
BUILDING CORRELATORS WITH MANY-CORE HARDWARE

Rob V. van Nieuwpoort and John W. Romein

Stichting ASTRON (Netherlands Institute for Radio Astronomy)
Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands

{nieuwpoort,romein}@astron.nl

ABSTRACT
Radio telescopes typically consist of multiple receivers whose
signals are cross-correlated to filter out noise. A recent trend
is to correlate in software instead of custom-built hardware,
taking advantage of the flexibility that software solutions of-
fer. Examples include e-VLBI and LOFAR. However, the
data rates are usually high and the processing requirements
challenging. Many-core processors are promising devices to
provide the required processing power.

In this paper, we explain how to implement and optimize
signal-processing applications on multi-core CPUs and many-
core architectures, such as the Intel Core i7, NVIDIA and ATI
GPUs, and the Cell/B.E. We use correlation as a running ex-
ample. The correlator is a streaming, possibly real-time appli-
cation, and is much more I/O intensive than applications that
are typically implemented on many-core hardware today. We
compare with the LOFAR production correlator on an IBM
Blue Gene/P supercomputer. We discuss several important
architectural problems which cause architectures to perform
suboptimally, and also deal with programmability.

The correlator on the Blue Gene/P achieves a superb 96%
of the theoretical peak performance. We show that the pro-
cessing power and memory bandwidth of current GPUs are
highly imbalanced. Because of this, the correlator achieves
only 16% of the peak on ATI GPUs, and 32% on NVIDIA
GPUs. The Cell/B.E. processor, in contrast, achieves an ex-
cellent 92%. Many of the insights we discuss here are not
only applicable to telescope correlators, are valuable when
developing signal-processing applications in general.

1. INTRODUCTION

Radio telescopes produce enormous amounts of data. The
Low-Frequency Array (LOFAR) [1], for instance, will pro-
duce some tens of petabits per day, and the Australian SKA
Pathfinder will even produce over six exabits per day [2].
These modern radio telescopes use many separate receivers
as building blocks, and combine their signals to form a single
large and sensitive instrument.

To extract the sky signal from the system noise, the corre-
lator correlates the signals from different receivers, and inte-
grates the correlations over time, to reduce the amount of data.

This is a challenging problem in radio astronomy, since the
data volumes are large, and the computational demands grow
quadratically with the number of receivers. Correlators are
not limited to astronomy, but are also used in geophysics [3],
radar systems [4], wireless networking [5], etc.

Traditionally, custom-built hardware, and later FPGAs
were used to correlate telescope signals. A recent develop-
ment is to use a supercomputer [6]. Both approaches have
important advantages and disadvantages. Custom-built hard-
ware is efficient and consumes modest amounts of power, but
is inflexible, expensive to design, and has a long development
time. Solutions that use a supercomputer are much more flex-
ible, but are less efficient, and consume more power. Future
instruments, like the Square Kilometre Array (SKA), need
several orders of magnitude more computational resources.
It is likely that the requirements of the SKA cannot be met
by using current supercomputer technology. Therefore, it is
important to investigate alternative hardware solutions.

General-purpose architectures no longer achieve perfor-
mance improvements by increasing the clock frequency, but
by adding more compute cores and by exploiting parallelism.
Intel’s recent Core i7 processor is a good example of this.
It has four cores and supports additional vector parallelism.
Furthermore, the high-performance computing community
is steadily adopting clusters of Graphics Processor Units
(GPUs) as a viable alternative to supercomputers, due to their
unparalleled growth in computational performance, increas-
ing flexibility and programmability, high power efficiency,
and low purchase costs. GPUs are highly parallel and contain
hundreds of processor cores. An example of a processor that
combines GPU and CPU qualities into one design is the Cell
Broadband Engine [7]. The Cell/B.E. consists of an “ordi-
nary” PowerPC core and eight powerful vector processors
that provide the bulk of the processing power. Programming
the Cell/B.E. requires more effort than programming an or-
dinary CPU, but various studies showed that the Cell/B.E.
performs well on signal-processing tasks like FFTs [8].

In this article, we explain how many-core architectures
can be exploited for signal-processing purposes. We give
insights into their architectural limitations, and how to best
cope with them. We treat five different, popular architec-
tures with multiple cores: the Cell/B.E., GPUs from both



NVIDIA and ATI, the Intel Core i7 processor, and the IBM
Blue Gene/P (BG/P) supercomputer. We discuss their simi-
larities and differences, and how the architectural differences
affect optimization choices and the eventual performance of a
correlator. We also discuss the programmability of the archi-
tectures. We focus on correlators, but many of the findings,
claims, and optimizations hold for other signal-processing al-
gorithms as well, both inside and outside the area of radio as-
tronomy. For instance, we discuss another signal-processing
algorithm, radio-astronomy imaging, on many-core hardware
elsewhere [9]. In this paper, we use the LOFAR telescope
as a running example, and use its production correlator on
the BG/P as a comparison. This way, we demonstrate how
many-core architectures can be used in practice for a real ap-
plication. For educational purposes, we made the correlator
implementations for all architectures available online. They
exemplify the different optimization choices for the different
architectures. The code may be reused under the GNU public
license. We describe and analyze the correlator on many-core
platforms in much more detail in [10].

2. TRENDS IN RADIO ASTRONOMY

During the past decade, new types of radio-telescope concepts
emerged that rely less on concrete, steel, and extreme cool-
ing techniques, but more on signal-processing techniques.
For example, LOFAR [1], MeerKAT (Karoo Array Tele-
scope) [11] and ASKAP (Australian Square Kilometre Array
Pathfinder) [2] are distributed sensor networks that com-
bines the signals of many receiver elements. All three are
pathfinders for the future SKA (Square Kilometre Array) [12]
telescope, which will be orders of magnitude larger. These
instruments combine the advantages of higher sensitivity,
higher resolution, and multiple concurrent observation direc-
tions. But, they require huge amounts of processing power to
combine the data from the receiving elements.

