FCNP: Fast I/O on the Blue Gene/P

John W. Romein

romein@astron.nl
Stichting ASTRON (Netherlands Institute for Radio Astronomy), Dwingeloo, The Netherlands

Abstract— This paper describes the Fast Collective-Network
Protocol (FCNP). FCNP is a low-overhead, high-bandwidth
network protocol that we developed for fast communication
between the Blue Gene/P compute nodes and I/O nodes. The
CPU cores in this system are hardly able to keep up with the
high-speed internal network, and any protocol overhead signif-
icantly slows down the achieved bandwidths. FCNP minimizes
overhead and approaches the link speed for large messages.

FCNP is of critical importance to the correlator of the
LOFAR radio telescope, that will process hundreds of gigabits
of real-time telescope data per second. Without FCNP, the
correlator would not even achieve the required data rates. How-
ever, FCNP allows bandwidths over 50% beyond the LOFAR
requirements, so that the telescope can observe proportionally
more sources or frequencies and becomes a much more efficient
instrument.

Keywords: low-overhead network protocol, IBM Blue Gene/P, LO-
FAR radio telescope

1. Introduction

I/O is one of the most precious resources in a supercom-
puter [6], and the IBM Blue Gene is no exception to this rule.
Although the Blue Gene/P uses much faster I/O hardware than
its predecessor Blue Gene/L, we found that it is still difficult
to efficiently stream large amounts of data from outside the
system to the final destination CPUs.

The Blue Gene architecture consists of compute nodes
that run a parallel application and a much smaller number
of I/O nodes that perform I/O operations on behalf of the
compute nodes. The I/O nodes and compute nodes are internally
connected by what is called the tree or collective network.
The system software forwards I/O operations like read() and
socket() from a compute node to its associated I/O node
where the operation is factually performed.

By default, the I/O nodes work transparently. However, the
performance of I/O-intensive applications can improve signif-
icantly if a select part of the application or communication
library (like PVES) runs on I/O nodes rather than compute
nodes [6].

We use the Blue Gene to process real-time radio-telescope
data. Part of the application runs on the I/O nodes, while
the compute-intensive processing is done on compute nodes.
The application on the I/O node needs to communicate large
amounts of data with the application on the compute nodes.

In 2007, IBM unveiled the Blue Gene/P (BG/P) [11] as
successor to the Blue Gene/LL (BG/L). Per rack, the BG/P has
2.43 times as much compute power as the BG/L. However,
the (maximum) number of I/O nodes per rack has halved, due
to the change from 1 to 10 Gb/s Ethernet technology. Hence,
to scale with the computational performance, each I/O node
has to handle 4.86 times as much data. This is challenging,
since the tree is only 2.43 times faster. However, the main
challenge is that the processor cores that drive the tree are
merely 2/% faster. Fortunately, the I/O nodes have four cores
rather than two, but at most two cores can be used for internal
communication: one to read and one to write the tree. The
remaining cores can be used for other tasks.

We found that a core is hardly able to read or write packets
at link speed from or to the tree; even an “empty” function
call per packet already ruins performance. The overhead of
any protocol on top of the packet interface would decrease the
obtained bandwidth significantly.

This paper describes the Fast Collective Network Protocol
(FCNP), that is designed to provide bandwidths at link speed
between the I/O nodes and the compute nodes. The key design
feature of FCNP is that it maximizes bandwidth by minimizing
protocol overhead to an absolute minimum. By reducing the
protocol overhead, the processor cores have more time to
transport user data. We will show performance results and
characterize the performance in terms of bandwidth, latency,
and overhead.

