accelerator complex dies. While a default set of parameters is
shipped with ccglib, a GPU-specific optimization is best.

B. Roofline analysis

After auto-tuning, we know that we reach the maximum
performance obtainable for our implementation of the matrix-
matrix multiplication algorithm. However, we also want to
assess whether or not we reach good performance relative
to each GPU’s capabilities. In addition to the maximum
tensor core throughput discussed in Sect. III-A, we need
to consider the memory throughput. This naturally leads to
a roofline analysis, where we compare our implementation
to the theoretical maximum obtainable on each GPU. To
construct the ceiling of the roofline, we use the theoretical
memory bandwidth of the GPU and the measured peak tensor
core throughput (see Table I). For both the 16-bit and 1-
bit kernels, we then select a small and large matrix size
and tune the kernel parameters as described in Sect. IV-A,
and select the best-performing kernel. The matrix sizes are
set as follows (batch size×M ×N ×K): float16 small -
256×1024×1024×64, float16 big - 1×8192×8192×8192, int1
small - 256×1024×1024×256, int1 big - 1×32768×8192×524288.
The performance and number of operations are defined the
same way as during the tuning. We then use the theoretical
amount of bytes transferred to and from device memory to
calculate the arithmetic intensity (AI).

The resulting rooflines are shown in Fig. 3. For all GPUs,
the small matrix size is memory-bound. On all GPUs, but
especially the NVIDIA GPUs, we reach a performance very
close to the limit set by the memory bandwidth. The larger
matrix size is compute bound, and reaches 50 − 85% of the
peak tensor-core throughput. In all cases except the small
matrix size on the workstation-grade GPUs, ccglib is faster
than the theoretical maximum of the normal single-precision
cores by a wide margin.

C. Benchmarking

We have shown that we reach good performance on a
specific set of matrix sizes, however we aim for a solution
that is generally applicable and reaches good performance for
a wide range of matrix sizes. While it is possible to auto-
tune the matrix-matrix multiplication kernel for each potential
matrix input size, this is not feasible in practice. Instead, we

take the best parameters from Table III, and use the built-
in benchmark tools of ccglib to measure performance and
energy efficiency across a range of matrix sizes.

The results are shown in Fig. 4. For all GPUs and precisions,
the performance and energy efficiency is substantially lower
for smaller matrices. However, starting from matrices of a few
thousand elements on each side, we typically reach close to
optimal performance. The performance is best when the matrix
size is a multiple of the amount of work per thread block.
Otherwise, data are padded and the performance is relatively
lower. This is the cause of the sawtooth pattern in the results.
Overall, ccglib performs well on a large range of matrix
sizes.

V. APPLICATIONS

A. Computational ultrasound imaging

Computational ultrasound imaging (cUSi) is a recent ad-
vancement in the field of medical ultrasound. It allows for
3D imaging using a spatially under-sampled transceiver array
in conjunction with an spatial encoding mask and a large
computational model to decode the spatial information needed
to form an image [9]. The cUSi technique essentially changes
the sensing problem to a compute problem. This year, Brown
et al. showed that using cUSi it is possible to obtain 3D
images of blood flow in a mouse brain using an array of only
64 transceivers, which normally requires several thousands of
transceivers [10].

However, the caveat of this technique is the number of
computations needed to form an image, which makes it
currently not possible to obtain real-time imaging feedback.
The imaging reconstruction relies on the multiplication of a
measurement matrix with an acoustic model matrix which con-
tains for every voxel in the image volume (number of columns)
all the expected pulse-echo signals for each transceiver and for
each measurement (number of rows). Typically, the minimum
number of voxels is 1283 and the number of rows for a
64-transceiver probe is 128 (temporal frequencies) × 64
(transceivers) × 32 transmissions. The measurement matrix
has the same number of rows as the model matrix and the num-
ber of columns equals the number of repeated measurements
from which, in the case of imaging blood flow, the Doppler
signal is computed. This number, which is named ensemble
size, can range from 100-10000 frames. In this example case
we use ∼ 8000 frames.