The signal-processing hardware technology used to pro-
cess telescope data also changes rapidly. Only a decade ago,
correlators required special-purpose ASICs to keep up with
the high data rates and processing requirements. The advent
of sufficiently fast FPGAs significantly lowered the develop-
ments times and costs of correlators, and increased the flexi-
bility substantially. LOFAR requires even more flexibility to
support many different processing pipelines for various ob-
servation modes, and uses FPGAs for on-the-field processing
and a BG/P supercomputer to perform real-time, central pro-
cessing. We describe LOFAR in more detail below.

2.1. The LOFAR telescope

LOFAR is an aperture array radio telescope operating in the
10 to 250 MHz frequency range [1]. It is the first of a new
generation of radio telescopes, that breaks with the concepts
of traditional telescopes in several ways. Rather than using

Fig. 1. A field with LOFAR antennas.

large, expensive dishes, LOFAR uses many thousands of sim-
ple antennas that have no movable parts, see Figure 1. Es-
sentially, it is a distributed sensor network that monitors the
sky and combines all signals centrally. This concept requires
much more signal processing, but the costs of the silicon for
the processing are much lower that the costs of steel that
would be needed for dishes. Moreover, LOFAR can observe
the sky in many directions concurrently and switch directions
instantaneously. In several ways, LOFAR will be the largest
telescope of the world. The antennas are simple, but there
are a lot of them: 44000 in the full LOFAR design. To make
radio pictures of the sky with adequate resolution, these an-
tennas are to be arranged in clusters. In the rest of this paper,
we call a cluster of antenna’s a receiver. The receivers will
be spread out over an area of ultimately 350 km in diameter.
This is shown in Figure 3. Data transport requirements are
in the range of many tera-bits/sec and the processing power
needed is tens of tera-ops.

Another novelty is the elaborate use of software to pro-
cess the telescope data in real time. LOFAR thus is an IT-
telescope. The cost is dominated by the cost of computing
and will follow Moore’s law, becoming cheaper with time and
allowing increasingly large telescopes to be built.

LOFAR will enable exciting new science cases. First, we
expect to see the Epoch of Reionization (EoR), the time that
the first star galaxies and quasars were formed. Second, LO-
FAR offers a unique possibility in particle astrophysics for
studying the origin of high-energy cosmic rays. Third, LO-
FAR’s ability to continuously monitor a large fraction of the
sky makes it uniquely suited to find new pulsars and to study
transient sources. Since LOFAR has no moving parts, it can
instantaneously switch focus to some galactic event. Fourth,
Deep Extragalactic Surveys will be carried out to find the
most distant radio galaxies and study star-forming galaxies.
Fifth, LOFAR will be capable of observing the so far unex-
plored radio waves emitted by cosmic magnetic fields. For a
more extensive description of the astronomical aspects of the
LOFAR system, see [13].

A global overview of the LOFAR processing is given
in Figure 2. The thickness of the lines indicates the size
of the data streams. Initial processing is done in the field,
using FPGA technology. Typical operations that are per-



Fig. 2. A simplified overview of the LOFAR processing.

16 remote stations

20 core stations +

United Kingdom

the Netherlands

Germany

France

Sweden

Fig. 3. LOFAR layout.

formed there include analog-to-digital conversion, filtering,
frequency selection, and combination of the signals from the
different antenna’s. Next, the data is transported to the cen-
tral processing location in Groningen via dedicated optical
wide-area networks.

The real-time central processing of LOFAR data is done
on a BG/P supercomputer. There, we filter the data, and per-
form phase shift and bandpass corrections. Next, the signals
from all receivers are cross-correlated. The correlation pro-
cess performs a data reduction by integrating samples over
time. Finally, the data is forwarded to a storage cluster, where
results can be kept for several days. After an observation has
finished, further processing, such as RFI removal, calibration,
and imaging is done off-line, on commodity cluster hardware.
In this paper, we focus on the correlator step (the highlighted
part in the red box in Figure 2), because it must deal with
the full data streams from all receivers. Moreover, its costs
grow quadratically with the number of receivers, while all
other steps have a lower time complexity.

3. CORRELATING SIGNALS

LOFAR’s receivers are dual-polarized; they take separate
samples from orthogonal (X and Y) directions. The receivers
support 4, 8 and 16 bit integer samples, where the normal
mode of operation uses the 16 bit samples to help mitigate the
impact of strong RFI. The smaller samples are important for
observations that require larger sky coverage. Before filtering
and correlating, the samples are converted to single-precision
floating point, since all architectures support this well. This
is accurate enough for our purposes. From the perspective
of the correlator, samples thus consist of four 32-bit floating
point numbers: two polarizations, each with a real and an
imaginary part.

LOFAR uses an FX correlator: it first filters the different
frequencies, and then correlates the signals. This is more ef-
ficient than an XF correlator for larger numbers of receivers.
Prior to correlation, the data that comes from the receivers
must be reordered: each input carries the signals of many fre-

quency bands from a single receiver, but the correlator needs
data from a single frequency of all inputs. Depending on the
data rate, switching the data can be a real challenge. The data
reordering phase is outside the scope of this paper, but a cor-
relator implementation cannot ignore this issue. The LOFAR
Blue Gene/P correlator uses the fast 3D torus for this purpose;
other multi-core architectures need external switches.