FCNP is heavily used to process LOFAR telescope data.
LOFAR [4], [12] is the first of a new generation of telescopes,
that combines the signals of tens of thousands of simple, cheap,
omni-directional antennas rather than using expensive dishes.
In several ways, it will be the largest telescope of the world.
Another novel feature is that the data are processed in software
on a supercomputer [9], [10], where traditionally custom-built
hardware is used. The data are streamed at high bandwidths into
the system and processed in real time. I/O nodes receive the
data and internally forward them to compute nodes. Standard
system software does not provide sufficient bandwidth to handle
2.1 Gb/s input and 0.58 Gb/s output per I/O node, needed to
meet the LOFAR specifications [1]. In contrast, FCNP achieves
3.1 Gby/s input and 1.2 Gb/s output bandwidth per I/O node. The
improved input data rate matches the absolute maximum that
the telescope hardware can generate, which is over 50% beyond
the specifications. This implies that LOFAR will be able to
observe a 50% wider part of the radio spectrum instantaneously,

(FCNP over

i (3D torus)

BG/P compute core

circular buffer

from station collective network)

to disk add

1{[exch;nge]+ [FIR filter]+ > [phase] > [bandpass]+ [beamform]+ [correlate H}

(10 GbE)

BG/P I/0 node \/

Fig. 2: LOFAR real-time signal processing.

or to observe 50% more sky sources concurrently, increasing
the usage possibilities of the instrument. The doubled output
data rate allows new observation modes, where even higher
numbers of sky sources can be observed concurrently (albeit at
lower precision), increasing the flexibility of the instrument.

We developed FCNP to support streaming LOFAR data, but
the ideas of this protocol are more widely applicable.

This paper is structured as follows. In Section 2, we describe
the relevant parts of the LOFAR processing pipeline. Then, after
an introduction to the BG/P hardware (Section 3), we describe
FCNP (Section 4). Next, we discuss related work (Section 5).
We compare the performance of FCNP to competing protocols
and analyze the performance impact on the LOFAR application
(Section 6). Section 7 concludes.

2. LOFAR processing

LOFAR is a new type of radio telescope, that combines the
signals of tens of thousands of antennas and processes the
data centrally on a BG/P supercomputer. We briefly explain
how LOFAR data are processed, other papers provide more
details [10, Sec. 2], [9, Sec. 4-6].

Fig. 1: The low-band antennas of a LOFAR station.

Co-located groups of 48 or 96 dual-polarized low-band
antennas (see Figure 1) and high-band receivers form a station,
i.e. a virtual telescope. Construction of 36-54 Dutch stations
and 8-20 European stations is well underway. Each station
digitizes the antenna voltages and pre-processes the data using
FPGAs [5]. The FPGAs send UDP packets with station data
over dedicated Wide-Area Network links to the BG/P, where
the data are centrally processed. Initially, LOFAR used a 6-
rack IBM BG/L supercomputer for real-time processing of the
station data, but the system was recently replaced by an equally
powerful 2.5-rack BG/P.

The application that runs on the BG/P is called the correlator,
although it does much more processing than correlating only.
Figure 2 shows a simplified scheme of one of the processing
pipelines: the standard imaging pipeline that creates sky images.
An T/O node receives 48,828 UDP packets per second of up
to 8 KiB from one station. It copies the samples into a circular
buffer that holds the most recent three seconds of data. The
buffer is used to synchronize the stations (the travel times
over the WAN are higher for remote stations than for nearby
stations) and to prevent data loss due to small hiccups in the
remainder of the processing pipeline. The buffer is also used
to set the observation direction by “delaying” the stream of
station samples for each station differently, to compensate for
the fact that a celestial wave hits stations at different times [10,
Sec. 2.1].

The buffered data are sent to the compute nodes for further
processing. There, the data are first exchanged over the torus
network, to collect pieces of data that can be processed inde-
pendently. Then, the data are filtered and Fourier transformed
to split each subband into narrow frequency channels. Next,
a phase correction fine-tunes the observation direction. Then,
a per-channel bandpass correction flattens a ripple introduced
by a station filter. Optionally, a group of stations can be beam
formed (by weighted addition of their samples) to form a more
sensitive, virtual “super station”. Finally, the data are correlated
(by multiplying the samples of all station pairs) to filter out
noise and integrated to reduce the amount of output.

The compute node sends the correlated data back to the
I/O node. The I/O node optionally adds data from other com-
pute nodes, and sends the result (asynchronously) to external
systems that temporarily store the data on disk. After an
observation has finished (not shown in Figure 2), bad data
(due to interference) are removed, and the resulting data are
calibrated [8] and imaged.

