
The LOFAR Correlator:
Implementation and Performance Analysis

John W. Romein P. Chris Broekema Jan David Mol Rob V. van Nieuwpoort
ASTRON (Netherlands Institute for Radio Astronomy)

Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
{romein,broekema,mol,nieuwpoort}@astron.nl

Abstract
LOFAR is the first of a new generation of radio telescopes. Rather
than using expensive dishes, it forms a distributed sensor network
that combines the signals from many thousands of simple antennas.
Its revolutionary design allows observations in a frequency range
that has hardly been studied before.

Another novel feature of LOFAR is the elaborate use of soft-
ware to process data, where traditional telescopes use customized
hardware. This dramatically increases flexibility and substantially
reduces costs, but the high processing and bandwidth requirements
compel the use of a supercomputer. The antenna signals are cen-
trally combined, filtered, optionally beam-formed, and correlated
by an IBM Blue Gene/P.

This paper describes the implementation of the so-called corre-
lator. To meet the real-time requirements, the application is highly
optimized, and reaches exceptionally high computational and I/O
efficiencies. Additionally, we study the scalability of the system,
and show that it scales well beyond the requirements. The optimiza-
tions allows us to use only half the planned amount of resources,
and process 50% more telescope data, significantly improving the
effectiveness of the entire telescope.

Categories and Subject Descriptors J.2 [Physical Sciences and
Engineering]: Astronomy; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed Applications; D.1.3
[Programming Techniques]: Concurrent Programming; J.7 [Com-
puters in Other Systems]: Real time

General Terms Algorithms, Experimentation, Performance

Keywords LOFAR, Correlator, IBM Blue Gene/P

1. Introduction
LOFAR is an acronym for LOw Frequency ARray, an aperture
array radio telescope operating in the 10 to 250 MHz frequency
range. It is the first of a new generation of radio telescopes, that
breaks with the concepts of traditional telescopes in several ways.
Rather than using large, expensive dishes, LOFAR uses many thou-
sands of simple antennas that have no movable parts [1, 13] (see
Figure 1). Essentially, it is a distributed sensor network that mon-
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Figure 1. A field with low-band antennas (dipoles).

itors the sky and combines all signals centrally. This concept re-
quires much more signal processing, but the additional costs of sil-
icon are easily offset by cost savings in steel that would be needed
for dishes. Moreover, LOFAR can observe the sky in many direc-
tions simultaneously and switch directions instantaneously. In sev-
eral ways, LOFAR will be the largest telescope of the world, and
will enable groundbreaking research in several areas of astronomy
and particle physics [2]. The different goals and observation types
require several different processing pipelines, however.

Another novelty is the elaborate use of software to process the
telescope data in real time. Previous generations of telescopes de-
pended on custom-made hardware to combine data, because of the
high data rates and processing requirements. However, the desire
for a flexible and reconfigurable instrument with different process-
ing pipelines for different observation types demands a software
solution. The availability of sufficiently powerful supercomputers
allows this.

The most common mode of operation for LOFAR is the stan-
dard imaging pipeline, which is used to generate sky images. This
mode filters and correlates the data sent by the stations in the field.
Several pulsar pipelines are being developed as well, that either
search large sky regions to find unknown pulsars or, once found,
sensitively observe their characteristics. We also started develop-
ment of a transient pipeline, that observes the sky for transient
events. The pipelines share common components, shortening their
development time. The software also supports multiple simulta-
neous observations, even of different types. The first part of each
pipeline runs in real time, since the receivers produce too much
data to store on disk. Only after substantial reduction of the data
volume, intermediate data products are written to disk.

In this paper, we focus on the real-time part of the stan-
dard imaging pipeline, commonly called “the correlator”. We first



Figure 2. A simplified overview of the LOFAR processing.
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present an integral overview of the correlator and a discussion of
the optimizations that we implemented. The main contribution of
this paper is an in-depth study of all performance aspects, real-time
behavior, and scalability characteristics of the correlator as a whole
(previous papers only focused on single aspects and did not include
a scalability study). We also enumerate the conditions that are nec-
essary to obtain good, real-time performance, and assert that none
of these conditions can be ignored.

The receivers produce hundreds of gigabits per second. To han-
dle the high data rate, we use the BG/P in an unconventional way:
we run application software on the so-called I/O nodes to pre-
process and post-process data that are further handled on the com-
pute nodes. This yields an efficient system and substantially saved
us on costs [5]. Additionally, we developed a low-overhead network
protocol [10] for communication between I/O nodes and compute
nodes, since we were not able to achieve the required internal input
and output data rates with the standard network software. The cor-
relator achieves very high computational performance: it sustains
96% of the theoretical floating-point peak performance during the
computational phase [11]. The application scales to data rates well
beyond the requirements; in fact, the performance is so good that it
led to the decision to change the LOFAR specifications: the instru-
ment can observe over 50% more sources or frequencies simulta-
neously than in its original design specifications, greatly enhancing
the efficiency of the entire instrument.

This paper is structured as follows. We mention related work in
Section 2. In Section 3, we give an overview of the LOFAR tele-
scope. Then, in Section 4, we describe the hardware characteristics
of the BG/P. Next, we explain how we process the telescope data on
the BG/P, (Section 5), focusing on the processing on the I/O nodes
(Section 6) and compute nodes (Section 7). Section 8 extensively
discusses performance results. In Section 9, we briefly illustrate the
astronomical results of the correlator output. Finally, we discuss,
conclude, and describe future work in Section 10.

2. Related Work
The idea to implement a correlator in software has been adopted by
others as well. However, the LOFAR correlator is the only system
capable of processing a large number of inputs at high data rates in
real time. Other systems handle only a few inputs, handle limited
data rates, or do not run in real time.

