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Abstract—PowerSensor 2 is a tool that measures the instanta-
neous power consumption of PCIe cards and SoC development
boards like GPUs, Xeon Phis, FPGAs, DSPs, and network cards,
at sub-millisecond time scale. It consists of a commodity micro-
controller, commodity current sensors, and (for PCIe devices) a
PCIe riser card. The microcontroller reports measurements to
the host via USB. A small host library assists an application
to determine its own energy efficiency. The high time resolution
(up to 8.62 kHz) provides much better insight into energy usage
than low-resolution built-in power meters (if available at all), as
PowerSensor 2 enables analysis of individual compute kernels.

Fig. 1. A PowerSensor measures the instantaneous power use of a GPU.

INTRODUCTION

PowerSensor 2 is a low-cost, custom-built device that mea-
sures the instantaneous power consumption of GPUs and other
(peripheral) devices at a high time resolution. It consists of
an Arduino Leonardo (or Arduino Pro Micro) microcontroller
board, current sensors (ACS712), a PCIe riser card (to measure
the power drawn from the motherboard), an optional LCD
screen, and a USB cable that is connected to the host. Fig. 1
shows a typical use case of a PowerSensor attached to a GPU.
In this scenario, we use three sensors that measure the power
drawn through the PCIe slot (12 V and 3.3 V) and the external
PCIe cable. As the microcontroller has only one ADC, it reads

class PowerSensor {
public:
...
State read();

};

double Joules(const State &first, const State &second);
double Watt(const State &first, const State &second);
double seconds(const State &first, const State &second);

Listing 1. PowerSensor host library interface.

the sensors one after another, and reports the measurements
via USB to the host.

The tool has been used successfully to analyze several
applications on PCIe devices like GPUs, a Xeon Phi, a 40 GbE
network card, and an FPGA, as well as SoC development plat-
forms like the Jetson TX1 and an EVMK2H DSP board [1–3].
The firmware, host library, support programs, and how-to-
build-it-yourself manual are available for download [4].

OPERATION MODES

PowerSensor supports two operation modes.
With interval-based measurements, an application mea-

sures the power use of a device during some time interval.
At the start and at the end, the application invokes a library
function that returns an object that represents the instantaneous
power state. With these two objects, the application asks
the library how much energy or time was spent during the
interval (in Joules, Watt, or seconds). An application can then
determine its own energy efficiency by dividing the number
of operations (obtained by profiling or analytically) by the
measured energy use. The library interface (listing 1) is easy
to use (listing 2).

As GPU kernels are typically launched asynchronously by
enqueuing them to some stream, the PowerSensor state must
be read by a callback function that is invoked whenever
the GPU kernel starts or stops executing. Both CUDA and
OpenCL support these callback functions.

In continuous measurements mode, PowerSensor writes
a stream of consecutive measurements to file. The library
starts a low-overhead thread that runs asynchronously with
the application, and writes tuples of current time and wattage
to file (in ASCII), 8,620 times per second. The library allows
the application to put markers in this file, e.g., to annotate an
event such as the start of a particular kernel execution. These
markers can be cross-correlated with the power measurements.
The file can be easily used to create time-vs.-power graphs by
any plotting tool that allows ASCII input, as shown below.

Modifying the application source code to use the library is
not obligatory; the included psrun utility can monitor the
power use of a device during the execution of an unmodified

int main()
{
PowerSensor sensor("/dev/ttyACM0");
State start = sensor.read();
... // do work, e.g. on GPU
State stop = sensor.read();
cout << "It used " << Joules(start, stop) << ’J’ << endl;

}
Listing 2. Example use of the host library.
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Fig. 2. Continuous power measurements of several devices.

application. This utility also supports the continuous measure-
ments mode.

INSTALLATION AND USE OF THIS TOOL

The installation of this tool requires some basic skills in
electronics, but is not excessively difficult. Once installed, its
use is simple. The number and types of the used current
sensors, the voltages of the power lines, and calibration
weights are easily configurable using the psconfig utility.

The Hall-effect current sensors must be calibrated for the
local magnetic field. To measure very low currents, an ACS712
sensor board with integrated voltage multiplier can be used.
A PCIe riser card of sufficient quality is needed to maintain
the PCIe signal integrity; we use the Adexelec PEXP16-EX.

As we do not measure voltages, the power supply voltage
must be stable, also under varying load. The sensor and ADC
error tolerances add up to 3.7%, but with proper calibration,
our measurements are typically within 1% of built-in GPU
power meters and lab equipment.

PowerSensor 2 achieves 9 times better time resolution than
PowerSensor 1, by using another microcontroller with an
integrated USB port, and by improving the firmware. The time
resolution is 116 µs times the number of attached sensors, and
is limited by the ADC conversion time.

EXAMPLES OF INSIGHTS OBTAINED WITH POWERSENSOR

PowerSensor gives insight into an application’s power ef-
ficiency, as illustrated by Fig. 2. This radio-astronomical
pipeline filters, corrects, and correlates the signals from 960
receivers [2]. The figure shows the instantaneous power con-
sumption of three different devices. The correlation between
energy use and executed kernels is clearly visible. The shaded
area below the curve corresponds to the total energy used by a
kernel. On the NVIDIA GTX 1080 GPU (left), some kernels
draw much more power than others.

The AMD R9 nano GPU (middle) has a Thermal Design
Power (TDP) of 175 W. However, the graph shows temporary
power consumption as high as 275 W. After 13 ms, the device
starts throttling, stepwise reducing power usage to as low as
85 W to compensate for the excess power usage, then jumping
back to 220 W. The long-term average power consumption
is indeed 175 W. The performance of one kernel depends
strongly on the power usage of the other kernels: the correlate-
triangles function runs at a high clock frequency and thus a

high power consumption because the first three functions did
not use their full power budget. A high-time-resolution tool
like PowerSensor is indispensable to analyze this behavior.

The graph for the Xeon Phi 7120X (right) shows repetitive
power dips at a 100 Hz rate. The Linux kernel periodically in-
terrupts all cores, during which much less energy is drawn than
when the application performs heavy vector computations. We
discovered this behavior with PowerSensor; we did not notice
it when profiling the application with VTune Amplifier.

RELATED WORK

There are many power-measurement tools that bear some
resemblance. They are all elegant in some aspects, but none
of them combines all advantages of high time resolution,
simplicity, low cost, availability, and full library support.
PowerInsight [5] measures both voltages and currents, but
has lower time resolution and does not support the interval-
based mode described above. PowerMon 2 [6] uses a well-
designed but difficult to obtain custom PCB; it also cannot
handle 150 W PCIe power cables. Ilsche et al. present a highly
accurate but costly and complex method [7]. Others have built
their own power measurement tools, for example, to validate a
power estimation framework for GPUs (GPUSimPow) [8], or
to analyze the power behavior of the Xeon Phi [9], but these
tools are not publicly available.

Complementary to PowerSensor are tools that measure
the energy consumption of the host CPU and DRAM, like
LIKWID [10], PAPI [11], Linux perf, and Intel PCM.

CONCLUSION

The high time resolution, low cost, ease of use, and public
availability make PowerSensor 2 a useful tool for power
measurements of (peripheral) devices.
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