The received signals from sky sources are so weak, that
the antennas mainly receive noise. To see if there is statis-
tical coherence in the noise, simultaneous samples of each
pair of receivers are correlated, by multiplying the sample of
one receiver with the complex conjugate of the sample of the
other receiver. To reduce the output size, the correlations are
integrated over time, by accumulating all products. There-
fore, the correlator is mostly multiplying and adding complex
numbers. Both polarizations of a station A are correlated with
both polarizations of a station B, yielding correlations in XX,
XY, YX, and YY directions. The correlator algorithm itself
thus is straightforward, and can be written in a single formula:
Cs1,s2≥s1,p1∈{X,Y },p2∈{X,Y } =

∑
t

Zs1,t,p1 ∗ Z∗s2,t,p2

The total number of correlations we have to compute is
(nrReceivers× (nrReceivers + 1))/2, since we need each
pair of correlations only once. This includes the autocorre-
lations (the correlation of a receiver with itself), since we
need them later in the pipeline for calibration purposes. The
autocorrelations can be computed with less instructions. We
can implement the correlation operation very efficiently, with
only four fused-multiply-add (fma) instructions, doing eight
floating-point operations in total. For each pair of receivers,
we have to do this four times, once for each combination of
polarizations. Thus, in total we need 32 operations. To per-
form these operations, we have to load the samples generated
by two different receivers from memory. As explained above,
the samples each consist of four single-precision floating-
point numbers. Therefore, we need to load 8 floats or 32
bytes in total. This results in exactly one FLOP/byte. We will
describe the implementation and optimization of the correla-
tor on the many-core systems in more detail in Section 6, but
first, we explain the architectures themselves.



Architecture Intel Core i7 IBM Blue Gene/P ATI 4870 NVIDIA Tesla C1060 STI Cell/B.E.
gflops per chip 85 13.6 1200 936 204.8
Clock frequency (GHz) 2.67 0.850 0.75 1.296 3.2
cores x FPUs per core = total FPUs 4 x 4 = 16 4 x 2 = 8 160 x 5 = 800 30 x 8 = 240 8 x 4 = 32
registers per core x register width 16 x 4 64 x 2 1024 x 4 2048 x 1 128 x 4
total device RAM bandwidth (GB/s) n.a. n.a. 115.2 102 n.a.
total host RAM bandwidth (GB/s) 25.6 13.6 4.6 5.6 25.8

Table 1. Properties of the different many-core platforms.

4. MANY-CORE ARCHITECTURES

In this section, we explain key properties of five different ar-
chitectures with multiple cores, and the most important dif-
ferences between them. Table 1 shows the most important
properties of the different many-core architectures.

General Purpose multi-core CPUs (Intel Core i7)
As a reference, we implemented the correlator on a multi-core
general-purpose architecture, in this case an Intel Core i7.
The theoretical peak performance of the system is 85 gflops,
in single precision. The parallelism comes from four cores
with hyperthreading. Using two threads per core allows the
hardware to overlap load delays and pipeline stalls with use-
ful work from the other thread. The SSE4 instruction set pro-
vides SIMD (Single Instruction, Multiple Data) parallelism
with a vector length of four floats.

IBM Blue Gene/P supercomputer
The IBM Blue Gene/P [14] is the architecture that is cur-
rently used for the LOFAR correlator. Four PowerPC pro-
cessor cores are integrated on each BG/P chip. Each core is
extended with two floating-point units, that provide the bulk
of the processing power. The BG/P is an energy-efficient su-
percomputer. This is accomplished by using many small, low-
power chips, at a low clock frequency.

ATI GPUs
ATI’s GPU with the highest performance is the Radeon
4870 [15]. The chip contains 160 cores, with 800 FPUs in
total, and has a theoretical peak performance of 1.2 teraflops.
The board uses a PCI-express 2.0 interface for communi-
cation with the host system. The GPU has 1 GB of device
memory on-board. It is possible to specify if a read should be
cached by the texture cache or not. Each streaming processor
also has 16 KB of shared memory that is completely man-
aged by the application. On both ATI and NVIDIA GPUs, the
application should run many more threads than the number
of cores. This allows the hardware to overlap memory load
delays with useful work from other threads.

NVIDIA GPUs
NVIDIA’s Tesla C1060 contains a GTX 280 GPU with 240
single precision and 30 double precision FPUs [16]. The
GTX 280 uses a two-level hierarchy to group cores. There
are 30 independent multiprocessors that each have 8 cores.

Current NVIDIA GPUs have fewer cores than ATI GPUs,
but the individual cores are faster. The theoretical peak per-
formance is 933 gflops. The number of registers is large:
each multiprocessor has 16384 32-bit floating point regis-
ters, that are shared between all threads that run on it. There
also is 16 KB of shared memory per multiprocessor. Finally,
texture-caching hardware is available. The application can
specify which area of device memory must be cached, while
the shared memory is completely managed by the application.

The Cell Broadband Engine
The Cell/B.E. [7] is a heterogeneous many-core processor, de-
signed by Sony, Toshiba and IBM (STI). The Cell/B.E. has
nine cores: one Power Processing Element (PPE), acting as
a main processor, and eight Synergistic Processing Elements
(SPEs) that provide the real processing power. An SPE con-
tains a RISC core, a 256KB Local Store (LS), and a DMA
controller. The LS is an extremely fast local memory for
both code and data and is managed entirely by the applica-
tion with explicit DMA transfers to and from main memory.
The LS can be considered the SPU’s (explicit) L1 cache. The
Cell/B.E. has a large number of registers: each SPU has 128,
which are 128-bit (4 floats) wide. The SPU can dispatch two
instructions in each clock cycle using the two pipelines desig-
nated even and odd. Most of the arithmetic instructions exe-
cute on the even pipe, while most of the memory instructions
execute on the odd pipe. For the performance evaluation, we
use a QS21 Cell blade with two Cell/B.E. processors. The 8
SPEs of a single chip in the system have a total theoretical
single-precision peak performance of 205 gflops.