Deller et al. [3] have developed the DiFX distributed software
correlator, which is to be deployed on a cluster of PCs. Due to the
use of commodity hardware, both their communication and com-
putational capabilities are substantially lower than those available
in our Blue Gene/P. The real-time data processing of the Murchi-
son Widefield Array (MWA) telescope is implemented partially in
software. However, their correlator, computationally the most de-
manding part of the processing pipeline, is not implemented in

software, but on FPGAs [9]. Finally, the Joint Institute for VLBI
in Europe (JIVE) develops a new software correlator for e-VLBI
observations, but is not capable of processing telescope data in real
time [6], even though the title of their paper suggests otherwise.

On our previous platform, the BG/L, we were dissatisfied with
the I/O model and its performance. This led to a joint effort with Ar-
gonne National Laboratory to redesign the entire network software
infrastructure, and resulted in a new environment called ZOID [5].
ZOID yields far better performance and is much more flexible,
since it allows application code to be run on the I/O nodes. The
standard BG/P software infrastructure is a major improvement over
the BG/L, since it now incorporates several of ZOID’s key ideas
(e.g., that of running application code on the I/O nodes). Therefore,
we do not have to use ZOID on the BG/P anymore. Nevertheless,
the achieved performance of the collective network that we use to
send LOFAR data from the I/O nodes to the compute nodes still is
unsatisfactory. We therefore developed our own high-performance
low-overhead protocol, called FCNP. We describe FCNP in [10],
but summarize the relevant features in Section 6.1.

In another paper, we compare the efficiency of five many-core
architectures (GPUs from NVIDIA and ATI, the Cell/B.E., the Blue
Gene/P, and the Intel Core i7) for correlation purposes [8].

3. The LOFAR Telescope
LOFAR is driven by the astronomical community, which needs a
new instrument to study an extensive amount of new science cases.
Five key science projects have been defined. First, we expect to
see the Epoch of Reionization (EoR), the time when the first star
galaxies and quasars were formed. Second, LOFAR offers a unique
possibility in particle astrophysics for studying the origin of high-
energy cosmic rays. Neither the source, nor the physical process
that accelerates such particles is known. Third, LOFAR’s ability to
continuously monitor a large fraction of the sky makes it uniquely
suited to find new pulsars and to study transient sources. Since
LOFAR has no moving parts, it can instantaneously switch focus
to some galactic event. Fourth, Deep Extragalactic Surveys will be
carried out to find the most distant radio galaxies and study star-
forming galaxies. Fifth, LOFAR will be capable of observing the
so far unexplored radio waves emitted by cosmic magnetic fields.
For a more extensive description of the astronomical aspects of the
LOFAR system, see De Bruyn et. al. [2].

A global overview of the LOFAR instrument is given in Fig-
ure 2. LOFAR uses two different types of antennas: the Low-Band
Antennas (LBA) for the 10–80 MHz frequency range and High-
Band Antennas (HBA) for the 110–250 MHz band. FM radio trans-
missions make the in-between range unsuitable for observations.
Figure 1 shows a field with LBAs. Each LBA consists of one dipole
per polarization, while each HBA is organized as a tile combining
16 antenna elements. All antennas are dual polarized.



LOFAR’s antennas are structured in a hierarchical way to limit
the costs of data transport and processing. Tens of thousands of an-
tennas are necessary to obtain sufficient sensitivity. The antennas
are distributed over a large area to achieve a high angular resolu-
tion. However, combining the data of all individual antennas cen-
trally would require too much network bandwidth and would result
in excessive computational requirements. Therefore, multiple an-
tennas are grouped to form a station. The signals of the receivers
are combined locally, within the station, using FPGAs.

Each station is equipped with 48–96 LBAs and 48–96 HBA
tiles. A station also features a cabinet where initial processing is
done, like analog-to-digital conversion, filtering, frequency selec-
tion, and combination of the signals from the different receivers.
One of the distinctive properties of LOFAR is that the receivers
are omni-directional, and that multiple, simultaneous observation
directions are supported. Since observing the sky in all frequencies
and all directions at the same time would result in an unmanageable
output data rate, the observer selects a limited number of directions
and frequencies, called subbands.

Geographically, LOFAR consists of a 2-kilometer wide com-
pact core area of 20 stations, 16 remote stations with a maximum
distance of 125 km, and 8 international stations, with a maximum
distance of 1300 km (see Figure 3). The heart of LOFAR is in-
stalled in the Northern part of the Netherlands. Each HBA field of
a compact core station can optionally be split into two fields, so
they can appear as 40 core stations to the correlator. The long dis-
tance between the European stations allows observations with high
angular resolution, but with a limited Field-of-View; therefore the
European stations will not be used for all observations. The roll-out
of the stations is currently in progress. As of October 2009, six sta-
tions are fully functional; another 22 stations are under construction
or partially functional.

The station data are transported to the central processing lo-
cation via a Wide-Area Network (WAN), using dedicated light
paths. We use UDP for data transport, since we can easily tolerate
some data loss. We do not use a reliable protocol such as TCP, be-
cause this significantly complicates the programming of the station
FPGAs, due to buffering, flow control, retransmission, and real-
time issues.

The UDP packets contain samples, where a sample is a complex
number that represents the amplitude and phase of a signal at a
particular time. A sample is encoded by a 2 × 4, 2 × 8, or 2 × 16-
bit complex integer. Data can be invalid for various reasons, such
as lost network packets or Radio Frequency Interference (RFI,
e.g., caused by TV transmitters). Throughout the entire processing
chain, we maintain which data is marked as invalid, so that eventual
images are not distorted by bad data.