Two tasks are of particular interest to this paper: the transport
of buffered data from the I/O nodes to the compute nodes (at
3.1 Gb/s) and the transport of correlated data in the opposite
direction (at up to 1.2 Gb/s). Moreover, each I/O node also
needs to receive 3.1 Gb/s of UDP data from the stations and
send 1.2 Gb/s of TCP data to external systems, and are therefore
already quite busy processing the data through the IP protocol
stack. The two available mechanisms to communicate between
the I/O nodes and compute nodes (TCP and Unix domain
sockets) do not provide sufficient bandwidth (see Section 6)
and consume too many CPU resources, necessitating the need
for a light-weight protocol for internal communication.

3. The Blue Gene/P

The BG/P is built using SoC (System-on-a-Chip) technology
that integrates all processing and networking functionality on a
single die. A node contains four PowerPC 450 cores, running at
a modest 850 MHz clock speed to reduce power consumption
and to increase the package density. Each core is extended by
two Floating-Point Units that provide support for operations
on complex numbers; each FPU can sustain one (real) double-
precision, fused multiply-add per cycle. The four cores share
2 GiB of main memory. One BG/P rack contains 1,024 compute
nodes, providing 13.9 TFLOP/s peak processing power, and up
to 64 I/O nodes.

The BG/P contains several networks. A fast three-
dimensional torus connects all compute nodes and is used for
point-to-point and all-to-all communications. The tree or collec-
tive network is used for MPI scatter and gather operations, but
also for communication between compute nodes and I/O nodes.
A 10 Gb/s Ethernet device (only enabled on I/O nodes) is
used for external communication. A global interrupt network
provides support for fast barriers. Additional networks exist for
initialization, diagnostics, and debugging.

The compute nodes run a fast, simple kernel (Compute Node
Kernel, CNK) that can execute one thread or process per core.
An I/O node uses the same hardware as a compute node, but
runs a modified Linux kernel.

3.1 The Tree Network

Fig. 3: A pset.

Each compute node is (indirectly) connected to one I/O node
via the tree (see Figure 3). All I/O-related system calls on the
compute nodes to external systems are forwarded to a daemon
program (CIOD), that runs on the I/O node and performs
the real operation. A group of one I/O node, its 10 Gb/s
Ethernet interface, and the compute nodes that are connected
to the I/O node is called a pset. Since LOFAR generates much
data, our system is configured with the maximum number
of 1 I/O node per 16 compute nodes (64 cores); typical
installations have 1 I/O node per 32 compute nodes. Our system
has 160 psets in total.

The original BG/L design did not support the idea of running
user applications on the I/O nodes, but in earlier work [6],

we showed that doing so significantly improved performance,
flexibility, and costs. Unfortunately, this required major changes
to the BG/L system software [3], [6]. In contrast, the BG/P
supports user applications on I/O nodes, but the existing
communication protocols between the compute nodes and the
I/O nodes provided insufficient bandwidth for the LOFAR
correlator.

The tree uses bi-directional links at 6.8 Gb/s per direction.
The network has a tree topology with a complex physical
structure. A node is connected to at most three other nodes.
A packet can be routed via several nodes. The processor cores
of in-between nodes are not interrupted by the routing process.
The hardware provides two separate virtual channels. One is
used by CIOD; the other is typically only used on the compute
nodes: by the MPI library for some of the collective MPI
operations. However, the runtime environment can be changed
so that MPI uses the 3-D torus for these collectives instead of
the tree, leaving one of the virtual channels unused. This virtual
channel is accessible from user space.

The LOFAR correlator does not perform collective MPI
operations. However, other applications that critically depend
on collectives might see performance differences (positive or
negative) by using the 3-D torus instead of the tree. On
the BG/L, the collective network was specifically designed to
support collective operations. However, the BG/P is very well
capable of doing collective operations using the torus, since
the BG/P has DMA support for the torus (but not for the
tree). Therefore, FCNP can use the free virtual channel, without
significantly slowing down collective operations.