5. MAPPING SIGNAL-PROCESSING ALGORITHMS
ON MANY-CORE HARDWARE

Many-core architectures derive their performance from par-
allelism. Several different forms of parallelism can be iden-
tified: multi-threading (with or without shared memory),
overlapping of I/O and computations, instruction-level paral-
lelism, and vector parallelism. Most many-core architectures
combine several of these methods. Unfortunately, an ap-
plication has to handle all available levels of parallelism to
obtain good performance. Therefore, it is clear that algo-
rithms have to be adapted to efficiently exploit many-core
hardware. Additional parallelism can be obtained by using
multiple processor chips. In this paper, however, we restrict
ourselves to single chips for simplicity.



5.1. Finding parallelism

The first step is to find parallelism in the algorithm, on all dif-
ferent levels. Basically, this means looking for independent
operations. With the correlator, for example, the thousands
of different frequency channels are completely independent,
and can be processed in parallel. But there are other, more
fine-grained sources of parallelism as well. The correlations
for each pair of receivers are independent, just like the four
combinations of polarizations. Finally, samples taken at dif-
ferent times can be correlated independently, as long as the
sub-results are integrated later. Of course, the problem now is
how to map the parallelism in the algorithm to the parallelism
provided by the architecture. We found that, even for the rel-
atively straightforward correlator algorithm, the different ar-
chitectures require very different mappings and strategies.

5.2. Optimizing memory pressure and access patterns

On many-core architectures, the memory bandwidth is shared
between the cores. This has shifted the balance between be-
tween computational and memory performance. The avail-
able memory bandwidth per operation has decreased dramat-
ically compared to traditional processors. For the many-core
architectures we use here, the theoretical bandwidth per op-
eration is 3–10 times lower than on the BG/P, for instance.
In practice, if algorithms are not optimized well for many-
core platforms, the achieved memory bandwidth can easily be
ten to a hundred times lower than the theoretical maximum.
Therefore, we must treat memory bandwidth as a scarce re-
source, and it is important to minimize the number of mem-
ory accesses. In fact, one of the most important lessons of
this paper is that on many-core architectures, optimizing the
memory properties of the algorithms is more important than
focusing on reducing the number of compute cycles that is
used, as is traditionally done on systems with only a few or
just one core.

5.2.1. Well-known memory optimization techniques

The insight that optimizing the interaction with the memory
system is becoming more and more important is not new. The
book by Catthoor et al. [17] is an excellent starting point for
more information on memory-system related optimizations.

We can make a distinction between hardware and software
memory optimization techniques. Examples of hardware-
based techniques include caching, data prefetching, write
combining, and pipelining. The software techniques can be
divided further into compiler optimizations and algorithmic
improvements. The distinction between hardware and soft-
ware is not entirely black and white. Data prefetching, for
instance, can be done both in hardware and software. Another
good example is the explicit cache of the Cell/B.E. processor.
This is an architecture where the programmer handles the
cache replacement policies instead of the hardware.

Many optimizations focus on utilizing data caches more
efficiently. Hardware cache hierarchies can, in principle,
transparently improve application performance. Neverthe-
less, it is important to take the sizes of the different cache
levels into account when optimizing an algorithm. A cache
line is the smallest unit of memory than can be transferred
between the main memory and the cache. Code can be op-
timized for the cache line size of a particular architecture.
Moreover, the associativity of the cache can be important. If
a cache is N-way set associative, this means that any particu-
lar location in memory can be cached in either of N locations
in the data cache. Algorithms can be designed such that they
take care that cache lines that are needed later are not replaced
prematurely. In addition, write combining, a technique that
allows data writes to be combined and written later in burst
mode, can be used if the ordering of writes is not important.
Finally, prefetching can be used to load data into caches or
registers ahead of time.

Many cache-related optimization techniques have been
described in the literature, both in the context of hardware
and software. For instance, an efficient implementation of
hardware-based prefetching is described in [18]. As we will
describe in Section 6, we implemented prefetching manu-
ally in software, for example by using multi-buffering on the
Cell/B.E., or by explicitly loading data into shared memory
or registers on the GPUs. A good starting point for cache-
aware or cache-oblivious algorithms is [19]. An example of
a technique that we used to improve cache efficiencies for
the correlator is the padding of multi-dimensional arrays with
extra “dummy” data elements. This can be especially impor-
tant if memory is accessed with a stride of a (large) power
of two. This way, we can make sure that cache replacement
policies work well, and subsequent elements in an array di-
mension are not mapped onto the same cache location. This
well-known technique is described, for instance, by Bacon et
al. [20]. Many additional data access patterns optimization
techniques are described in [17].

Many memory optimization techniques have been devel-
oped in the context of optimizing compilers and runtime sys-
tems (e.g., efficient memory allocators). For instance, a lot of
research effort has been invested in cache-aware memory allo-
cation; see e.g., [21]. Compilers can exploit many techniques
to optimize locality, by applying code and loop transforma-
tions such as interchange, reversal, skewing, and tiling [22].
Furthermore, compilers can optimize code for the parameters
and sizes of the caches, by carefully choosing the placement
of variables, objects, and arrays in memory [23].

The memory systems of the many-core architectures are
quite complex. GPUs, for instance, have banked device mem-
ory, several levels of texture cache, in addition to local mem-
ory, application-managed shared memory (also divided over
several banks), and write combining buffers. There also are
complex interactions between the memory system and the
hardware thread scheduler. GPUs literally run tens of thou-



feature Cell/B.E. GPUs
access times uniform non-uniform
cache sharing level single thread (SPE) all threads in a

multiprocessor
access to off-chip mem. through DMA only supported
memory access asynchronous DMA hardware-managed
overlapping thread preemption
communication DMA between SPEs independent thread

blocks & shared
mem. within a block

Table 2. Differences between memory architectures.

sands of parallel threads to overlap memory latencies, trying
to keep all functional units fully occupied. We apply the tech-
niques described above in software by hand, since we found
that the current compilers for the many-core architectures do
not (yet) implement them well on their complex memory sys-
tems.

