After almost a decade of work, an international team of astronomers has published the most detailed images yet seen of galaxies beyond our own, revealing their inner workings in unprecedented detail. The images were created from data collected by the Low Frequency Array (LOFAR), a radio telescope built and maintained by ASTRON, LOFAR is a network of more than 70,000 small antennae spread across nine European counties, with its core in Exloo, the Netherlands. The results come from the team’s years of work, led by Dr Leah Morabito at Durham University. The team was supported in the UK by the Science and Technology Facilities Council (STFC).
As well as supporting science exploitation, STFC also funds the UK subscription to LOFAR including upgrade costs and operation of its LOFAR station in Hampshire.
Published by the editorial team, 17 August 2021
Revealing a hidden universe of light in HD
The universe is awash with electromagnetic radiation, of which visible light comprises just the tiniest slice. From short-wavelength gamma rays and X-rays, to long-wavelength microwave and radio waves, each part of the light spectrum reveals something unique about the universe.
The LOFAR network captures images at FM radio frequencies that, unlike shorter wavelength sources like visible light, are not blocked by the clouds of dust and gas that can cover astronomical objects. Regions of space that seem dark to our eyes, actually burn brightly in radio waves – allowing astronomers to peer into star-forming regions or into the heart of galaxies themselves.
The new images, made possible because of the international nature of the collaboration, push the boundaries of what we know about galaxies and super-massive black holes. A special issue of the scientific journal Astronomy & Astrophysics is dedicated to 11 research papers describing these images and the scientific results.
A compilation of the science results. Credit from left to right starting at the top: N. Ramírez-Olivencia et el. [radio]; NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University), edited by R. Cumming [optical], C. Groeneveld, R. Timmerman; LOFAR & Hubble Space Telescope,. Kukreti; LOFAR & Sloan Digital Sky Survey, A. Kappes, F. Sweijen; LOFAR & DESI Legacy Imaging Survey, S. Badole; NASA, ESA & L. Calcada, Graphics: W.L. Williams.
Better resolution by working together
The images reveal the inner-workings of nearby and distant galaxies at a resolution 20 times sharper than typical LOFAR images. This was made possible by the unique way the team made use of the array.
The 70,000+ LOFAR antennae are spread across Europe, with the majority being located in the Netherlands. In standard operation, only the signals from antennae located in the Netherlands are combined, and creates a ‘virtual’ telescope with a collecting ‘lens’ with a diameter of 120 km. By using the signals from all of the European antennae, the team have increased the diameter of the ‘lens’ to almost 2,000 km, which provides a twenty-fold increase in resolution.
Unlike conventional array antennae that combine multiple signals in real time to produce images, LOFAR uses a new concept where the signals collected by each antenna are digitised, transported to central processor, and then combined to create an image. Each LOFAR image is the result of combining the signals from more than 70,000 antennae, which is what makes their extraordinary resolution possible.
This shows real radio galaxies from Morabito et al. (2021). The gif fades from the standard resolution to the high resolution, showing the detail we can see by using the new techniques. Credit: L.K. Morabito; LOFAR Surveys KSP
Revealing jets and outflows from super-massive black holes
Super-massive black holes can be found lurking at the heart of many galaxies and many of these are ‘active’ black holes that devour in-falling matter and belch it back out into the cosmos as powerful jets and outflows of radiation. These jets are invisible to the naked eye, but they burn bright in radio waves and it is these that the new high-resolution images have focused upon.
Dr Neal Jackson of The University of Manchester, said: “These high resolution images allow us to zoom in to see what’s really going on when super-massive black holes launch radio jets, which wasn’t possible before at frequencies near the FM radio band,”
The team’s work forms the basis of nine scientific studies that reveal new information on the inner structure of radio jets in a variety of different galaxies.
Hercules A is powered by a supermassive black hole located at its centre, which feeds on the surrounding gas and channels some of this gas into extremely fast jets. Our new high-resolutions observations taken with LOFAR have revealed that this jet grows stronger and weaker every few hundred thousand years. This variability produces the beautiful structures seen in the giant lobes, each of which is about as large as the Milky Way galaxy. Credit: R. Timmerman; LOFAR & Hubble Space Telescope
A decade-long challenge
Even before LOFAR started operations in 2012, the European team of astronomers began working to address the colossal challenge of combining the signals from more than 70,000 antennae located as much as 2,000 km apart. The result, a publicly-available data-processing pipeline, which is described in detail in one the scientific papers, will allow astronomers from around the world to use LOFAR to make high-resolution images with relative ease.
Dr Leah Morabito of Durham University, said: “Our aim is that this allows the scientific community to use the whole European network of LOFAR telescopes for their own science, without having to spend years to become an expert.”
Super images require supercomputers
The relative ease of the experience for the end user belies the complexity of the computational challenge that makes each image possible. Because LOFAR doesn’t just ‘take pictures’ of the night sky, it must stitch together the data gathered by more than 70,000 antennae, which is a huge computational task. To produce a single image, more than 13 terabits of raw data per second – the equivalent of more than a three hundred DVDs – must be digitised, transported to a central processor and then combined.
Frits Sweijen of Leiden University, said: “To process such immense data volumes we have to use supercomputers. These allow us to transform the terabytes of information from these antennas into just a few gigabytes of science-ready data, in only a couple of days.”
Media
All images and video’s belonging to this press release can be found in high resolution here.
Links to Arxiv (free) papers can be found here.
In this video by Dr Becky Smethurst she explains what LOFAR is and what is so significant to this press release. She also interviews Leah Morabito, Shruti Baldoe and Frits Sweijen.
The full interview with Dr Leah Morabito by Dr Becky Smethurst.
About LOFAR
The International LOFAR Telescope is a trans-European network of radio antennas, with a core located in Exloo in the Netherlands. LOFAR works by combining the signals from more than 70,000 individual antenna dipoles, located in ‘antenna stations’ across the Netherlands and in partner European countries. The stations are connected by a high-speed fibre optic network, with powerful computers used to process the radio signals in order to simulate a trans-European radio antenna that stretches over 1,300 kilometres. The International LOFAR Telescope is unique, given its sensitivity, wide field-of-view, and image resolution or clarity. The LOFAR data archive is the largest astronomical data collection in the world.
LOFAR was designed, built and is presently operated by ASTRON, the Netherlands Institute for Radio Astronomy. France, Germany, Ireland, Italy, Latvia, the Netherlands, Poland, Sweden and the UK are all partner countries in the International LOFAR Telescope.