This paper focuses on the real-time, central processing of LO-
FAR data on an IBM Blue Gene/P supercomputer, and in particu-
lar on the standard-imaging mode. We chose the BG/P as the cen-
tral processing platform, instead of, for instance, a cluster with a
fast local interconnect, for several reasons. First, the BG/P has ex-
cellent hardware support for complex numbers, a feature that is
of key importance for signal-processing applications, but is lack-
ing in general-purpose architectures. Moreover, the BG/P has a
very high memory bandwidth per operation. This leads to supe-
rior performance for our data-intensive applications, compared to
other platforms [8]. In addition, the BG/P provides a high-speed
3D-torus network that can effectively implement a data-transpose
that is crucial for our application, at the bandwidth we require (see
Section 7.2). Finally, the BG/P is a power-efficient supercomputer.
Electrical power costs form a large part of the operational costs for
the LOFAR instrument. At the time of purchase, the BG/P was the
highest-ranking system on the green500 list for energy efficient su-
percomputers (see www.green500.org).

Our pipeline on the BG/P filters the data, and splits the sub-
bands in narrower frequency bands called channels, which allow
for more accurate RFI removal. In addition, we perform phase
shift and bandpass corrections. Finally, the signals from all stations
are optionally beam-formed, correlated and forwarded to a storage
cluster, where results can be kept for several days. After an observa-
tion has finished, further processing is done off-line, on commodity
cluster hardware. Despite considerable computational challenges,
the scope of this paper does not cover the off-line processing.

Prototypes of other observation modes, used to find and observe
pulsars, are functional, but are not optimized for performance yet.
Hence, we do not discuss the pulsar modes in this paper. However,
the presence of multiple observation modes demonstrates the flexi-
bility of a software solution.

4. The Blue Gene/P
Initially, LOFAR used a 6-rack IBM Blue Gene/L supercomputer
for real-time processing of the station data. We recently replaced
the system by a more powerful 3-rack Blue Gene/P. Below, we
describe the key features of the Blue Gene/P. More information can
be found elsewhere [12].

Our system contains 12,480 processor cores that provide 42.4
TFLOPS peak processing power. One chip contains four Pow-
erPC 450 cores, running at a modest 850 MHz clock speed to re-
duce power consumption and increase package density. Each core
has two Floating-Point Units (FPU) that provide support for oper-
ations on complex numbers. The compute nodes run a fast, simple,
single-process kernel (Compute Node Kernel, CNK),

The BG/P contains several networks. A fast 3-dimensional torus
connects all compute nodes and is used for point-to-point and all-
to-all communications. Unlike the BG/L, the torus uses DMA to
offload the CPUs and allows asynchronous communication. The
collective network is used for MPI collective operations, but also
for external communication. Additional networks exist for fast
barriers, initialization, diagnostics, and debugging.

Each group of (in our case) 16 compute nodes is connected to
an I/O node via the collective network. Normally, the I/O node is
used as a black box that provides transparent communication from
the compute nodes to external systems. In Section 6, we show that
it is much more efficient to run part of the application software on
the I/O node. An I/O node uses the same hardware as a compute
node, but has its 10 Gb/s Ethernet interface connected and runs
another operating system (a modified Linux kernel). The group of
one I/O node and its associated compute nodes is called a pset. Our
system has 192 psets in total, 64 per rack.

5. LOFAR Processing

Figure 4. Data flow diagram for the central processing pipeline.

The LOFAR station data are centrally processed in real time
by a collection of three distributed applications. These applications
run on different platforms: the Blue Gene/P I/O nodes, the Blue
Gene/P compute nodes, and on external (PC-like) storage nodes.
Figure 4 shows how the data flows through the entire processing



chain. The first application, IONProc, runs on the Blue Gene/P I/O
nodes. Its main tasks are to receive the station UDP data, to buffer
the data for up to 2.5 seconds, and to forward it to the compute
nodes in the pset. The second application, called CNProc, runs
on the Blue Gene/P compute nodes, where the compute-intensive
processing takes place. The main tasks are to reorder the data across
the compute nodes over the internal torus network, to filter the data,
and to beam-form and/or correlate the filtered data. The resulting
data are then sent back to the I/O-node application, that collects
the data from the compute nodes and sends the data to the storage
nodes. This is where the third application (StorageProc) runs. The
storage nodes are PC-like systems with large disks. The storage
application collects the data from the I/O nodes and writes the data
to disk.

6. I/O-node Processing
We use the Blue Gene in an innovative way, by running application
software on the I/O nodes. On the Blue Gene/L, this required
rewriting major parts of the system software [5], but this idea is
much better supported on the Blue Gene/P.

Figure 5. Data flow diagram for the I/O nodes.

We run one multi-threaded process on each I/O node that takes
care of two tasks: the handling of input and the handling of output
(see Figure 5). The input section deals with receipt of UDP station
data, buffering, and forwarding to the compute nodes. The output
section collects outgoing result data from the compute nodes, op-
tionally integrates the data over multiple seconds in time, and for-
wards the data to storage. An I/O node may run both sections, only
one of them, or none at all, depending on the configuration. Both
tasks are described in detail below.

6.1 The Input Section
The LOFAR stations send UDP packets with sampled data over a
dedicated Wide-Area Network to a BG/P I/O node. The data are
received by the input section. To simplify the implementation of
the correlator, there is a one-to-one mapping between stations and
I/O nodes, so that one I/O node receives all data from a single
station. However, handling the full 3.1 Gb/s data rate of a station
on a relatively slow CPU is quite a challenge, since sufficient
processing time must be left for handling output as well. Note that
an I/O node does not run the input section if it is not connected to
a station.

The input section receives the UDP packets, taking care of out-
of-order, duplicated, and lost packets. At each station, four of the
FPGAs send data to their associated I/O node, each FPGA to a
different UDP port. The I/O node runs four “input” threads, one
thread per socket. Multiple threads are necessary, since we have to
utilize multiple cores; a single core is too slow to receive all data.
Together, the threads receive a total of 48,828 packets per second.

The samples from the received UDP packets are copied into
a circular buffer that holds the most recent 2.5 seconds of data.

