Research & Innovation

Radio telescopes are used to observe our universe and to provide astronomers with detailed images and spectra. We use antenna technology to receive radio signals from the universe. There are different types of antennas: dishes like the Westerbork Synthesis Radio Telescope (WSRT), and dipoles like the Low Frequency Array (LOFAR). We require many antennas to get the sharpest images from very weak signals. Combining the signals from all antennas is called interferometry and requires electronic boards, photonic links, supercomputers and a lot of algorithms and software.

Compact Receivers

Receiver systems in radio astronomy consist of a number of components, starting with the antenna, via a number of discrete electronic components to the digital electronic boards.

High Performance Computing

A radio telescope produces a data stream for each antenna. Since we use up to hundreds of thousands of antennas, these data streams are processed in parallel.

Calibration and Imaging

Several data processing steps are necessary before data from a radio telescope such as LOFAR can be turned into a scientific image of the sky.

Science Data Centre

The SKA will generate more data than we have processed and analysed ever before. To make this possible, innovation in hardware, software and expertise is crucial.

Latest tweets

The Dutch astronomy magazine @ZenitNL devoted an article to our solar radio telescope DISTURB. You can read the article here:

We've made a new video of our walking route the #Melkwegpad. via @YouTube

Daily image of the week: DR1. The Apertif imaging team has released science data from the first year of science operations of WSRT-Apertif, which can now be accessed by the scientific community.
#radioastronomy #DR1

In about half an hour, at 12.15, ASTRON researcher @AJBoonstra will be live in the Dutch radio programme 'Zoek het uit!' on @RTVDrenthe to answer some questions about the Westerbork synthesis radio telescope. You can tune in here:
#WSRT #radioastronomy