5.2.2. Applying the techniques

So, the second step of mapping a signal-processing algo-
rithm to a many-core architecture is optimizing the memory
behavior. We can split this step into two phases: an algo-
rithm phase and an architectural phase. In the first phase,
we identify algorithm-specific, but architecture-independent
optimizations. In this phase, it is of key importance to un-
derstand that, although a set of operations in an algorithm
can be independent, the data accesses may not be. This is
essential for good performance, even though it may not be
a factor in the correctness of the algorithm. The number of
memory accesses per operation should be reduced as much as
possible, sometimes even at the cost of more compute cycles.
An example is a case where different parallel operations read
(but not write) the same data. For the correlator, the most
important insight here is a technique to exploit date reuse
opportunities, reducing the number of memory loads. We
explain this in detail in Section 6.1.

The second phase deals with architecture-specific op-
timizations. In this phase, we do not reduce the number
of memory loads, but think about the memory access pat-
terns. Typically, several cores share one or more cache levels.
Therefore, the access patterns of several different threads that
share a cache should be tailored accordingly. On GPUs, for
example, this can be done by coalescing memory accesses.
This means that different concurrent threads read subsequent
memory locations. This can be counter-intuitive, since tradi-
tionally, it was more efficient to have linear memory access
patterns within a thread. Table 2 summarizes the differences
in memory architectures of the different platforms. Other
techniques that are performed in this phase include optimiz-
ing cache behavior, avoiding load delays and pipeline stalls,
exploiting special floating-point instructions, etc. We explain
several examples of this in more detail in Section 6.2.

5.3. A simple analytical tool

A simple analytic approach, the Bound and Bottleneck anal-
ysis [24, 25], can provide more insight on the memory prop-
erties of an algorithm. It also gives us a reality check, and
calculates what the expected maximal performance is that can
be achieved on a particular platform. The number of opera-
tions that is performed per byte that have to be transferred (the
flop/byte ratio) is called the arithmetic intensity, or AI [24].
Performance is bound by the product of the bandwidth and
the AI: perfmax = AI × bandwidth. Several important as-
sumptions are made with this method. First, it assumes that
the bandwidth is independent of the access pattern. Second,
it assumes a complete overlap of communication and compu-
tation, i.e., all latencies are completely hidden. Finally, the
method does not take caches into account. Nevertheless, it
gives a rough idea of the performance than can be achieved.

It is insightful to apply this method to the correlator on
the GPUs. We do it for the NVIDIA GPU here, but the results
for the ATI hardware is similar. With the GPUs, there are
several communication steps that influence the performance.
First, the data has to be transferred from the host to the device
memory. Next, the data is read from the device memory into
registers. The host-to-device bandwidth is limited by the low
PCI-express throughput, 5.6 GB/s in this case. We can easily
show that this is a bottleneck by computing the AI for the full
system, using the host-to-device transfers. (The AI can also
be computed for the device memory.)

As explained in Section 3, the number of flops in the cor-
relator is the number of receiver combinations times 32 op-
erations, while the number of bytes that have to be loaded in
total is 16 bytes times the number of receivers. The number
of combinations is (nrReceivers × (nrReceivers + 1))/2
(see Section 3). If we substitute this, we find that the AI =
nrReceivers + 1. For LOFAR, we can assume 64 receivers
(each in turn containing many antennas), so the AI is 65
in our case. Therefore, the performance bound on NVIDIA
hardware is 65 × 5.6 = 363 gflops. This is only 39% of the
theoretical peak. Note that this even is optimistic, since it
assumes perfect overlap of communication and computation.

5.4. Complex numbers

Support for complex numbers is important for signal pro-
cessing. Explicit hardware support for complex operations
is preferable, both for programmability and performance.
Except for the BG/P, none of the architectures support this.
The different architectures require two different approaches
of dealing with this problem. If an architecture does not use
explicit vector parallelism, the complex operations can sim-
ply be expressed in terms of normal floating point operations.
This puts an extra burden on the programmer, but achieves
good performance. The NVIDIA GPUs work this way. If an
architecture does use vector parallelism, we can either store
the real and complex parts alternatingly inside a single vector,



Fig. 4. An example correlation triangle.

or have separate vectors for the two parts. In both cases, sup-
port for shuffling data inside the vector registers is essential,
since complex multiplications operate on both the real and
imaginary parts. The architectures differ considerably in this
respect. The Cell/B.E. excels; its vectors contain four floats,
which can be shuffled around in arbitrary patterns. Moreover,
shuffling and computations can be overlapped effectively. On
ATI GPUs, this works similarly. The SSE4 instructions in the
Intel CPUs do not support arbitrary shuffling patterns. This
has a large impact on the way the code is vectorized.

6. IMPLEMENTATION AND OPTIMIZATION

In this section, we explain the techniques described above by
applying them to the correlator for all different architectures.

6.1. Architecture independent optimizations

An unoptimized correlator would read the samples from two
receivers and multiply them, requiring two sample loads for
one multiplication. We can optimize this by reusing a sam-
ple as often as possible, by using it for multiple correlations
(see Figure 4). The figure is triangular, because we com-
pute the correlation of each pair of receivers only once. The
squares labeled A are autocorrelations. For example, the sam-
ples from receivers 8, 9, 10, and 11 can be correlated with the
samples from receivers 4, 5, 6, and 7 (the red square in the
figure), reusing each fetched sample four times. By dividing
the correlation triangle in 4 × 4 tiles, eight samples are read
from memory for sixteen correlations, reducing the amount of
memory operations by a factor of four. The maximum num-
ber of receivers that can be simultaneously correlated this way
(i.e., the tile size) is limited by the number of registers that an
architecture has. The samples and accumulated correlations
are best kept in registers, and the number of required registers
grows rapidly with the number of receiver inputs. The exam-
ple above already requires 16 accumulators. To obtain good
performance, it is important to tune the tile size to the archi-
tecture. There still is opportunity for additional data reuse
between tiles. The tiles within a row or column in the triangle

Fig. 5. Achieved performance on the different platforms.

still need the same samples. In addition to registers, caches
can thus also be used to increase data reuse.