The buffer serves three purposes. First, it is used to synchronize
the stations, since the travel times over the WAN are higher for
the international stations than for the central stations. Second, the
buffer prevents data loss due to small variations in processing
times of the remainder of the pipeline. Third, the buffer is used
to artificially delay the stream of samples, as we will explain in
Section 7.3. The buffer is limited by the small memory size, but
due to good real-time behavior of the application, 2.5 seconds is
sufficient.

Another thread reads data from the circular buffer and sends the
data to the compute nodes for further processing. It sends data in
large bursts that contain approximately one second worth of sam-
ples. Unfortunately, existing network software did not provide suf-
ficient bandwidth and consumed too much CPU time. We therefore
developed FCNP (Fast Collective-Network Protocol), a network li-
brary for high-bandwidth communication between the I/O nodes
and the compute nodes [10]. FCNP achieves link-speed bandwidths
for large messages, due to its low overhead. The data are sent di-
rectly from the circular buffer without additional copying. In con-
trast to the UDP receive, one thread is sufficient to obtain the re-
quired throughput, thanks to the low processing overhead of FCNP.

The correlator typically processes in real time, but can also cor-
relate pre-recorded data off-line, frequently used for experimental
observations. When processing in real time, the NTP-synchronized
wall-clock time is used to trigger the sending of a new block of data.
A block of data containing samples from time t1 to t2 are sent some
hundreds of milliseconds (the WAN delay plus a safe margin) after
t2, whether or not all data were actually received from the station.
This assures real-time continuation of the correlator and provides
fault-tolerance against a failing station or WAN link. In practice,
this method causes hardly any data loss. When processing off-line,
the input is read from file or TCP socket rather than a UDP socket.
In off-line mode we do not use the wall-clock time as trigger, but
we synchronize the threads that read and write the circular buffer
differently to prevent them from overtaking each other.

6.2 The Output Section
The bulk of the signal processing is done on the compute nodes,
on which we elaborate in Section 7. The resulting output data are
sent back to the I/O node. The second major task of the I/O-node
application is the output section, that handles output data. This task
consists of four operations.

First, the data are received from the compute nodes, also using
FCNP. Second, the data are optionally added to previously received
data from other compute nodes in the pset, if integration over mul-
tiple seconds is desired. Third, the (possibly integrated) output is
queued in a buffer. Fourth, another thread asynchronously dequeues
the data and sends them to a storage node, using TCP.

The queue improves real-time behavior and increases fault tol-
erance, since it handles data on a best-effort basis. If, for any rea-
son, the data are not sent quickly enough to the storage node, the
queue fills up and subsequent data are simply discarded until space
is available. This way, we can tolerate disk and network failures.
This mechanism is important to keep the correlator running in real
time: it is much better to lose a small part of the data than to stall
the entire correlator and lose all data. Under normal circumstances,
no data are lost here.

6.3 Optimizations
Processing power on the I/O nodes is a scarce resource, and most
observation modes are I/O bound. We performed many optimiza-
tions to improve processing speed. An important improvement was
to implement the function that copies data from a received UDP
packet to the circular buffer in assembly. This way, we can ex-
ploit the efficient 16-byte load and store instructions, which are un-
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Figure 6. Data flow diagram for the compute nodes.

known to the C++ compiler. Unfortunately, the copy itself cannot
be avoided, since an UDP packet contains data of many frequency
subbands that must be stored to different memory locations.

Despite this optimization, we initially found that copying was
very slow. This was caused by the fact that the PowerPC 450 cannot
handle TLB1 misses in hardware, but generates an interrupt and
handles the fault in software. This is not a problem on the compute
nodes, where the compute-node kernels map all memory using a
few large pages, so that TLB misses do not occur. However, the
I/O nodes run a Linux kernel that typically uses a page size of
4 KiB, generating a huge number of TLB-miss interrupts.

To avoid the interrupts, we use a modified ZeptoOS (Linux-
based) kernel[14]. It allows a process to pin 1.5 GiB (out of 2 GiB)
of physical memory in its virtual memory map, using six fixed
mappings of 256 MiB that are never evicted from the TLB. Hence,
this memory does not generate TLB misses. The remainder of the
memory is used for normal, paged operation. The application uses
the fast memory for the circular buffer and for the output queues.
Copying data from received UDP packets to the input buffer is up
to five times faster than when using paged memory.

To achieve good real-time behavior, we found that it is of utmost
importance to carefully manage thread priorities using the Linux
real-time scheduler. Since the compute nodes must always be able
to proceed, they must be fed with data without delays. Therefore,
the thread that sends data from the circular buffer to the compute
nodes runs at the highest priority, and is scheduled as soon as the
wall-clock time triggers. The thread that reads results from the
compute nodes is almost as important, since compute nodes will
not accept new work before the previous results were read by the
I/O node. Other threads, such as the threads that read UDP data, and
the threads that send data from the output queues are less important:
if they would ever fail to meet a real-time deadline, only a small
amount of data is lost. In practice, under normal circumstances,
this rarely happens (see Section 8.1).

7. Compute-node Processing
The bulk of the signal-processing computations take place on the
compute nodes. In this section, we continue describing the pro-
cessing pipeline depicted in Figure 4. We explain how the work is
scheduled over the compute nodes, how the data are received from
the I/O nodes, how the data are exchanged between other compute
nodes, what signal processing takes place, and which optimizations
were implemented. The compute node pipeline is shown in more
detail in Figure 6.

7.1 Scheduling
The I/O node chops the data stream that comes from the station into
chunks of one frequency subband and approximately one second of
time. Such a chunk is the unit of data that is sent to the compute

1 Translation Look-aside Buffer: a cache that caches virtual-to-physical
address mappings — indispensable for efficient virtual memory.

node for further processing. Since processing a chunk typically
takes much longer than one second, the chunks are distributed
round robin over a group of processor cores, as illustrated by
Figure 7. Subsequent chunks are processed by different processor
cores. A core first receives data from the I/O node, processes them,
sends back the results, and idles until the I/O node sends new data.
A core must finish its work before it is time to process the next
chunk.