A processor can send and receive fixed-size packets over
a virtual channel. A packet consists of a 4-byte header (used
for routing) and 256 bytes payload. The 16-byte load and store
instructions from the double FPU are used to efficiently transfer
data from memory to the (memory-mapped) device and vice
versa, but these impose a 16-byte alignment restriction. There
is no DMA hardware available for the tree. The four cores from
one processor share the same link. Each node has an 8-packet
send FIFO and an 8-packet receive FIFO per virtual channel.
An attempt to send a packet to a processor with a full receive
FIFO blocks the virtual channel, filling up the sender’s send
FIFO, and eventually stopping the sender. Therefore, received
packets should be consumed as fast as possible.

4. The Fast Collective Network Protocol

CIOD (the daemon that runs on the I/O node and handles the
I/O requests from the compute nodes) is intended to provide
communication between compute nodes and external systems.
It is also possible to use TCP or Unix domain sockets internally,
between an application on the compute nodes and an applica-
tion on the I/O node. However, the obtained bandwidth (see
Section 6) is insufficient for the LOFAR correlator. Therefore,
we developed a new protocol, Fast Collective Network Protocol
(FCNP), that uses the free virtual channel of the tree.

Since one compute core is barely able to keep up with the
link speed, any heavy-weight protocol overhead would decrease
the obtained bandwidth. FCNP reduces the protocol overhead to
a single bit test in the normal case. FCNP distinguishes control
packets (requests and acknowledgments) from data packets by
setting the Irq (interrupt-on-receipt) bit in the header. Typically,
most packets (for our application roughly 99.98%) are data
packets that do not contain any metadata in the payload part.

St S\
wite 1908 %
User q,

I/0O node compute node 1/0 node compute node

(a) write. (b) read.

Fig. 4: The FCNP protocol.

To send data from the compute node to the I/O node, the
application on the compute node calls fenp_write(ptr, size)
and the application on the I/O node calls fcnp_read(ptr, size,
core). The compute node sends a write request packet to the
I/O node (see Figure 4(a)). The 1/O node acknowledges a write
request as soon as the application called a matching fenp_read()
for that particular core and when no other compute node is
sending data to this I/O node. This way, the I/O node knows
at all times from which compute core data packets originate,
and can receive data packets consecutively in memory without
additional checks. Only the Irq bit must be checked to see
if the packet is indeed an expected data packet, and not a
request packet from another compute core. The actual amount
of bytes sent in a message is negotiated by the compute node
and the I/O node by taking the minimum of the requested
sizes on both sides. A read request (see Figure 4(b)) is handled
similarly. At any time, up to one read and one write per pset
can be active (although multiple unacknowledged request can
be outstanding).

struct RequestReplyPacket {
enum {READ, WRITE, RESET} type;

unsigned node;
unsigned short core;
unsigned short rankInPSet;
unsigned size;

char msgHead[240];

bi

Fig. 5: Format of the payload part of request and acknowledg-
ment packets.

Figure 5 shows the format of request and reply packets. A
request is a read, write, or a reset packet (reset requests are only

sent during startup, to drain the FIFOs that may hold lingering
packets from previous runs). The node, core, and rankinPset
fields are the node number, the compute core number (between
0 and 3), and the rank within the pset respectively. These are
necessary for the I/O node to determine the source of a request
and to put routing information in the header of a reply. The size
field in a request contains the requested message size; the size
field in an acknowledgment contains the agreed size, which may
be smaller than the requested size if the I/O-node application
does not want to read or write as much data. The last 240 bytes
of a read acknowledgment or a write request are used to send
up to 240 bytes of data, such that the remaining amount of
data is a multiple of 256 bytes, and can be sent in an integer
number of packets.

To avoid deadlocks, it is always a compute core that initiates
communication by sending a (read or write) request packet to
the I/O node. Compute nodes are not always willing or able
to receive data, and if the I/O node would send a packet to a
compute node that does not listen, the tree could block. The
I/O node, in contrast, runs a daemon thread that continuously
polls the receive FIFO, waiting for an incoming request packet.
This way, the tree cannot stall. The polling thread is suspended
while another thread receives data packets from a compute
node.