6.2. Architecture-specific optimizations

We will now describe the implementation of the correlator
on the different architectures, evaluating the performance and
optimizations needed in detail. For comparison reasons, we
use the performance per chip for each architecture. The per-
formance results are shown in Figure 5.

Intel CPUs
The SSE4 instruction set can be used to exploit vector paral-
lelism. Unlike the Cell/B.E. and ATI GPUs, a problem with
SSE4 is the limited support for shuffling data within vector
registers. Computing the correlations of the four polariza-
tions within a vector is inefficient, and computing four sam-
ples with subsequent time stamps in a vector works better.
The use of SSE4 improves the performance by a factor of 3.6
in this case. In addition, multiple threads should be used to
utilize all four cores. To benefit from hyperthreading, twice as
many threads as cores are needed. For the correlator, hyper-
threading increases performance by 6%. Also, the number of
vector registers is small. Therefore, there is not much oppor-
tunity to reuse data in registers, limiting the tile size to 2× 2;
reuse has to come from the L1 cache.

The BG/P supercomputer
We found that the BG/P is extremely suitable for our appli-
cation, since it is highly optimized for processing of complex
numbers. However, the BG/P performs all floating point op-
erations in double precision, which is overkill for our applica-
tion. Although the BG/P can keep the same number of values
in register as the Intel chip, an important difference is that the
BG/P has 32 registers of width 2, compared to Intel’s 16 of
width 4. The smaller vector size reduces the amount of shuffle
instructions needed. In contrast to all other architectures we



evaluate, the problem is compute bound instead of I/O bound,
thanks to the BG/P’s high memory bandwidth per operation,
which is 3–10 times higher than for the other architectures.

ATI GPUs
The ATI architecture has several important drawbacks for
data-intensive applications. First, the host-to-device band-
width is a bottleneck. Second, overlapping communication
with computation does not work well. We observed kernel
slowdowns of more than a factor of two due to asynchronous
transfers in the background. This can clearly be seen in
Figure 5. Third, the architecture does not provide random
write access to device memory, but only to host memory.
The correlator reduces the data by a large amount, and the
results are never reused by the kernel. Therefore, they can
be directly streamed to host memory. Nevertheless, in gen-
eral, the absence of random write access to device memory
significantly reduces the programmability, and prohibits the
use of traditional programming models. ATI offers two sepa-
rate programming models, at different abstraction levels [15].
The low-level programming model is called CAL. It pro-
vides communication primitives and an assembly language,
allowing fine-tuning of device performance. For high-level
programming, ATI provides Brook+. We implemented the
correlator with both models. In both cases, the program-
mer has to do the vectorization, unlike with NVIDIA GPUs.
CAL provides a feature called swizzling, which is used to
select parts of vector registers in arithmetic operations. We
found this improves readability of the code. However, the
programming tools still are unsatisfactory. The high-level
Brook+ model does not achieve acceptable performance.
The low-level CAL model does, but it is difficult to use.
The best-performing implementation uses a tile size of 4x3,
thanks to the large number of registers. Due to the low I/O
performance, we achieve only 16% of the theoretical peak.

NVIDIA GPUs
NVIDIA’s programming model is called Cuda [16]. Cuda
is relatively high-level, and achieves good performance. An
advantage of NVIDIA hardware, in contrast to ATI, is that the
application does not have to do vectorization. This is thanks
to the fact that all cores have their own address generation
units. All data parallelism is expressed by using threads.
When accessing device memory, it is important to make sure
that simultaneous memory accesses by different threads are
coalesced into a single memory transaction. In contrast to
ATI hardware, NVIDIA GPUs support random write access
to device memory. This allows a programming model that is
much closer to traditional models, greatly simplifying soft-
ware development. It is important to use shared memory or
the texture cache to enable data reuse. In our case, we use
the texture cache to speed-up access to the sample data. Cuda
provides barrier synchronization between threads within a
thread block. We exploit this feature to let the threads that

access the same samples run in lock step. This way, we pay
a small synchronization overhead, but we can increase the
cache hit ratio significantly. We found that this optimization
improved performance by a factor of 2. This optimization
is a good example that shows that, on GPUs, it is important
to optimize memory behavior, even at the cost of additional
instructions and synchronization overhead.

We also investigated the use of the per-multiprocessor
shared memory as an application-managed cache. Others re-
port good results with this approach [26]. However, we found
that, for our application, the use of shared memory only led to
performance degradation compared to the use of the texture
caches.

Registers are a shared resource. Using fewer registers in a
kernel allows the use of more concurrent threads, hiding load
delays. We found that using a relatively small tile size (3x2)
and many threads increases performance. The kernel itself,
without host-to-device communication achieves 38% of the
theoretical peak performance. If we include communication,
the performance drops to 32% of the peak. Just like with the
ATI hardware, this is caused by the low PCI-e bandwidth.
With NVIDIA hardware significant performance gains can be
achieved by using asynchronous host-to-device I/O.

The Cell Broadband Engine
With the Cell/B.E. it is important to exploit all levels of par-
allelism. Applications deal with task and data parallelism
across multiple SPEs, vector parallelism inside the SPEs, and
multi-buffering for asynchronous DMA transfers [7]. Ac-
ceptable performance can be achieved by programming the
Cell/B.E. in C or C++, while using intrinsics to manually
express vector parallelism. Thus, the programmer specifies
which instructions have to be used, but can typically leave the
instruction scheduling and register allocation to the compiler.