Figure 7. Round-robin work distribution.

For simplicity, Figure 7 shows the processing of three subbands
on six cores. In reality, scheduling is more complex. The subbands
that must be processed are first (more or less) evenly divided over
the psets. Typically, a pset is responsible for a fixed set of four to
sixteen subbands. Then, the subbands are scheduled round robin
over the 64 cores within the pset. For example, if a pset processes
six subbands, then every second, the next six cores are scheduled
and each of the cores will process one subband. In this example, the
available time to process one subband is ten seconds (b 64

6 c). Since
consecutive chunks of a particular subband are always processed
by cores within the same pset, the output for the subband is always
sent via the same I/O node. This greatly simplifies communication
to the storage nodes and avoids all-to-all communication over the
10 GbE switches. If we would have scheduled all subbands over
one large pool of compute cores rather than psets, additional com-
munication over the torus to reroute the output would have been
necessary. On the BG/L, this could not be implemented efficiently
due to the inability to asynchronously communicate data using a
DMA engine; on the BG/P, it unnecessarily increases torus com-
munication.

7.2 All-to-All Data Exchange
The compute nodes perform several operations on the data, as
shown in Figure 6. The very first step is to exchange data with
another group of processor cores. This is necessary, because an
I/O node receives all frequency subbands from one station, but the
correlator requires one frequency subband from all stations (we ex-
plain this in more detail below). The data exchange is challenging,
since it involves hundreds of gigabits per second. Unfortunately, an
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I/O node cannot send the data directly from the circular buffer to the
compute core that will process the data, since the I/O node is only
connected to the compute nodes in its own pset. The data are thus
first sent over the collective network from the I/O node to a com-
pute node and then over the 3-D torus network. The torus provides
high bandwidth and switches packets efficiently.

Unfortunately, it is not possible to optimize for short torus paths;
due to the physical location of I/O nodes and compute nodes, the
data are necessarily exchanged between distant nodes. The band-
width between colinear and coplanar nodes is lower than between
non-coplanar nodes, since non-coplanar nodes communicate over
more links (in three dimensions) simultaneously. Figure 8 illus-
trates this; the bandwidth between nodes A and B is (in theory) three
times as high as the bandwidth between nodes A and C (in practice,
it is somewhat less). Therefore, we schedule work that needs ex-
change of data on non-coplanar cores as much as possible. We also
schedule the work so that multiple cores of the same processor do
not need to access the torus or collective network simultaneously,
since these resources are shared and simultaneous access decreases
performance. The program parts that implement the data exchange
and scheduling are, in the presence of many stations, many sub-
bands, time slicing, round-robin core allocation, and avoidance of
resource conflicts, extremely complicated, but highly efficient.

On the BG/L, the data exchange was implemented synchro-
nously, using MPI Alltoallv(). The BG/P, in contrast, uses
DMA for the torus, allowing asynchronous communication. We
re-implemented the exchange using asynchronous point-to-point
communication, that overlaps the communication over the torus
network with the transfer from the I/O nodes to the compute nodes,
and with the next four processing steps. As soon as a chunk of data
from one station has arrived, the core starts processing them, up
to the point that the data from all stations are required. As we will
explain in the next section, this is before the beam-forming step.

7.3 Signal Processing
After the data exchange, a compute core has the samples of one
subband from all stations. The data are processed in a number of
steps, as shown in Figure 6. We briefly describe the steps below;
more details can be found elsewhere [11]. We finish the section
with some remarks on flexibility and optimizations.

7.3.1 Data Conversion
First, we convert the 4-bit, 8-bit, or 16-bit little-endian integer sam-
ples to 32-bit big-endian floating point numbers. We do this be-
cause the Blue Gene is much better at floating-point processing
than integer processing. Unfortunately, there is no hardware sup-
port for integer to floating-point conversions. We therefore use a
lookup table to convert 4-bit and 8-bit numbers, and an efficient as-
sembly implementation to convert 16-bit numbers. Since the con-
version increases the data size, we perform it after the data ex-
change. Since the samples are at most 16-bit wide, single-precision

floating point is enough for our purposes. Other telescopes use typ-
ically 2–4 bits per sample.

7.3.2 The Poly-Phase Filter Bank
Next, the subband data are processed by a Poly-Phase Filter bank
(PPF) that splits a frequency subband into a number of narrower
frequency channels. In this step, we trade time resolution for fre-
quency resolution: we split a subband into N separate channels, but
with an N-times lower sampling rate per channel. With the higher
frequency resolution, we can remove RFI artifacts with a higher ac-
curacy later in the pipeline. Typically, a 195 KHz subband is split
into 256 channels of 763 Hz, but the filter supports any reasonable
power-of-two number of channels for different observation modes.

The PPF consists of two parts. First, the data are filtered using
Finite Impulse Response (FIR) filters. A FIR filter simply multi-
plies a sample with a real weight factor, and also adds a number
of weighted samples from the past. Since we have to support dif-
ferent numbers of channels, our software automatically designs a
filter bank with the desired properties and number of channels at
run time, generating the FIR filter weights on the fly. This again
demonstrates the flexibility of a software solution. For performance
reasons, the implementation of the filter is done in assembly. Next,
the filtered data are Fourier Transformed. We use the Blue Gene
“Vienna” version of FFTW [7] to do this. Since the most common
observation mode uses 256 channels, we optimized this case a bit
further, and manually wrote a more efficient assembly implementa-
tion for the 256-point FFT.

7.3.3 Phase Shift Correction
Due to the finite speed of electromagnetic waves, the wavefront
from a celestial source hits stations at different times (see Figure 9).
The time difference depends on the direction of the observed source
and on the station positions, and is continuously altered by the
rotation of the earth. Therefore, all station streams have to be
aligned before the signals can be correlated.