Each of the four cores in a compute node can post a read
or write request. To avoid race conditions, only one of them is
allowed to read the receive FIFO. As long as none of the request
is acknowledged, one of the cores that await a reply polls the
FIFO until it receives an acknowledgment. If the acknowl-
edgment is addressed to another core, it transfers the packet
(via shared memory) to the other core and releases its access
rights. A compute core that receives a read acknowledgment
gains exclusive access to the receive FIFO until the message
is completely received. The sequence of data packets might be
interrupted by a write acknowledgment for another core, which
is then transferred to the addressed core. This interruption is
detected by testing the Irq bit in the header. The stream cannot
be interrupted by a read acknowledgment, since the I/O node
makes sure that only one read can be active at a given time.

On the compute cores, we use fast hardware mutexes to
synchronize the cores. On the I/O nodes, the same hardware
mutexes are physically present, but not exposed by the Linux
kernel, so we use atomic instructions to implement spin locks.
Since these are noticeably slower and since the write FIFO
has to be protected, the implementation writes up to eight
consecutive packets before releasing and re-obtaining a lock.
This way, the amortized locking overhead is negligible.

FCNP strongly encourages 16-byte aligned data and mes-
sage sizes, but does not enforce this. Unaligned transfers are
supported at the expense of a copy to an intermediate buffer.

FCNP is not fair, in the sense that one core can claim all
network bandwidth. This is intentional, since sharing bandwidth
between multiple cores implies that all cores proceed at reduced
speed. Figure 6 illustrates this with an example, where all CPUs

CpU T il }
t =1
cpuz },,,1”9’!,,‘:’ ,,,,,, } }
t =2
cpus |- % }
(a) Unshared bandwidth.
twaitzg
cpu1)‘7[7[7‘7’7[7[7‘7’7[7[7‘7’7-{
tw.:«m:g
cpu2 }>}7’717[7‘7’7[7[7‘7‘7[7[7‘7-‘
~2
-3

cpu 3
(b) Shared bandwidth.

Fig. 6: Unfair communication is faster (see text).

concurrently start communicating the same amount of data (the
red, fat bars; blue, dashed lines represent waiting CPUs). If
the bandwidth is not shared (Figure 6(a)), some CPUs finish
much earlier than others, and can continue doing other work.
Even the latest CPU does not finish later than in the shared
case (Figure 6(b)), where all CPUs finish approximately at
the same time. In general, fairness is an issue for interactive
applications and multiple applications run by different users, but
FCNP is designed to support a single, cooperative, distributed
application, of which we want to minimize the execution time.

4.1 Interrupts

The polling thread on the I/O node consumes a lot of CPU
resources: even if it does not receive any data, one out of four
cores is continuously busy. A second core is fully used by
CIOD to poll the other virtual channel of the tree, leaving few
resources for application processing. To reduce the CPU usage,
IBM modified the Linux device driver of the tree to handle
interrupts from both virtual channels, and adapted CIOD to
take advantage of the interrupts. Likewise, we adapted FCNP’s
polling thread to block until a request packet (with the Irq bit
set) is received in the receive FIFO.

An interrupt from the receive FIFO does not necessarily
imply that it is the first packet in the queue that has the Irq
bit set, nor that the packet is still in the FIFO (it might have
been read before the interrupt is processed), so care must be
taken to avoid race conditions and handle spurious interrupts.
The device driver does not use (posix-style) signals to pass
on an interrupt to an application. Instead, a thread can do a
dummy read() system call on the device driver’s file descriptor,
and is blocked as long as there are no packets in the receive
FIFO that have the Irq bit set. We think that this is a much
more elegant solution, since signal handlers and threads do
not coexist well. Moreover, an implementation based on signal
handlers would need to perform additional system calls to avoid
potential race conditions, thus the dummy-read mechanism is

also more efficient.

The application can choose whether FCNP should use inter-
rupts or not. In interrupt mode, the thread that handles new
requests does not immediately suspend itself, but polls the
receive FIFO for up to 50us. Since applications often send
multiple messages in bursts, it is generally beneficial to try
to receive a next request by polling, to avoid the interrupt
overhead [7]. This significantly reduces the latency if a message
arrives within 50 us, but hardly wastes CPU resources if no
message arrives within this time.