A distinctive property of the architecture is that cache
transfers are explicitly managed by the application, using
DMA. This is unlike other architectures, where caches work
transparently. Communication can be overlapped with com-
putation, by using multiple buffers. Although issuing explicit
DMA commands complicates programming, we found that
this usually is not problematic for signal-processing applica-
tions. Thanks to the explicit cache, the correlator implemen-
tation fetches each sample from main memory only exactly
once. The large number of registers allows a big tile size of
4×3, leading to a lot of data reuse. We exploit the vector par-
allelism of the Cell/B.E. by computing the four polarization
combinations in parallel. We found that this performs better
than vectorizing over the integration time. This is thanks to
the Cell/B.E.’s excellent support for shuffling data around
in the vector registers. Due to the high memory bandwidth
and the ability to reuse data, we achieve 92% of the peak
performance on one chip. If we use both chips in a cell blade,
we still achieve 91%. Even though the memory bandwidth
per operation of the Cell/B.E. is eight times lower than that



Intel Core i7 920 IBM Blue Gene/P ATI 4870 NVIDIA Tesla C1060 STI Cell/B.E.
+ well-known + L2 prefetch unit + largest number of cores + random write access + power efficiency
– few registers + high memory bandwidth + swizzling support + Cuda is high-level + random write access
– no fma instruction + fast interconnects – low PCI-e bandwidth – low PCI-e bandwidth + shuffle capabilities
– limited shuffling – double precision only – transfer slows down kernel + explicit cache (performance)

– expensive – no random write access – explicit cache (programmability)
– bad programming support – multiple parallelism levels

Table 3. Strengths and weaknesses of the different platforms for signal-processing applications.

of the BG/P, we still achieve excellent performance, thanks to
the high data reuse factor.

6.3. Comparison and Evaluation

Figure 5 shows the performance on all architectures we eval-
uated. The NVIDIA GPU achieves the highest absolute per-
formance. Nevertheless, the GPU efficiencies are much lower
than on the other platforms. The Cell/B.E. achieves the high-
est efficiency of all many-core architectures, close to that of
the BG/P. Although the theoretical peak performance of the
Cell/B.E. is 4.6 times lower than the NVIDIA chip, the abso-
lute performance is only 1.6 times lower. If both chips in the
cell blade are used, the Cell/B.E. also has the highest absolute
performance. For the GPUs, it is possible to use more than
one chip as well, for instance with the ATI 4870x2 device.
However, we found that this does not help, since the perfor-
mance is already limited by the low PCI-e throughput, and the
chips have to share this resource. In Table 3 we summarize
the architectural strengths and weaknesses that we discussed.

7. PROGRAMMABILITY OF THE PLATFORMS

The performance gap between assembly and a high-level
programming language is quite different for the different
platforms. It also depends on how much the compiler is
helped by manually unrolling loops, eliminating common
sub-expressions, the use of register variables, etc., up to a
level that the C code becomes almost as low-level as assem-
bly code. The difference varies between only a few percent
to a factor of 10.

For the BG/P, the performance from compiled C++ code
was by far not sufficient. The assembly code is approxi-
mately 10 times faster. For both the Cell/B.E. and the Intel
Core i7, we found that high-level code in C or C++ in com-
bination with the use of intrinsics to manually describe the
SIMD parallelism yields acceptable performance compared
to optimized assembly code. Thus, the programmer specifies
which instructions have to be used, but can typically leave the
instruction scheduling and register allocation to the compiler.
On NVIDIA hardware, the high-level Cuda model delivers
excellent performance, as long as the programmer helps by
using SIMD data types for loads and stores, and separate lo-
cal variables for values that should be kept in registers. With
ATI hardware, this is different. We found that the high-level
Brook+ model does not achieve acceptable performance com-

pared to hand-written CAL code. Manually written assembly
is more than three times faster. Also, the Brook+ documenta-
tion is insufficient.

8. CONCLUSIONS

Radio telescopes require large amounts of signal processing,
and have high computational and I/O demands. We pre-
sented general insights on how to use many-core platforms
for signal-processing applications, looking at the aspects of
performance, optimization and programmability. As an ex-
ample, we evaluated the extremely data-intensive correlator
algorithm on today’s many-core architectures.

The many-core architectures have a significantly lower
memory bandwidth per operation compared to traditional
architectures. This requires completely different algorithm
implementation and optimization strategies: minimizing the
number of memory loads per operation is of key importance
to obtain good performance. A high memory bandwidth per
operation is not strictly necessary, as long as the architecture
(and the algorithm) allows efficient data reuse. This can be
achieved through caches, shared memory, local stores and
registers. It is clear that application-level control of cache
behavior (either through explicit DMA or thread synchro-
nization) has a substantial performance benefit, and is of key
importance for signal-processing applications.

We demonstrated that the many-core architectures have
very different performance characteristics, and require differ-
ent implementation and optimization strategies. The BG/P
supercomputer achieves high efficiencies thanks to the high
memory bandwidth per operation. The GPUs are unbalanced:
they provide an enormous computational power, but have a
relatively low bandwidth per operation, both internally and
externally (between the host and the device). Because of
this, many data-intensive signal-processing applications will
achieve only a small fraction of the theoretical peak. The
Cell/B.E. performs excellently on signal-processing applica-
tions, even though its memory bandwidth per operation is
eight times lower than the BG/P. Applications can exploit the
application-managed cache and the large number of registers.
For the correlator, this results in optimal reuse of all sample
data. Nevertheless, it is clear that, for signal-processing ap-
plications, the recent trend of increasing the number of cores
will not work indefinitely if I/O is not scaled accordingly.



Acknowledgments
This work was performed in the context of the NWO STARE
AstroStream project. We gratefully acknowledge NVIDIA,
and in particular Dr. David Luebke, for providing freely some
of the GPU cards used in this work.

9. REFERENCES

[1] Marco de Vos, Andre W. Gunst, and Ronald Nijboer, “The LO-
FAR Telescope: System Architecture and Signal Processing,”
Proceedings of the IEEE, 2009, To appear.

