Research & Innovation

Radio telescopes are used to observe our universe and to provide astronomers with detailed images and spectra. We use antenna technology to receive radio signals from the universe. There are different types of antennas: dishes like the Westerbork Synthesis Radio Telescope (WSRT), and dipoles like the Low Frequency Array (LOFAR). We require many antennas to get the sharpest images from very weak signals. Combining the signals from all antennas is called interferometry and requires electronic boards, photonic links, supercomputers and a lot of algorithms and software.

Compact Receivers

Receiver systems in radio astronomy consist of a number of components, starting with the antenna, via a number of discrete electronic components to the digital electronic boards.

High Performance Computing

A radio telescope produces a data stream for each antenna. Since we use up to hundreds of thousands of antennas, these data streams are processed in parallel.

Calibration and Imaging

Several data processing steps are necessary before data from a radio telescope such as LOFAR can be turned into a scientific image of the sky.

Science Data Centre

The SKA will generate more data than we have processed and analysed ever before. To make this possible, innovation in hardware, software and expertise is crucial.

Latest tweets

At ASTRON, our scientists work at the edge of what is scientifically possible. All thanks to our engineers, who work closely together in the backend and delivery phase of astronomy instrument development.
#research #innovation #engineering

Vanavond om 21.30 op @NatGeoNL is de @LOFAR telescoop te zien in 'Europe from above'!

Daily Image of the Week: The Dwingeloo radio telescope and its main object of study, the Milky Way.

Today our colleague @AstroJoeC will appear on the @Discovery show 'Killers of the Cosmos' in the episode about killer stars! 💫☠️

hello world!