On the compute node, there is no need to interrupt the
kernel (and application) for acknowledgment packets. Since
the kernel allows only one thread per core, the core cannot
be used to run another application thread while waiting for an
acknowledgment. Only if the FCNP interface would support
asynchronous reads and writes, this would be useful, but we
did not implement this, mainly because the absence of DMA
hardware would limit the use of asynchronous I/O anyway.

5. Related Work

CIOD (Control and I/O Daemon) [11] is part of the standard
Blue Gene system software and performs two major tasks:
it is responsible for booting the compute node and starting
jobs (control), and for file and socket communication from
applications that run on the compute nodes. It uses a function-
forwarding mechanism to forward I/O-related system calls from
a compute node to its I/O node, where the operations are
really performed. This function forwarding is transparent to the
user. On the BG/L, its performance was initially poor [10], but
improved significantly later [6]. On the BG/P, CIOD is multi-
threaded and made open source.

ZOID (ZeptoOS I/O Daemon) [6] is a communication frame-
work that improves I/O performance on the Blue Gene. ZOID
is a replacement for CIOD, aimed to provide even better
performance and more flexibility. ZOID is extensible: a small
daemon on the I/O node provides a basic function forwarding
facility from the compute nodes to the I/O nodes. On top of this,
plug-ins (in the form of shared objects) that implement some
functionality are loaded by the daemon and perform the real
work. A standard plug-in is the Unix plug-in that implements
the Unix I/O related system calls. On the compute nodes, the
glibc library was adapted to replace the Unix system calls by
stubs that forwards calls like socket() and read(), and a shared
object on the I/O node implement the actual calls. A stub
generator creates code that marshals and unmarshals function
arguments and results on the compute nodes and I/O nodes.

ZOID’s extensibility allows arbitrary application code to be
run on the I/O node; something that, on the BG/L, was not
possible before. Before the LOFAR BG/L was replaced by a
BG/P, we used ZOID to run LOFAR-specific application code
on the I/O nodes [6].

ZOID was ported to the BG/P, but runs only with ZeptoOS
kernels on the compute nodes, not with the CNK. ZeptoOS did
not yet support the 3-D torus, which is of critical importance

—e— FCNP poll
6-| —®— FCNPintr
—— CIlOD/Unix
—a— CIOD/TCP

bandwidth (Gb/s)

L S I UL I
16 256 4Ki 64Ki IMi 16Mi
messaae size (bytes)

(a) I/O node to compute node.

—ae— FCNP poll
6 —®— FCNPintr
—— CIOD/Unix
—a— CIOD/TCP

bandwidth (Gb/s)

T T T
64Ki 1Mi 16Mi

T
16 256 4Ki
messade size (bvtes)
(b) Compute node to I/O node.

Fig. 7: Measured bandwidths, as function of message size.

to the LOFAR application. Once ZeptoOS fully supports the
torus, we might use it instead of CNK.

A fundamental difference between ZOID and FCNP is that
ZOID integrates system control and application I/O into the
same process. ZOID applications (in the form of shared objects)
are plugged in into the address space of the daemon, to
avoid expensive context switches during communication. A
disadvantage of this approach is that a crashing application can
crash the control daemon as well. Due to the availability of a
free virtual channel on the BG/P, FCNP can separate control
I/O from application I/O, without performance penalty.

6. Performance

Figure 7 shows the measured bandwidths for FCNP (with
interrupts enabled or disabled) and for TCP and Unix domain
socket communication using CIOD. The benchmark communi-
cates data between the I/O node and one of the compute nodes
as fast as possible, using messages of various sizes. For large
messages, FCNP approaches the link speed.

CIOD peaks at a bandwidth that is slightly over 2 Gb/s. In
theory, this equals the required LOFAR data rate, but we found
that the bandwidth is not stable over long times, and provides
too little headroom for real-time processing.

FCNP is significantly faster than CIOD, because its overhead
is much lower. CIOD cannot be blamed for this, since CIOD
was designed to provide external, not internal communication.
Internal communication happens to work, but a system-call
interface with a heavy-weight TCP/IP protocol is obviously less
efficient.