[2] S. Johnston, R. Taylor, M. Bailes, et al., “Science with ASKAP.
The Australian Square-Kilometre-Array Pathfinder,” Experi-
mental Astronomy, vol. 22, no. 3, pp. 151–273, 2008.

[3] W.M. Telford, L.P. Geldart, and R.E. Sheriff, Applied Geo-
physics, Cambridge University Press, 1991, Second Edition,
ISBN: 0521326931.

[4] J.D. Taylor, Introduction to Ultra-Wideband Radar Systems,
CRC Press, 1995, ISBN: 0849344409.

[5] P. Chandra, A. Bensky, R. Olexa, D.M. Dobkin, D.A. Lide, and
F. Dowla, Wireless Networking, Newnes Press, 2007, ISBN:
0750685824.

[6] John W. Romein, P. Chris Broekema, Jan David Mol, and
Rob V. van Nieuwpoort, “The LOFAR Correlator: Implemen-
tation and Performance Analysis,” in 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP 2010), Bangalore, India, January 2010, Ac-
cepted for for publication. See http://www.astron.nl/
˜romein/papers/.

[7] Michael Gschwind, H. Peter Hofstee, Brian K. Flachs, Martin
Hopkins, Yukio Watanabe, and Takeshi Yamazaki, “Synergis-
tic Processing in Cell’s Multicore Architecture,” IEEE Micro,
vol. 26, no. 2, pp. 10–24, 2006.

[8] D.A. Bader and V. Agarwal, “FFTC: Fastest Fourier Transform
for the IBM Cell Broadband Engine,” in 14th IEEE Intl. Con-
ference on High Performance Computing, 2007, pp. 172–184.

[9] A.S. van Amesfoort, A.L. Varbanescu, H.J. Sips, and R.V. van
Nieuwpoort, “Multi-Core Platforms for HPC Data-Intensive
Kernels,” in Proceedings of ACM Computing Frontiers, Ischia,
Italy, 2009, pp. 207–216.

[10] R.V. van Nieuwpoort and J.W. Romein, “Using Many-Core
Hardware to Correlate Radio Astronomy Signals,” in Pro-
ceedings of ACM International Conference on Supercomput-
ing, New York, NY, June 2009, pp. 440–449.

[11] “Karoo array telescope (MeerKAT),” see http://www.
ska.ac.za/.

[12] R.T. Schilizzi, P.E.F. Dewdney, and T.J.W. Lazio, “The Square
Kilometre Array,” Proceedings of SPIE, vol. 7012, July 2008.

[13] M.P. van Haarlem, “Lofar: The low frequency array,” Eu-
ropean Astronomical Society Publications Series, vol. 15, pp.
431–444, 2005, http://dx.doi.org/10.1051/eas:
2005169.

[14] IBM Blue Gene team, “Overview of the IBM Blue Gene/P
Project,” IBM Journal of R&D, vol. 52, no. 1/2, 2008.

[15] AMD Stream Computing User Guide Revision 1.1, 2008.

[16] NVIDIA CUDA Programming Guide Version 2.0, 2008.

[17] F. Catthoor, K. Danckaert, K.K. Kulkarni, E. Brockmeyer, P.G.
Kjeldsberg, T. van Achteren, and T. Omnes, Data Access
and Storage Management for Embedded Programmable Pro-
cessors, Kluwer Academic Publishers, 2002, ISBN: 978-0-
7923-7689-7.

[18] Tien-fu Chen and Jean-loup Baer, “Effective Hardware-Based
Data Prefetching for High-performance Processors,” IEEE
Transactions on Computers, vol. 44, pp. 609–623, 1995.

[19] Ulrich Meyer, Peter Sanders, and Jop Sibeyn, Eds., Algorithms
for Memory Hierarchies, vol. 2625 of Lecture Notes in Com-
puter Science, Springer Berlin / Heidelberg, 2003, ISBN: 978-
3-540-00883-5.

[20] David F. Bacon, Jyh-Herng Chow, Dz-ching R. Ju, Kalyan
Muthukumar and Vivek Sarkar, “A Compiler Framework for
Restructuring Data Declarations to Enhance Cache and TLB
Effectiveness,” in Proceedings of the 1994 Conference of
the Centre for Advanced Studies on Collaborative Research,
Toronto, Ontario, Canada, 1994, pp. 270–282, IBM Press.

[21] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David
Boles, “Dynamic Storage Allocation: A Survey and Critical
Review,” in Proceedings of International Workshop on Mem-
ory Management, Kinross, Scotland, 1995, vol. 986 of Lecture
Notes in Computer Science, pp. 1–116, Springer-Verlag.

[22] Michael E. Wolf and Monica S. Lam, “A Data Locality Op-
timizing Algorithm,” in Proceedings of the ACM SIGPLAN
1991 Conference on Programming Language Design and Im-
plementation (PLDI), Toronto, Ontario, Canada, 1991, pp. 30–
44, ISBN:0-89791-428-7.

[23] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau,
“Memory Data Organization for Improved Cache Performance
in Embedded Processor Applications,” ACM Transactions on
Design Automation of Electronic Systems, vol. 2, pp. 384–409,
1996.

[24] Edward D. Lazowska, John Zahorjana, G. Scott Graham,
and Kenneth C. Sevcik, Quantitative System Performance,
Computer System Analysis Using Queueing Network Models,
Prentice-Hall, 1984, ISBN: 978-0137469758.

[25] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
Insightful Visual Performance Model for Floating-Point Pro-
grams and Multicore Architectures,” Communications of the
ACM, vol. 52, no. 4, pp. 65–76, 2009.

[26] Mark Silberstein, Assaf Schuster, Dan Geiger, Anjul Patney,
and John D. Owens, “Efficient Computation of Sum-products
on GPUs Through Software-Managed Cache,” in Proceedings
of the 22nd ACM International Conference on Supercomput-
ing, June 2008, pp. 309–318.