The real-time constraints for this problem are also chal-
lenging. Considering a pulse-echo repetition frequency of 32
kHz and an ensemble size of 8000, the time required for the
image reconstruction (matrix-matrix multiplication) should be
less than 8 seconds in order to maintain real-time feedback.

In this work we show the use of an ultrasound tensor-
core beamformer implemented as a wrapper around ccglib.
We tackle the real-time feedback problem by shrinking the
volume size to either a smaller sub-volume, as we do in
this example case, or several orthogonal planes through the
volume. In addition, we explore a further reduction of the
required memory by only keeping the sign of the signal both



0 2 4 6 8 10
0

250

500

750

1000

1250

AD4000

int1
float16

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

A100

int1
float16

0 2 4 6 8
0

1000

2000

3000

GH200

int1
float16

0.05 0.10 0.15 0.20 0.25 0.30
Energy Efficiency [TOPs/J]

0

10

20

30

40

P
er

fo
rm

an
ce

[T
O

P
s/

s]

W7700

float16

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Energy Efficiency [TOPs/J]

0

25

50

75

100

125

150
MI210

float16

0.0 0.2 0.4 0.6 0.8
Energy Efficiency [TOPs/J]

0

100

200

300

400

500

600
Instinct MI300

float16, MI300X
float16, MI300A

Fig. 2: Auto-tuning results of ccglib matrix-matrix multiplication kernel. The measured performance and energy efficiency
of each combination of tuning parameters is shown.

2
3

2
6

2
9

2
12

2
15

2
18

10
0

10
1

10
2

10
3

TO
P

s/
s

small

small small

small
int1 tensor

float16 tensor

float32

AD4000

float16
int1

2
3

2
6

2
9

2
12

2
15

2
18

10
1

10
2

10
3

small

small

big

big

int1 tensor

float16 tensor

float32

A100

float16
int1

2
3

2
6

2
9

2
12

2
15

2
18

10
1

10
2

10
3

10
4

small

small

big

big

int1 tensor

float16 tensor

float32

GH200

float16
int1

2
3

2
6

2
9

2
12

2
15

2
18

AI

10
0

10
1

TO
P

s/
s

small

big

float16 tensor

float32

W7700

float16

2
3

2
6

2
9

2
12

2
15

2
18

AI

10
1

10
2

small

big
float16 tensor

float32

MI210

float16

2
3

2
6

2
9

2
12

2
15

2
18

AI

10
1

10
2

10
3

small

big

float16 tensor

float32

Instinct MI300

float16, MI300X
float16, MI300A

Fig. 3: Roofline analysis of the ccglib matrix-matrix multiplication kernel. For each GPU, we show the roofline ceiling of
the float16 and int1 (NVIDIA only) tensor cores, as well as the normal float32 cores for comparison.



TABLE III: Matrix-matrix multiplication kernel performance, energy efficiency, and optimal tuning parameter values.

GPU Precision TOPs/s TOPs/J M per block M per warp N per block N per warp Number of buffers
AD4000 float16 93 0.7 256 32 32 32 2
A100 float16 173 0.8 256 64 32 32 2
GH200 float16 335 0.8 128 64 64 32 2
W7700 float16 45 0.3 256 128 64 16 1
MI210 float16 147 1.3 128 64 64 32 1
MI300X float16 603 0.9 128 64 128 32 1
MI300A float16 518 0.8 128 64 128 32 1
AD4000 int1 1400 10.7 256 128 32 16 2
A100 int1 3080 12.3 128 32 64 64 4
GH200 int1 3780a 6.0a 64 64 128 32 2

a This performance number is with respect to the theoretical amount of useful operations. Because the GH200 uses AND-based tensor-core instructions (see
Sect. III-E), which require twice the number of instructions, the actual throughput of the tensor cores is twice as high.

in the measurement matrix as well as the model matrix. In
this approach the data only requires single bit precision. Note
that the Doppler processing is done before extracting the sign.
Otherwise, the Doppler signal will be lost in the dominant
stationary signals.