Since delays can be larger than the sample period, we perform
delay compensation in two steps. First, we correct for integer multi-
ples of the sample period by simply delaying the streams of station
samples. This shift is performed on the I/O node, by moving the
read pointer of the circular buffer (see Section 6.1).

Second, the remaining error is corrected by rotating the phase of
the signal. The phase rotation itself requires a complex multiplica-
tion per sample. The exact delays are computed for the begin time
and end time of a chunk, and interpolated in frequency and time for
each individual sample, with another complex multiplication.

7.3.4 Bandpass Correction
The bandpass correction step compensates for an artifact intro-
duced by a filter bank that runs on the FPGAs in the stations. This
filter bank performed the initial division of the antenna signals into
subbands. Without correction, some channels have a stronger signal



than others (see Figure 10). The correction is performed by multi-
plying each complex sample by a real, channel-dependent value
that is computed in advance. A station cannot correct for this arti-
fact itself, since it is only visible in channels, not in subbands.

7.3.5 Finalizing the Asynchronous Transpose
Up to this point in the pipeline, processing chunks from different
stations can be done independently, but from here on, the data from
all stations are required. Therefore, the asynchronous exchange
ends here, before the beam forming.

7.3.6 Beam Forming
The beam forming step is optional, and adds the samples from a
group of stations that are close together, so that the group forms
a virtual “superstation” with more sensitivity. By applying an ad-
ditional phase rotation (a complex multiplication), beam forming
can also be used to select observation directions, or to observe a
large parts of the sky simultaneously. The first is used for known
pulsar and transient observations, while the latter can be used
when searching for unknown pulsars, for instance. The different
beam forming modes are implemented, but not yet fully optimized.
Therefore we only mention them here to show the flexibility of a
software solution, but do not include them in the performance mea-
surements of Section 8.

7.3.7 Correlation
Finally, the samples from individual or grouped stations are corre-
lated. The received signals from sky sources are so weak, that the
antennas mainly receive noise. To see if there is statistical coher-
ence in the noise, simultaneous samples of each pair of stations
are correlated, by multiplying the sample of one station with the
complex conjugate of the sample of the other station. To reduce the
output size, the products are integrated, by accumulating all prod-
ucts. We accumulate 768 correlations at 763 Hz, so that the inte-
gration time is approximately one second, the size of a chunk. The
correlator is the most time-consuming operation in the signal pro-
cessing path, because its cost grows quadratically with the number
of stations. All other steps have a lower time complexity.

7.3.8 Flexibility
We support simultaneous pulsar and imaging observations, even on
the same data. This is more efficient since the computations in the
shared components of the pipelines are done only once. Moreover,
more astronomical science can be done with a single observation.
Additionally, in the future these pipelines can benefit from each
other. For example, the results from the standard imaging pipeline
can be used to calibrate the data in the pulsar pipeline in real time.

7.3.9 Optimizations
For optimal performance, time-critical code is written in assembly,
because the performance from compiled C++ code was completely
inadequate. We maintain equivalent C++ reference code for testing
and portability. The assembly version hides load and instruction
latencies, issues concurrent floating point, integer, and load/store
instructions, and uses the L2 prefetch buffers in the most optimal
way. Most instructions are parallel fused multiply-adds, that sustain
four operations per cycle.

Although the FIR filters, FFTs, delay compensation, and band-
pass correction are conceptually separate, consecutive blocks, their
implementations are highly interleaved to achieve better perfor-
mance. This increases the efficiency of the L1 cache. Also, the data
are laid out in memory in such a way that they are read consec-
utively as much as possible, allowing burst transfers through the
cache hierarchy.
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Figure 11. The correlation triangle is divided into 2 × 2 tiles.

An example of an optimization that we implemented is the
reduction of memory references by the correlator [11]. This is
achieved by keeping correlations that are being integrated in reg-
isters, and by reusing samples that are loaded from memory as of-
ten as possible. A sample can be used multiple times by correlating
it with the samples from multiple other stations in the same step.
For example, a sample from station A in the X polarization that is
loaded into a register pair can be correlated with the X and Y po-
larizations of stations B and C, using it 4 times. Figure 11 shows
how we correlate multiple stations at the same time. Each square
represents the XX, XY, YX, and YY correlations of the stations
as indicated by row and column number. The figure is triangular,
because we only compute the correlation of each pair of stations.
The squares labeled “A” are autocorrelations, that are treated spe-
cially since they require fewer computations. The triangle is di-
vided into as many 2 × 2 tiles as possible. With this size, the best
performance is obtained. For example, the lower right-hand-side
rectangle correlates stations 8 and 9 with stations 0 and 1. The X
and Y samples of each of these four stations are read, requiring
eight memory load instructions (one load instruction reads a com-
plex sample). Computing the correlations requires 128 real oper-
ations, i.e., 32 instructions. Hence, four floating-point instructions
per load instruction are performed. An unoptimized implementa-
tion would perform four times more memory accesses, making the
memory subsystem a severe bottleneck. The interleaved correlation
computations also help to hide the 5-cycle instruction latencies of
the fused multiply-add instructions, since the correlations are inde-
pendently computed.

8. Performance Analysis
Since only a small number of LOFAR stations have been con-
structed (the majority will become operational later this year), we
will provide performance measurements with externally generated
artificial data. We use one Blue Gene/P rack to generate UDP data,
another rack for the correlator, and half a rack to receive and dump
the correlated data. The signal processing pipeline performance
does not depend on the input data: the exact same operations are
always performed, regardless of the data values. The experiments
thus are completely realistic, since the correlator runs exactly the
way it would run with real station data.

The storage section, however, does not write the data to disk,
since we do not have enough storage nodes available yet, but this
does not influence the performance measurements of the correlator.
With one rack, we can process up to 64 stations, one per I/O node.

