ASTRON is responsible for the operations of the Westerbork Synthesis Radio Telescope (WSRT) and the Low Frequency Array (LOFAR).


The astronomical research at ASTRON is closely aligned with the strengths of our facilities LOFAR and WSRT-APERTIF.

Diversity & Sustainability

ASTRON is committed to achieving a fair, welcoming, and sustainable work environment for all.


Met onze radiotelescopen nemen wij de meest zwakke signalen uit het heelal waar. Daardoor zijn zij kwetsbaar voor elektromagnetische storing. Met het tijdig treffen van de juiste maatregelen kan storing worden voorkomen.

Wireless Data Lab

Draadloze techniek lijkt vanzelfsprekend, maar de ontwikkeling ervan gaat niet vanzelf. Daarom hebben we bij ASTRON een proeftuin ingericht; het Wireless Data Lab.

Making discoveries
in radio astronomy

ASTRON is the Netherlands Institute for Radio Astronomy, and is part of the Institutes organisation of NWO.
TOPIC-led consortium develops CSP-Low for SKA

The SKA telescopes are currently in the construction phase, and with it the central signal processor (CSP) for the SKA Low frequency telescope, called CSP-Low. CSP-Low will be integrated and delivered to site by a consortium led by the Dutch company TOPIC; ASTRON is one of its subcontractors. One of TOPIC’s specializations is designing and developing hardware, firmware, and software for sophisticated systems.

People of ASTRON: Tom Kamphuis

In People of ASTRON we share stories about the people at ASTRON. Who are the people behind the discoveries and innovations and also, who are the people that make sure that everything runs smoothly? Tom Kamphuis is Head Software Delivery and loves that he can contribute to groundbreaking science.

ASTRON lanceert proeftuin voor ondernemers

Om onze kennis over het heelal te vergroten, verlegt ASTRON voortdurend de grenzen van de technologie in haar radiotelescopen. Deze expertise stellen wij nu ter beschikking om de innovatieve kracht van ondernemers te vergroten. Hiertoe lanceren we het Wireless Data Lab (WDL), een proeftuin waarmee ASTRON haar kennis en faciliteiten op het gebied van draadloze dataoverdracht beschikbaar stelt aan het bedrijfsleven en andere instellingen.

ASTRON-led consortium working on SKAO

A consortium led by ASTRON is developing important software components for processing the vast amounts of data that the soon-to-be largest radio telescope in the world will produce.

NenuFAR officially becomes a LOFAR super station
Westerbork and the future of GigaHertz astronomy
NWO condemns acts of war in Ukraine – prepares measures
Flurry of new discoveries as incredible new image revealing 4.4 million galaxies is made public
Cosmic flashes discovered in a surprising location in space
1 2 3 73
Forecasting Solar Energetic Particles (SEPs) by combining SXR and low frequency radio observations

© Liam Clarke

Solar flares are bursts of light from solar active regions, visible at virtually every wavelength. Particle acceleration from flares can produce measurable increases in energetic (10keV – 1GeV) particle fluxes at Earth called Solar Energetic Particles (SEPs). SEPs pose increased radiation risk to astronauts and high-altitude flights, interfere with radio communications and damage satellite electronics. Some of the impacts of SEPs on human activity can be mitigated with advance warning.

SEPs don’t always occur following a flare. In order to observe SEPs at Earth, enough energy needs to be released to accelerate a significant number of particles to high energies, and particles need to escape from the magnetic fields of the Sun into to the interplanetary medium. These conditions can be inferred from the soft X-ray (1-8 Å, SXR) fluence and Radio fluence of the preceding flare respectively. So, using the photoemissions from a flare, the probability of a following SEP can be forecast within 18 mins of the flare (8 mins for light to reach Earth, 10 mins for enough data to be collected for prediction).

To do this, we took data from 200 ≥ M2 class flares from 1995-2017 and made a scatter plot of SXR fluence and 46 MHz radio fluence, with SEPs shown by red stars. Using this, we can overlay a continuous probability function to give the likelihood of an SEP following a flare, dependent on its position in the scatter plot (colour map). We then choose a threshold probability contour (white line), above which we predict an SEP to occur. For this example, this allows us to correctly forecast 95% of the 200 flares, with 12/17 (71%) SEP detections, and 6/18 (33%) false alarms.


Next Generation Space VLBI workshop

Mon 17 Oct 2022 - Wed 19 Oct 2022

The third edition of the Next Generation Space VLBI workshop (ngSVLBI-2022), co-organised by JIVE and ASTRON in Dwingeloo (The Netherlands) will be held on 17-19 October 2022. The ngSVLBI-2022 workshop will focus on the future of high-resolution radio interferometry. Next-generation Space VLBI missions would be natural extensions of advanced Earth-based facilities such as global VLBI networks, (ng)EHT, […]


Latest tweets

Daily image of the week. To enrich the exhibition of Nebra sky disc at the @DrentsMuseum, ASTRON hosted a stand outside, demonstrating how we explore the universe nowadays, compared to how people did this 3,500 years ago (when the Nebra disc was made).

This week is #Pride Week. A more #diverse workforce fuels creativity, compassion, understanding, and the feeling of kinship and inclusion. At ASTRON we highly value diversity and make constant efforts to increase the diversity of our workforce.

Op 7 en 14 augustus staan we voor het @DrentsMuseum, dat de #Nebraschijf, een van de oudste sterrenkaarten ter wereld tentoonstelt. ASTRON-onderzoeker @AndreOffringa geeft binnen een lezing en wij doen voor het museum wat leuke proefjes. Hopelijk tot dan!

A great discovery, in which our own @shivibhandari was involved!