In Fig. 5 we show the number of frames per second that the
TCBF can sustain on different GPUs. The processing includes
the 1-bit packing and transpose of the measurement matrix. It
excludes these steps for the model matrix, as this typically
happens once before the experiment and does not need to be
repeated. For a set of three orthogonal planes, all three GPUs
can easily sustain the required real-time frame rate of 1000
frames per second. None of the GPUs can process the full
1283 data volume in real time, although the GH200 is capable
of processing ∼ 85% of the voxels in real time. Reducing
for example the number of frequencies from 128 to 64 would
make real-time processing of the full data volume possible for
both the A100 and GH200.

In addition to the real-time system, we explore the use of
the TCBF for beamforming of pre-recorded data. In this case,
there is no real-time constraint. However, quick feedback on
experimental results is still important. As a dataset we use
the anesthetized mouse brain dataset presented in [10]. We
beamform a subset of the volume, with a total of 36×30×30
voxels. The dataset contains 8041 frames, each with 128
temporal frequencies, 64 transmissions, and 64 transceivers.
This leads to a matrix-matrix multiplication with shape M =
38880, N = 8041, K = 524288. Excluding reading the
data from disk, the TCBF can process these data in 1.2 s,
which significantly shorter than the real-time requirement of
8 s, leaving room for e.g. Doppler processing. Ultrasound
processing is typically done in Matlab, Python or Octave.
As a comparison, we run the matrix-matrix multiplication in
float32 precision using Octave with OpenCL backend. On an
A100, this takes roughly 15 minutes. The TCBF is nearly three
orders of magnitude faster, allowing, for the first time, real-
time feedback on such large volumes. While conversion to
1-bit means that the contrast is reduced, combining this much
data still results in usable image feedback as shown in Fig. 6.

B. Radio astronomy

In radio astronomy, beamforming techniques are employed
to enhance signal detection by combining data from multiple

antennas.
LOFAR (Low-Frequency Array) [11] is a radio telescope

network consisting of tens of geographically distributed sta-
tions across Europe. Each station is composed of numerous
individual antennas that collectively capture radio signals from
the sky. These signals are initially processed by a station
beamformer, implemented on Field-Programmable Gate Ar-
rays (FPGAs) within each station. The station beamformer
combines the signals from all antennas in the station into
a coherent station beam, effectively pointing the station at
a specific region of the sky. The resulting data, known as
beamlet data, is then transmitted to a central beamformer [12],
where the signals from all stations are coherently combined.
This central processing step allows LOFAR to achieve high
sensitivity and resolution, enabling detailed observations of
astronomical phenomena across a wide field of view.

The central processing facility employs a second stage of
beamforming, which can perform either coherent or incoherent
beamforming. Coherent beamforming preserves phase infor-
mation by aligning the signals from each station, producing
a high-resolution, narrow beam with increased sensitivity.
This approach is computationally intensive but is essential for
high-angular-resolution observations, such as pulsar studies or
imaging of compact objects. In contrast, incoherent beamform-
ing discards phase information and instead combines the power
from each station, creating a broader beam with a wider field
of view but lower resolution. This method is computationally
less demanding and is well-suited for all-sky surveys and
transient detection.

When observing pulsars and fast transients with an inter-
ferometer, achieving high-time resolution is crucial. Typically,
a time resolution of ≲ 1ms is used. To achieve such a high
time resolution and retain manageable data rates, the spatial
resolution is reduced.