We show the performance results of the application by means
of three challenging observation modes which are likely to be
commonly used. Table 1 lists the characteristics of these modes.
Mode A is the standard mode, where the stations send 16-bit sam-
ples. In this mode, the FPGAs can send at most 248 subbands. The
248 subbands are evenly divided over 62 psets, so that each pset



Observation mode A B C
nr. bits per sample 16 8 4
max. nr. of subbands 248 496 992
nr. channels per subband 256 256 256
max. nr. of stations 64 64 48
input bandwidth 64 * 3.1 64 * 3.1 48 * 3.1

(nr. I/O nodes * Gb/s) = 198 = 198 = 149
output bandwidth 62 * 0.58 62 * 1.2 62 * 1.3

(nr. I/O nodes * Gb/s) = 36 = 72 = 81
available compute time 16.1 8.05 4.03

per subband (s)

Table 1. Characteristics of three challenging observation modes.

processes 4 subbands (the remaining two psets handle input data,
but do not correlate). Since there are 64 cores in one pset and an
integration time equals 1.007 second (768 samples), the available
time to process one chunk of data (1 subband) is 16.1 second.

Mode B trades accuracy for observation bandwidth, by reduc-
ing the sample size to 8 bits and doubling the number of sub-
bands. This doubles the number of frequencies or beams that are
observed simultaneously. It implies that the total input data rate re-
mains the same, but that the processing requirements and output
data rate double. The 62 psets that are used to correlate have to
process 8 subbands each, reducing the available time per subband
to 8.05 second.

Mode C uses 4-bit samples, and is only suitable for frequency
subbands that are mostly free of RFI (otherwise, the bits are used to
encode the RFI, not the signal of interest). This mode is planned for
Epoch-of-Reionization (EoR) observations, where the high number
of subbands is used to observe the sky at 32 MHz bandwidth
in six directions simultaneously. If the same amount of stations
were used, the processing requirements and output data rate would
double again, but EoR observations will only use the stations near
the center, not the remote ones. The exact number of stations
that will be correlated is not yet known, but is likely between 36
and 46. For the performance measurements, we assume the most
challenging case, and use 48 stations.

8.1 Performance on the I/O Nodes
The I/O requirements are challenging, and the processing power
on the I/O nodes is limited. Figure 12 shows where the cores of
the I/O nodes spend their time in various situations. The five major
tasks are each represented by a different color in the bar graph; the
size of each bar is proportional to the contribution to the total work
load. A load of 100% means that all four cores are fully occupied.
A load above 85% must be avoided to prevent major data loss.

We first show how the performance scales with the number of
subbands. We use a setting resembling observation mode B, for
up to 496 subbands, see Figure 12(a). The I/O nodes receive and
forward the samples of one station (up to 3.1 Gb/s) and send the
correlations of up to 8 subbands to storage (up to 1.2 Gb/s). The
figure shows that most time is spent in the receipt of UDP packets.
This amount is partially independent of the number of subbands,
since a lower number of subbands decreases the packet size (down
from 7,998 bytes), but not the amount of packets. The I/O nodes
have to handle 48,828 packets per second. All other work scales
linearly with the number of subbands.

Figure 12(b) shows the performance breakdown for the three
challenging observation modes. In the standard 16-bit sample
mode, the stations can produce at most 248 subbands (observa-
tion mode A). Hence, the output data rate (the lower two bars) is
half as high as in the 8-bit mode of scenario B. Also, copying 16-
bit samples into the circular buffer is somewhat more efficient, due
to L3-cache effects. In the 4-bit mode, only 48 stations are used.
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Figure 12. I/O node performance breakdown.

Due to the reduced number of stations, the output data rate is only
13% higher than in the 64-station/8-bit mode, rather than twice the
bandwidth of observation mode B.

Both FCNP and the fixed TLB mappings significantly con-
tribute to the low resource usage. Without either of them, the ap-
plication cannot handle these data rates in real time.

The data loss due to missed UDP packets is low: only between
1 per 106 and 1 per 104 packets are dropped under full load. These
numbers include the data loss caused by the (software) generators
and by the 10 GbE network switches. The data loss is negligible
to other places where data can be lost, (e.g., we sometimes have to
reject tens of percents of the data due to RFI), and does not hurt the
astronomical signal quality.

With the I/O-related optimizations, we obtain sufficient band-
width to support all currently foreseen observation modes on a sin-
gle rack. If the requirements would change and the need would
arise to achieve even higher bandwidths, UDP packet receipt could
be optimized by not using the read() system call interface, but
by using another interface that reads the data directly from kernel
buffers and does not enforce a (370 MiB/s!) kernel-to-user-space
copy. Right now, we feel no need to implement the required kernel
changes. Alternatively, the second rack could be used.

8.2 Performance on the Compute Nodes
Figure 13 shows how the compute nodes spend their time. The
vertical axis shows the execution time to process one subband with
1.007 second of station samples.

Before presenting the performance of the three observation
modes described above, we show how the performance scales with
the number of stations. Figure 13(a) shows execution times for up
to 64 stations in a setting that is similar to observation mode B.
The O(n2) complexity of the correlator is clearly visible (the cor-
relations between all pairs of stations are computed), while other
components scale linearly with the number of stations. Despite the
high data rates, I/O requires hardly any time on the compute nodes.
It is important to realize that the time for input or output cannot
exceed 1/64th of the total time, since the associated I/O node also
needs time to communicate with the other 63 cores in the pset.
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Figure 13. Compute node performance breakdown.

The performance results hardly differ for the 16-bit and 8-bit
modes, since only the performance of the data receipt from the
I/O node and data exchange phase are affected by the sample
size, both of which hardly contribute to the total run time. This
is clearly illustrated by Figure 13(b), where the execution times for
observation modes A and B are nearly the same. The run time for
observation mode C is lower, since this mode processes 48 rather
than 64 stations. All modes run within their real-time constraints of
16.1, 8.05, and 4.03 seconds respectively. The load on the compute
nodes is 35%, 70%, and 84% respectively.