The discontinuity in the curve for interrupt-driven FCNP in
Figure 7(a) is caused by the fact that the polling thread polls the
tree for 50 us after receiving a request packet, before suspending
itself (see Section 4.1). Messages of 64 KiB or more take over
50us to send. Therefore, a request for a large message causes
an interrupt that increases the latency. In contrast, requests for

smaller messages will be received through polling. This effect
is not seen in traffic from the compute node to the I/O node,
since in this direction, the 50 us timer starts running after the
last data packet was received (rather than the request packet).
Consequently, in this benchmark all subsequent requests will
be received through polling.

We use a simplified LogGP model [2] to determine the
latency, bandwidth, and overhead. We define the approximate
time to send a message as the latency plus the message size
multiplied by the time to send a byte.

The latency is dominated by the receipt and handling of a
request packet on the I/O node (and would be overhead in
terms of LogGP). The latency varies depending on several cir-
cumstances. Using the benchmark described above, the latency
is 13.3 us for read requests and 13.9 us for write requests. We
also used a different benchmark that measures the latency for
the case that the I/O-node application is already waiting for a
compute-node request, so that the handshake on the I/O node
can complete immediately after a request packet is received. In
this case, the latency is only 2.1 us.

Using interrupts increases the latency if the polling daemon
must be awakened. The penalty depends on which cores the
polling thread and application thread run. The hardware in-
terrupt is always handled on core 0. If neither thread runs
on core 0, the additional latency is 8us. If the polling thread
runs on core 0, the additional latency is 5 us. However, if the
application thread runs on core 0, the latency is increased by
26 us, so the application had better avoid affinity to core O (there
is another reason why one may not want to run an application
thread on core 0: Ethernet interrupts are handled there as well).

In both directions, FCNP obtains a bandwidth of 6.54 Gb/s
for large messages, hence the time per byte is 1.22ns. This is
as fast as a protocol-less benchmark, that simply sends packets
on one side and receives them on the other side, and thus the
maximum that the hardware can practically achieve.

Since reading and writing is done in separate threads, this
bandwidth can be achieved in both directions simultaneously.
A separate benchmark confirmed this claim.

6.1 Application Performance

B UDP/IP receipt (kernel)

B UDP packet to cirular buffer copy
FCNP send to compute node

B FCNP receive from compute node

B TCP/IP send to storage (kernel)
idle

Fig. 8: Performance breakdown on the I/O node.

We also measured how the LOFAR correlator benefits from
FCNP. Figure 8 shows a breakdown of the processor utilization
on the I/O node. Apart from other tasks, each I/O node sends
3.1 Gb/s and receives 1.2 Gb/s from the compute nodes. The
data are sent directly from the circular buffer, without additional
copying (obeying the alignment restrictions, though, was rather
complicated). The Linux real-time scheduler (SCHED_RR)
runs both the sending and receiving threads at the highest
priority, to assure that the correlator can always proceed. These
threads consume 15% resp. 6% of the total CPU power. This is
slightly more than the theoretical minimum of 12% resp. 4.6%,
mainly caused by the presence of other threads that compete
for the same resources (cache, memory, etcetera). With a CPU
utilization of 82%, the I/O node cannot handle much more
without starting dropping data. Without FCNP, the required
LOFAR data rates are not achieved; with FCNP, the correlator
runs smoothly over 50% beyond the requirements.

7. Conclusions

This paper described Fast Collective Network Protocol
(FCNP), a very low-overhead network protocol for commu-
nication between the I/O nodes and compute nodes on the
Blue Gene/P. The relatively slow processor cores on this system
are hardly capable to keep up with the fast internal network,
hence any protocol overhead significantly slows down the
obtained bandwidths. Moreover, a low-overhead protocol is all
the more important, because I/O nodes on the Blue Gene/P are
much heavier loaded than I/O nodes on its predecessor Blue
Gene/L. To scale up, Blue Gene/P I/O nodes must forward data
4.86 times faster than Blue Gene/L I/O nodes, over links that
are only 2.43 faster, using processor processor cores that are a
marginal 21% faster.