This beamforming approach offers several advantages.
Higher angular resolution enhances precise localization and
background rejection. Additionally, each station’s wide field of
view enables high survey speeds, particularly when the entire
field can be processed. Multi-beaming capabilities further en-
hance interference rejection and allow for the construction of a
larger total collecting area. However, these benefits come with
trade-offs, including a restricted field of view unless multiple
beams are synthesized, potentially higher data rates due to



0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (all axes)

0

100

200

300

400

500

600
TF

LO
P

s/
s

MI300X
MI300A
GH200
A100
MI210
AD4000
W7700

0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (all axes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TF
LO

P
s/

J

(a) 16-bit float

0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (M, N)

0

500

1000

1500

2000

2500

3000

3500

TO
P

s/
s

GH200
A100
AD4000

0 2000 4000 6000 8000 10000 12000 14000 16000
Matrix size (M, N)

2

4

6

8

10

TO
P

s/
J

0 200000 400000 600000 800000 1000000
Matrix size (K)

0 200000 400000 600000 800000 1000000
Matrix size (K)

(b) 1-bit int

Fig. 4: Complex matrix-matrix multiplication benchmark results for (a) 16-bit data and (b) 1-bit data. The left panels show
performance, while the right panels show energy efficiency.

numerous data streams, and the need for precise calibration to
“phase up” the array. Moreover, this technique can result in a
complex instantaneous sidelobe pattern.

LOFAR beamforming is mapped to matrix-matrix multi-
plication as follows: M represents the number of beams,
with each beam corresponding to a row in the resulting
matrix. The parameter N is the number of samples (in time),
representing the number of columns in the output matrix. K
corresponds to the number of stations, reflecting the number
of inputs combined during the matrix-matrix multiplication

process. Finally, the product of the number of polarizations
and channels is the batch size.

A LOFAR tensor-core beamformer is implemented using the
16-bit mode of ccglib. As data are typically already GPU-
resident and remain on the GPU for further computations, we
only consider the matrix-matrix multiplication component for
performance analysis. The chosen parameters are 1024 beams,
1024 samples, a range from 8 to 512 stations to be combined,
and a batch size of 256. This configuration is also run using
the reference LOFAR beamformer on an A100 GPU. It runs



10
5

10
6

Voxels

10
3

10
4

Fr
am

es
 p

er
 s

ec
on

d
GH200
A100
AD4000

Fig. 5: Performance of beamforming for ultrasound. The
number of voxels ranges from three orthogonal planes of
128×128 each, to the full 1283 data volume. The horizontal
dash-dotted line indicates the minimum number of frames per
second required for real-time performance.

Fig. 6: Three orthogonal (sagittal, coronal and axial) maximum
intensity projections through the beamformed volume. The
volume which contains the blood flow inside a mouse brain
was obtained by averaging the magnitude of the complex
beamformed signal along the 8041 frames. See also [10].

in float32 precision on the normal GPU cores. Note that we
have removed the calculation of beamformer weights from
the reference beamformer, to be able to fairly compare the
reference and tensor-core implementations.

The performance and energy efficiency of the LOFAR
TCBF are shown in Fig. 7. The sawtooth pattern stems from
padding that happens when the number of receivers is not a
multiple of the amount of work per GPU thread block set
during the auto-tuning of the kernel. Except for very small
numbers of receivers, the TCBF outperforms the reference
beamformer on both the A100 and GH200, in both throughput
and energy efficiency. On the A100, the TCBF is up to 20
times faster and 10 times more energy efficient than the
reference beamformer. For the typical LOFAR configuration
of 48 stations, the TCBF is still several times faster. The
MI300X outperforms the GH200 on this application, achieving
up to 50% higher performance, with similar energy efficiency.
However, with 512 receivers, the workload is still too small
to fully saturate this GPU, preventing it from reaching its
peak theoretical performance (approximately twice that of the
GH200).