The asynchronous transpose is much more efficient than the
original synchronous version. It successfully overlaps communi-
cation with computations, reducing the data exchange overhead by
roughly a factor of four.

The correlator is extremely efficient: it achieves 96% of the FPU
peak performance, due to the highly-optimized assembly code. The
FIR filter runs at 86% of the peak performance, and the hand-
crafted 256-point FFT runs at 44%. Compared to “Vienna” FFTW,
which is already efficient, our hand-written FFT is about 34%
faster. Compared to equivalent C++ code that is written for clar-
ity and not specifically tuned for optimal performance, the hand-
written assembly code is typically an order of magnitude faster.

Due to all optimizations, the correlator can process 50% more
data than the specifications require, on only half the amount of
planned resources. Only if the need to correlate more than 64 sta-
tions would arise, or if significant additional real-time signal pro-
cessing would be needed, the second rack must be employed. We
can exploit the compute power we saved to run other observation
types simultaneously, or to do additional signal processing that im-
proves the signal quality, such as real-time flagging and real-time
calibration.

9. Astronomical Results
The system we described is used on a daily basis for observations,
using the currently available stations. The images we show in this
section are created with real data. A graphical representation of
the correlator output is depicted in Figure 14. The figure shows the
cross-correlations from two of the stations used during a 9-hour ob-

Figure 14. Correlations from a 9-hour observation.

servation. The horizontal axis represents time; the vertical axis rep-
resents the 256 channels of one frequency subband. Each pixel cor-
responds to a (complex) correlation, where the color represents the
phase of the signal; the intensity matches the amplitude (power).
The phase changes over time, due to the earth rotation that alters
the relative position of the observed sources and thus the time dif-
ference between the two stations. The white spots are caused by
RFI; these bad data are detected and ignored in the remainder of
the processing pipeline.

Figure 15. An all-sky image created with LOFAR antennas.

The correlations are used to create images. Even with the lim-
ited amount of stations that have been employed, impressive (all-
sky) images were made (see Figure 15). Also, the prototype pulsar
pipeline software successfully detected several known pulsars [4].

10. Conclusions and Future Work
In general, we are rather satisfied with the capabilities of the Blue
Gene/P as a platform for a real-time correlator. The double FPU is
highly efficient and provides excellent support for complex num-
bers, which is indispensable for signal processing. The relatively
high memory bandwidth helps to keep the FPUs busy. The 3-D
torus easily handles the all-to-all exchange, thanks to the high band-
width, its switching capabilities, and a DMA controller. We also
think that the programming environment of the Blue Gene/P is
a considerable improvement over its predecessor, and are pleased
with the open programming interfaces. The power efficiency of the
Blue Gene/P is good, thanks relatively low clock frequency of the
processors. The Cell BE is more energy efficient [8], but does not
incorporate a high-speed interconnect.

There are some disadvantages as well. Most notably, the separa-
tion of compute nodes and I/O nodes, along with their limited con-
nectivity (within a pset only), and the use of two networks types
complicates and impedes efficient streaming of data into the ma-
chine. For example, data cannot be sent directly from an I/O node



to compute nodes outside its pset. Also, the absence of a hardware
TLB-miss handler causes significant performance degradation with
paged memory. Furthermore, double-precision floating-point arith-
metic is overkill for our application. While many other architec-
tures (e.g., the IBM PowerXCell 8i, SSE) provide twice the num-
ber of FLOPS for single-precision arithmetic, this is not the case for
the Blue Gene. A minor disadvantage is the omission of an integer-
to-floating-point conversion instruction. Finally, the need to use as-
sembly to obtain sufficient performance complicates programming;
the gap with compiled C++ code is large.

To handle the high LOFAR station data rates, we use the I/O
nodes in an unorthodox way: they run the part of the application
software that takes care of external communication. A custom net-
work protocol (FCNP) provides link-speed bandwidths between the
I/O nodes and compute nodes, and reduces the CPU utilization. On
the I/O nodes, the use of a large, pinned memory area avoids exces-
sive amounts of TLB-miss interrupts. Managing thread priorities
using the Linux real-time scheduler is important to achieve good
real-time behavior. Special provisions were made to obtain fault
tolerance against station, WAN link, and disk failures.

Furthermore, we demonstrated that the correlator achieves ex-
ceptionally high performance, both computationally and with re-
spect to I/O, due to the applied optimizations. The correlations
are computed at 96% of the FPU peak performance; other signal-
processing functions perform impressively as well. The work distri-
bution scheme is efficient but complex, due to the real-time require-
ments, the need to exchange data, and the avoidance of resource
contention.

We showed performance measurements for the most challeng-
ing observation modes that are currently foreseen. Due to the op-
timizations, we need only half the amount of planned resources
to process 50% more station data than the LOFAR specifications
require. The latter ability led to the decision to adjust the specifica-
tions, resulting in a major improvement in the effectiveness of the
entire telescope.

Generalizing the lessons learned, we conclude that to achieve
high performance, high bandwidths, and real-time behavior, it is
necessary to consider all performance-related aspects of the appli-
cation integrally, without ignoring any of them:

• close integration with the hardware, e.g., by writing kernels in
assembly;
• using real-time thread scheduling;
• using a work distribution scheme that avoids all forms of re-

source contention;
• using optimized network protocols and asynchrounous I/O;
• computing on I/O nodes;
• operating system modifications to circumvent inefficient hard-

ware (TLBs).

Traditionally, real-time telescope data are processed using cus-
tomized hardware. However, LOFAR’s innovative, dishless design,
with many thousands of omni-directional antennas, allows new
types of observations that need different processing pipelines. The
required flexibility is obtained by using the software presented in
this paper. For example, we have other functional pipelines for pul-
sar observations, that we are currently optimizing. Future work in-
cludes the integration of other processing pipelines, real-time cali-
bration, and possibly real-time RFI removal.
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