FCNP is critically important to the correlator of the LOFAR
radio telescope. One of the novel features of this telescope is
that it does all real-time, central processing in software rather
than hardware, but the processing and bandwidth requirements
demand the use of a supercomputer. The standard system soft-
ware is, however, not designed to provide user-level bandwidths

between I/O nodes and compute nodes at the required data
rates. FCNP, on the contrary, allows the LOFAR correlator
to achieve bandwidths that are even over 50% beyond the
requirements, keeping up with the absolute maximum data rates
that the LOFAR stations can produce. As a consequence, a 50%
wider part of the spectrum can be observed instantaneously,
or alternatively, the number of concurrent observations can be
increased by a half. Hence, with FCNP, the LOFAR telescope
can be used much more efficiently than it was ever designed
for.

Acknowledgments

Chris Broekema, Jan David Mol, and Rob van Nieuwpoort
made useful comments to a draft version of this paper. We thank
Kamil Iskra and Kazutomo Yoshii from Argonne National Labs
and Bruce Elmegreen, Todd Inglett, Tom Liebsch, and Andrew
Tauferner from IBM for their support.

LOFAR is funded by the Dutch government through the
BSIK program for interdisciplinary research and improvement
of the knowledge infrastructure. Additional funding is provided
through the European Regional Development Fund and the
innovation program EZ/KOMPAS of the Collaboration of the
Northern Provinces (SNN). ASTRON is part of the Netherlands
Organization for Scientific Research, NWO.

References

[1] http://www.lofar.org/p/astronomy_spec.htm.

[2] A. Alexandrov, M.F. Ionescu, K.E. Schauser, and C. Scheiman. LogGP:
Incorporating Long Messages into the LogP Model — One Step Closer
Towards a Realistic Model for Parallel Computation. In ACM Symposium
on Parallel Algorithms and Architectures (SPAA’95), pages 95-105, 1995.

[3] P. Boonstoppel. Semi-Transparent Dual-Processing on Blue Gene/L
I/O Nodes. Master’s thesis, Dept. of Mathematics and Computer Science,
Vrije Universiteit, Amsterdam, May 2008.

[4] H.R. Butcher. LOFAR: First of a New Generation of Radio Telescopes.
Proceedings of the SPIE, 5489:537-544, October 2004.

[5] AW. Gunst and M.J. Bentum. Signal Processing Aspects of the Low
Frequency Array. In IEEE International Conference on Signal Processing
and Communications, pages 600-603, Dubai, United Arab Emirates,
November 2007.

[6] K. Iskra, J.W.Romein, K. Yoshii, and P. Beckman. ZOID: I/O-Forwarding
Infrastructure for Petascale Architectures. In ACM SIGPLAN Symposium
on Principles and Practice on Parallel Programming (PPoPP’08), pages
153-162, Salt Lake City, UT, February 2008.

[7] K. Langendoen, J.W. Romein, R.A.F. Bhoedjang, and H.E. Bal. Inte-
grating Polling, Interrupts, and Thread Management. In Proceedings of
Frontiers’96, pages 13-22, Annapolis, MD, October 1996.

[8] R. J. Nijboer and J. E. Noordam. LOFAR Calibration. In R. A. Shaw,
F. Hill, and D. J. Bell, editors, Astronomical Data Analysis Software and
Systems (ADASS XVII), number 376 in ASP Conference Series, pages
237-240, Kensington, UK, September 2007.

[9] J.W. Romein, P.C. Broekema, J.D. Mol, and R.V. van Nieuwpoort.
Processing Real-Time LOFAR Telescope Data on a Blue Gene/P Su-
percomputer, 2009. Under review.

[10] J.W. Romein, P.C. Broekema, E. van Meijeren, K. van der Schaaf, and
W.H. Zwart. Astronomical Real-Time Streaming Signal Processing on a
Blue Gene/L Supercomputer. In ACM Symposium on Parallel Algorithms
and Architectures (SPAA’06), pages 59-66, Cambridge, MA, July 2006.

[11] IBM Blue Gene team. Overview of the IBM Blue Gene/P Project. IBM
Journal of Research and Development, 52(1/2), January/March 2008.

[12] M. de Vos, A.W. Gunst, and R. Nijboer. The LOFAR Telescope: System
Architecture and Signal Processing. Proceedings of the IEEE. To appear.