VI. CONCLUSIONS AND FUTURE WORK

We have introduced the Tensor-Core Beamformer, with at its
core a high-performance and energy-efficient complex matrix-
matrix multiplication library with outstanding performance on
both NVIDIA and AMD GPUs. We have shown applications in
both medical ultrasound and radio astronomy, where the TCBF
improves significantly upon earlier beamformers in both per-
formance and energy efficiency. In medical ultrasound, real-
time imaging is essential, allowing a surgeon to change their
course of action based on the ultrasound images. Because the
TCBF is up to three orders of magnitude faster than previous
implementations, this real-time feedback is now for the first
time possible for 3D computational ultrasound imaging. The
radio-astronomical TCBF is 2-20 times faster than the existing
beamformer, as well as 10 times more energy efficient. This
makes it possible to either form more beams in real-time,
or reduce the amount of hardware needed for beamforming,
reducing energy consumption significantly as well.

Several improvements and extensions to ccglib are being
considered for future releases: Firstly, the tensor cores support
more precisions than just float16 and int1. Both NVIDIA and
AMD (starting with CDNA3) support tensorfloat32, a 19-bit
format with the same range as float32 but less precision. AMD
supports float32 as well. Support for these formats is currently
available as an experimental feature in ccglib. The most
recent architectures have introduced several 8-bit float formats,
which may become relevant in the future.

Secondly, the matrix-matrix multiplication kernels in
ccglib currently require a transpose of the input data be-
cause the complex data have to be separated into their real and
imaginary components, instead of the more usual interleaved
storage format. In the future, we would like to provide a
matrix-matrix multiplication kernel that does not require this
transpose, and works on interleaved real and imaginary data
instead. Such a method has already been used successfully in
the tensor core correlator [4].

Lastly, for NVIDIA’s Hopper and Blackwell generations,
new interfaces were introduced for the tensor cores, along with
enhancements like the tensor memory accelerator. To achieve
maximum tensor core performance, these features must be
leveraged. Supporting this in ccglib is highly non-trivial, but
will likely be important to maximize performance on future
GPU generations.

ACKNOWLEDGMENTS

This work was supported by the Netherlands eScience
Center under grant number ETEC.2020.025 (RECRUIT), by
the RADIOBLOCKS grant (HORIZON-INFRA-2022-TECH-
01, Grant Agreement nr. 101093934), and by the Netherlands
Organization for Scientific Research (NWO) through the DAS-
6 grant [13]. This work has made use of resources and exper-
tise provided by SURF Experimental Technologies Platform
(SURF-ETP), which is part of the SURF cooperative in the
Netherlands, under project no. SURF-ETP0012. We would
like to thank AMD for providing access to MI300 GPUs and
NVIDIA for donating an A100 GPU.



0 100 200 300 400 500
Number of receivers

0

100

200

300

400

TF
LO

P
s/

s
MI300X
GH200
A100
MI210
AD4000
W7700
Reference GH200
Reference A100

0 100 200 300 400 500
Number of receivers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TF
LO

P
s/

J

Fig. 7: Performance (left) and energy efficiency (right) of the LOFAR TCBF. The reference lines for A100 and GH200
correspond to the current LOFAR beamformer kernel (without Tensor Cores) running in float32 precision.

REFERENCES

[1] B. V. Veen and K. Buckley, “Beamforming: a
versatile approach to spatial filtering,” IEEE ASSP
Magazine, vol. 5, pp. 4–24, 4 1988. [Online]. Available:
http://ieeexplore.ieee.org/document/665/

[2] J. van Leeuwen et al., “The Apertif Radio Transient
System (ARTS): Design, commissioning, data release,
and detection of the first five fast radio bursts,” A&A,
vol. 672, p. A117, Apr. 2023.

[3] V. Perrot, M. Polichetti, F. Varray, and D. Garcia, “So
you think you can DAS? A viewpoint on delay-and-
sum beamforming,” Ultrasonics, vol. 111, p. 106309,
2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0041624X20302444

[4] J. W. Romein, “The Tensor-Core Correlator,” A&A, vol.
656, p. A52, Dec. 2021.

[5] W. Luo, R. Fan, Z. Li, D. Du, Q. Wang,
and X. Chu, “Benchmarking and Dissecting the
Nvidia Hopper GPU Architecture,” in 2024 IEEE
International Parallel and Distributed Processing
Symposium (IPDPS). Los Alamitos, CA, USA:
IEEE Computer Society, may 2024, pp. 656–667.
[Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/IPDPS57955.2024.00064

[6] B. van Werkhoven, “Kernel Tuner: A search-optimizing
GPU code auto-tuner,” Future Generation Computer
Systems, vol. 90, pp. 347–358, 2019. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0167739X18313359

[7] M. Lurati, S. Heldens, A. Sclocco, and B. van
Werkhoven, “Bringing Auto-Tuning to HIP: Analysis
of Tuning Impact and Difficulty on AMD and Nvidia

GPUs,” in Euro-Par 2024: Parallel Processing, J. Car-
retero, S. Shende, J. Garcia-Blas, I. Brandic, K. Olcoz,
and M. Schreiber, Eds. Cham: Springer Nature Switzer-
land, 2024, pp. 91–106.

[8] S. Corda, B. Veenboer, and E. Tolley, “PMT: Power
Measurement Toolkit,” in 2022 IEEE/ACM International
Workshop on HPC User Support Tools (HUST), 2022,
pp. 44–47.

[9] P. Kruizinga et al., “Compressive 3D ultrasound
imaging using a single sensor,” Science Advances,
vol. 3, no. 12, p. e1701423, 2017. [Online]. Available:
https://www.science.org/doi/abs/10.1126/sciadv.1701423

[10] M. D. Brown et al., “Four-dimensional computational
ultrasound imaging of brain hemodynamics,” Science
Advances, vol. 10, no. 3, p. eadk7957, 2024.
[Online]. Available: https://www.science.org/doi/abs/10.
1126/sciadv.adk7957

[11] M. P. van Haarlem et al., “LOFAR: The LOw-Frequency
ARray,” A&A, vol. 556, p. A2, Aug. 2013.

[12] P. C. Broekema et al., “Cobalt: A GPU-
based correlator and beamformer for LOFAR,”
Astronomy and Computing, vol. 23, pp. 180–192,
4 2018. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S2213133717301439

[13] H. Bal et al., “A Medium-Scale Distributed System for
Computer Science Research: Infrastructure for the Long
Term,” Computer, vol. 49, no. 5, pp. 54–63, 2016.

http://ieeexplore.ieee.org/document/665/
https://www.sciencedirect.com/science/article/pii/S0041624X20302444
https://www.sciencedirect.com/science/article/pii/S0041624X20302444
https://doi.ieeecomputersociety.org/10.1109/IPDPS57955.2024.00064
https://doi.ieeecomputersociety.org/10.1109/IPDPS57955.2024.00064
https://www.sciencedirect.com/science/article/pii/S0167739X18313359
https://www.sciencedirect.com/science/article/pii/S0167739X18313359
https://www.science.org/doi/abs/10.1126/sciadv.1701423
https://www.science.org/doi/abs/10.1126/sciadv.adk7957
https://www.science.org/doi/abs/10.1126/sciadv.adk7957
https://linkinghub.elsevier.com/retrieve/pii/S2213133717301439
https://linkinghub.elsevier.com/retrieve/pii/S2213133717301439

	Introduction
	Background and related work
	The Tensor-Core Beamformer
	Tensor-core micro-benchmarks
	Complex number support
	Need for data reuse
	1-bit arithmetic on tensor cores
	NVIDIA Hopper support

	Performance and energy efficiency
	Auto-tuning
	Roofline analysis
	Benchmarking

	Applications
	Computational ultrasound imaging
	Radio astronomy

	Conclusions and future work

